Явления наблюдаемые в неинерциальных системах отсчета кратко

Обновлено: 05.07.2024

Ни для кого не секрет, что законы Ньютона могут быть выполнены лишь в инерциальных системах отсчета.

Системы отсчета, совершающие ускоренное движение относительно инерциальной системы, носят название неинерциальных.

В таких системах законы Ньютона применяться не могут. Несмотря на это, законы динамики можно использовать и в условиях подобных систем в случае, если, кроме обусловленных взаимным воздействием тел друг на друга сил, будет введено понятие силы инерции.

С учетом сил инерции второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета эквивалентно совокупности всех оказывающих воздействие на данное тело сил F , в список которых включены и инерционные.

Наряду с этим, силы инерции F i n должны быть такими, чтобы в сумме с силами F они придавали движению приведенного объекта ускорение a ′ , которым оно обладает в неинерциальных системах отсчета, таким образом:

По причине того, что F = m a , где a является ускорением тела в инерциальной системе отсчета.

Силы инерции вызваны ускоренным движением системы отсчета относительно исследуемой системы, из-за чего, в общем случае, стоит учитывать следующие варианты возникновения данных сил:

  1. Силы инерции в условиях ускоренного поступательного движения системы отсчета.
  2. Силы инерции, оказывающие воздействие на тело, покоящееся во вращающейся системе отсчета.
  3. Силы инерции, действующие на движущееся во вращающейся системе отсчета тело.

Рассмотрим приведенные случаи.

Силы инерции в условиях ускоренного поступательного движения системы отсчета

К расположенному на тележке штативу с помощью нити подвешен шарик с некоторой массой m (рис. 1 ). Во время того, как тележка покоится или движется прямолинейно и равномерно, удерживающая шарик нить, находится в вертикальном положении, а сила тяжести P компенсируется силой натяжения нити T .

В условиях, в которых тележка обладает ускорением a 0 , нить будет отклоняться от вертикали в обратную по отношению к направлению движения сторону до некоторого угла a до тех пор, пока результирующая сила F = P + T не приведет ускорение шарика к ускорению, равному a 0 . Таким образом, результирующая сила F сонаправлена с ускорением тележки a 0 и для установившегося движения шарика (так как теперь он движется вместе с тележкой с ускорением a 0 ) эквивалентна F = m g · t g α = m a 0 , соответственно t g a = a 0 g . Выходит, что угол отклонения нити от вертикали тем больше, чем выше значение ускорения тележки. В системе отсчета, которая связана с ускоренно движущейся тележкой, шарик находится в состоянии покоя. Такое становится возможным, если сила F компенсируется равной и противоположно направленной ей силой F i n , представляющей собой силу инерции, так как действия на шарик каких-либо других сил эффекта не возымеют.

Силы инерции в условиях ускоренного поступательного движения системы отсчета

Следовательно: F i n = - m a 0 .

Силы инерции, оказывающие воздействие на тело, покоящееся во вращающейся системе отсчета

Пускай диск равномерно вращается с угловой скоростью ω ( ω = c o n s t ) вокруг ортогональной (то есть перпендикулярной) ему оси, проходящей через его центр. На диске расположены маятники, на различных расстояниях от оси вращения и на нитях прикреплены шарики массой m . Во время вращения диска, шарики отклоняются от вертикали на некоторый угол (рис. 2 ).

В инерциальной системе отсчета, связанной, к примеру, с помещением, в котором расположен диск, происходит равномерное вращательное движение шарика по окружности с радиусом R . Следовательно, на него оказывает воздействие сила, эквивалентная F = m ω 2 R и направленная ортогонально оси вращения диска. Она представляет собой равнодействующую сил тяжести и натяжения нити T : F = P + T . В момент, когда движение шарика установится, F = m g · t g a = m ω 2 R , соответственно: t g α = ω 2 R g . Таким образом, углы отклонения нитей маятников будут тем больше, чем больше величины угловой скорости вращения и расстояния R от центра шарика до оси вращения диска. Относительно системы отсчета, связанной с вращающимся диском, шарик покоится, что возможно лишь в том случае, если сила F будет скомпенсирована равной и противоположно направленной ей силой F c , представляющей собой силу инерции, так как действия на шарик каких-либо других сил эффекта не возымеют. Сила F c , носящая название центробежной силы инерции, направлена по горизонтали от оси вращения диска и равняется:

F c = - m a 0 ω 2 R .

Исходя из формулы, расположенной выше, можно заключить, что центробежная сила инерции, воздействующая на тела во вращающихся системах отсчета и направленная в сторону радиуса от оси вращения, обладает зависимостью от угловой скорости вращения ω системы отсчета и радиуса R , однако не имеет зависимости от скорости тела относительно вращающихся систем отсчета. Таким образом, центробежная сила инерции во вращающихся системах отсчета оказывает влияние на любые удаленные от оси вращения на конечное расстояние объекты. При данном условии не имеет значения, покоятся ли они в подобной системе отсчета, как нами предполагалось до этих пор, или совершают движение относительно нее с некоторой скоростью.

Силы инерции, действующие на движущееся во вращающейся системе отсчета тело

Пускай шарик массой m совершает движение в условиях постоянной скорости υ ' вдоль радиуса равномерно вращающегося диска

( υ ' = c o n s t , ω = c o n s t , υ ' ортогонально ω ). В случае, если диск не начинает вращательное движение, шарик перемещается по радиальной прямой и попадает в точку А . Если же диск приводится во вращение в указанном стрелкой направлении, то шарик катится по кривой O В (рис. 3 а ), при этом относительно диска его скорость υ ' меняет свое направление. Такое возможно только в том случае, если на шарик оказывает влияние сила, перпендикулярная скорости υ ' .

Чтобы спровоцировать качение шарика по вращательно двигающемуся диску вдоль радиуса, будем применять жестко укрепленный вдоль него стержень, на котором шарик движется без трения прямолинейно и равномерно со скоростью υ ' (рис. 3 б ).

В случае отклонения шарика стержень воздействует на него некоторой силой F . Шарик совершает прямолинейное равномерное движение во вращающейся системе отсчета, то есть относительно диска. Данный факт основывается на том, что сила F компенсируется приложенной к шарику силой инерции F k , ортогональной скорости υ ' . Такая сила является кориолисовой силой инерции. Можно сказать, что вектор силы Кориолиса F k направлен под прямым углом к векторам скорости υ ' объекта и угловой скорости вращения системы отсчета в соответствии с правилом правого винта.

Давайте рассмотрим пример движения тела в одном из видов неинерциальных систем отсчета. Объект находится в покое на вершине наклонной плоскости.

По прошествии какого времени тело соскользнет с поверхности, если она в момент времени е = 0 начнет движение влево в горизонтальном направлении с ускорением с 1 м / с 2 ?

Длина плоскости 1 м , угол наклона плоскости по отношению к горизонту 30 ° , коэффициент трения между телом и плоскостью 0 , 6 .

Необходимо высчитать время движения тела по наклонной плоскости.

Решение

Систему отсчета будет удобно связать с наклонной плоскостью. Однако плоскость по отношению к Земле находится в состоянии ускоренного движения. Для данного движения Земля представляет собой инерциальную систему отсчета. Выходит, что связанная с наклонной плоскостью система отсчета считается, напротив, неинерциальной, и в уравнение движения тела нужно добавить поступательную силу инерции. На двигающееся тело в связанной с наклонной плоскостью системе отсчета влияют четыре силы: сила тяжести m g , сила нормальной реакции N , сила трения F т р и поступательная сила инерции F ¯ i n = - m a ¯ .

Уравнение движения тела выглядит следующим образом:

m a 1 ¯ = m g ¯ + N ¯ + F ¯ т р + F ¯ i n , где a 1 ¯ - ускорение тела.

Спроецируем это уравнение на ось X , направленную вдоль наклонной плоскости, и ортогональную к ней ось Y .

m a 1 = m g · sin α - F т р + m a · cos α , 0 = - m g · cos α + N + m a · sin α .

Если учитывать, что F т р = μ N , из этой системы уравнений получим:

a 1 = g ( sin α - μ cos α ) + a ( cos α + μ sin α ) .

По причине того, что ускорение a 1 не обладает зависимостью от времени, время движения тела по наклонной плоскости будет равняться:

t = 2 l a 1 = 2 l g ( sin α - μ cos α ) + a ( cos α + μ sin α ) ≈ 0 , 8 с

Явления, наблюдаемые в неинерциальных системах отсчета

При описании поступательного движения тела в неинерциальной системе отсчета (НСО), движущейся поступательно, вводится сила инерции \(~\vec F_1 = -m \vec a_\), где \(~\vec a_\) — ускорение самой НСО относительно какой-то инерциальной системы отсчета.

Рассмотрим пример с шаром массой m, находящимся на гладком полу вагонетки и прикрепленным к ее передней стенке пружиной (рис. 1).


На рисунке 2 система хОу — неподвижная инерциальная система отсчета, а х’О’у’ — неинерциальная система отсчета, связанная с вагонеткой.


При движении вагонетки с ускорением \(~\vec a_\) относительно хОу пружина растянется на Δl, положение шара в начале движения относительно вагонетки изменится по сравнению с его положением при aH.C = 0, а далее относительно вагонетки он будет неподвижен.

При отсутствии трения \(~m \vec g + \vec N_p + \vec F_i + \vec F_ = 0\), где \(~m \vec g\) — сила тяжести, \(~\vec N_p\) — сила реакции пола, \(~\vec F_\) — сила упругости со стороны растянутой пружины, \(~\vec F_i\) — сила инерции.

В проекциях на оси Оу и Ox: имеем: mg = Np; Fi = Fynp. Так как модуль Fynp = kΔl, то Fi может быть измерена по растяжению пружины.

Движение шара вместе с вагонеткой относительно инерциальной системы хОу описывается вторым законом Ньютона\[~m \vec g + \vec N_p + \vec F_ = m \vec a_\], или в проекции Fynp = maH.C.

Тогда Fi = maH.C, а с учетом направлений \(~\vec F_ = - m \vec a_\).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 47.

При описании поступательного движения тела в неинерциальной системе отсчета (НСО), движущейся поступательно, вводится сила инерции — ускорение самой НСО относительно какой-то инерциальной системы отсчета.

Рассмотрим пример с шаром массой m, находящимся на гладком полу вагонетки и прикрепленным к ее передней стенке пружиной (рис. 1).

На рисунке 2 система хОу — неподвижная инерциальная система отсчета, а х’О’у’ — неинерциальная система отсчета, связанная с вагонеткой.

При движении вагонетки с ускорением относительно хОу пружина растянется на , положение шара в начале движения относительно вагонетки изменится по сравнению с его положением при , а далее относительно вагонетки он будет неподвижен.

При отсутствии трения — сила тяжести, — сила реакции пола, — сила упругости со стороны растянутой пружины, — сила инерции.

В проекциях на оси Оу и Ox: имеем: . Так как модуль , то может быть измерена по растяжению пружины.

Движение шара вместе с вагонеткой относительно инерциальной системы хОу описывается вторым законом Ньютона

Все системы отсчёта делят на инерциальные и неинерциальные. Инерциальная система отсчёта лежит в основе механики Ньютона. Она характеризует равномерное прямолинейное движение и состояние покоя. Неинерциальная система отсчёта связана с ускоренным движением по разной траектории. Это движение определяется по отношению к инерциальным системам отсчёта. Неинерциальная система отсчёта связана с такими эффектами, как сила инерции, центробежная и сила Кориолиса.

Все эти процессы возникают в результате движения, а не взаимодействия между телами. Законы Ньютона в неинерциальных системах отсчёта зачастую не работают. В таких случаях к классическим законам механики добавляются поправки. Силы, обусловленные неинерциальным движением, учитываются при разработке технических изделий и механизмов, в том числе тех, где присутствует вращение. В жизни мы сталкиваемся с ними, перемещаясь в лифте, катаясь на карусели, наблюдая за погодой и течением рек. Их учитывают и при расчёте движения космических аппаратов.

неинерциальная система отсчета

Инерциальные и неинерциальные системы отсчёта

Для описания движения тел инерциальные системы отсчёта подходят не всегда. В физике выделяют 2 вида систем отсчёта: инерциальные и неинерциальные системы отсчёта. Согласно механике Ньютона, любое тело может быть в состоянии покоя либо равномерного и прямолинейного движения, за исключением случаев, когда на тело оказывается внешнее воздействие. Такое равномерное движение называют движением по инерции.

Инерциальное движение (инерциальные системы отсчёта) составляет основу механики Ньютона и трудов Галилея. Если считать звёзды неподвижными объектами (что на самом деле не совсем так), то любые объекты, движущиеся относительно них равномерно и прямолинейно, будут образовывать инерциальные системы отсчёта.

инерциальные и неинерциальные системы отсчета

В отличие от инерциальных систем отсчёта, неинерциальная система перемещается по отношению к указанной с определенным ускорением. При этом использование законов Ньютона требует дополнительных переменных, в противном случае они будут неадекватно описывать систему. Что бы ответить на вопрос, какие системы отсчёта называются неинерциальными, стоит рассмотреть пример неинерциального движения. Таким движением является вращение нашей и других планет.

Движение в неинерциальных системах отсчёта

Коперник первым показал, насколько сложным может быть движение, если в нём участвует несколько сил. До него считалось, что Земля движется сама по себе, в соответствии с законами Ньютона, и потому ее движение является инерциальным. Однако Коперник доказал, что Земля обращается вокруг Солнца, то есть совершает ускоренное движение по отношению к условно неподвижному объекту, каковым может являться звезда.

движение в неинерциальных системах отсчета

Итак, есть разные системы отсчёта. Неинерциальными называют только те, где есть ускоренное движение, которое определяется по отношению к инерциальной системе.

Земля как система отсчёта

Неинерциальная система отсчёта, примеры существования которой можно встретить практически везде, типична для тел со сложной траекторией движения. Земля вращается вокруг Солнца, что создаёт ускоренное движение, характерное для неинерциальных систем отсчёта. Однако в повседневной практике всё, с чем мы сталкиваемся на Земле, вполне согласуется с постулатами Ньютона. Всё дело в том, что поправки на неинерциальное движение для связанных с Землёй систем отсчёта, очень незначительны и большой роли для нас не играют. И уравнения Ньютона по этой же причине оказываются в целом справедливы.

инерциальные и неинерциальные системы отсчета примеры

Маятник Фуко

Впрочем, в некоторых случаях без поправок не обойтись. Например, известный во всём мире маятник Фуко в соборе Санкт-Петербурга совершает не только линейные колебания, но ещё и медленно поворачивается. Этот поворот обусловлен неинерциальностью движения Земли в космическом пространстве.

Впервые об этом стало известно в 1851 году после опытов французского ученого Л. Фуко. Сам эксперимент проводился не в Петербурге, а в Париже, в огромном по размерам зале. Вес шара маятника был около 30 кг, а протяжённость соединительной нити – целых 67 метров.

В тех случаях, когда для описания движения недостаточно только формул Ньютона для инерциальной системы отсчёта, в них добавляют так называемые силы инерции.

Свойства неинерциальной системы отсчёта

Неинерциальная система отсчёта совершает различные движения относительно инерциальной. Это может быть поступательное движение, вращение, сложные комбинированные движения. В литературе приводится и такой простейший пример неинерциальной системы отсчёта, как ускоренно движущийся лифт. Именно из-за его ускоренного движения мы чувствуем, как нас придавливает к полу, или, наоборот, возникает ощущение, близкое к невесомости. Законы механики Ньютона такое явление объяснить не могут. Если следовать знаменитому физику, то в любой момент на человека в лифте будет действовать одна и та же сила тяжести, а значит и ощущения должны быть одинаковы, однако, в реальности всё обстоит иначе. Поэтому к законам Ньютона необходимо добавить дополнительную силу, которая и называется силой инерции.

неинерциальные системы отсчета силы инерции

Сила инерции

Сила инерции является реальной действующей силой, хотя и отличается по природе от сил, связанных с взаимодействием между телами в пространстве. Она учитывается при разработке технических конструкций и аппаратов, и играет важную роль в их работе. Силы инерции измеряются различными способами, например, при помощи пружинного динамометра. Неинерциальные системы отсчёта не являются замкнутыми, поскольку силы инерции считаются внешними. Силы инерции являются объективными физическими факторами и не зависят от воли и мнения наблюдателя.

Инерциальные и неинерциальные системы отсчёта, примеры проявления которых можно найти в учебниках физики – это действие силы инерции, центробежная сила, сила Кориолиса, передача импульса от одного тела к другому и другие.

 силы в неинерциальных системах отсчета

Движение в лифте

Неинерциальные системы отсчёта, силы инерции хорошо проявляют себя при ускоренном подъёме или спуске. Если лифт с ускорением движется вверх, то возникающая сила инерции стремится прижать человека к полу, а при торможении тело, наоборот, начинает казаться более лёгким. По проявлениям сила инерции в данном случае похожа на силу тяжести, но она имеет совсем другую природу. Сила тяжести – это гравитация, которая связана с взаимодействием между телами.

какие системы отсчета называются неинерциальными

Центробежные силы

Сила Кориолиса

Действие этой силы хорошо известно на примере вращения Земли. Назвать её силой можно лишь условно, поскольку таковой она не является. Суть её действия состоит в том, что при вращении (например, Земли) каждая точка сферического тела движется по окружности, тогда как объекты, оторванные от Земли, в идеале перемещаются прямолинейно (как, например, свободно летящее в космосе тело). Поскольку линия широты является траекторией вращения точек земной поверхности, и имеет вид кольца, то любые тела, оторванные от нее и первоначально движущиеся вдоль этой линии, перемещаясь линейно, начинают всё больше отклоняться от неё в направлении более низких широт.

Другой вариант – когда тело запущено в меридиональном направлении, но из-за вращения Земли, с точки зрения земного наблюдателя, движение тела уже не будет строго меридиональным.

Сила Кориолиса оказывает большое влияние на развитие атмосферных процессов. Под её же влиянием вода сильнее ударяет в восточный берег текущих в меридиональном направлении рек, постепенно размывая его, что приводит к появлению обрывов. На западном же, напротив, откладываются осадки, поэтому он более пологий и часто заливается водой при паводках. Правда, это не единственная причина, приводящая к тому, что один берег реки выше другого, но во многих случаях она является доминирующей.

Сила Кориолиса имеет и экспериментальное подтверждение. Оно было получено немецким физиком Ф. Райхом. В эксперименте тела падали с высоты 158 м. Всего было проведено 106 таких опытов. При падении тела отклонялись от прямолинейной (с точки зрения земного наблюдателя) траектории приблизительно на 30 мм.

Инерциальные системы отсчёта и теория относительности

Однако это ставит под сомнение возможность проверки релятивистских эффектов (как и сам факт их наличия), что привело к появлению таких явлений, как парадокс близнецов. Поскольку системы отсчёта, связанные с ракетой и Землёй, принципиально равноправны, то и эффекты замедления времени в паре "Земля – ракета" будут зависеть только от того, где находится наблюдатель. Так, для наблюдателя на ракете, время на Земле должно идти медленнее, а для человека, находящегося на нашей планете, наоборот, оно должно идти медленнее на ракете. В результате близнец, оставшийся на Земле, увидит своего прибывшего брата более молодым, а тот, кто был в ракете, прилетев, должен увидеть моложе того, кто остался на Земле. Понятно, что физически такое невозможно.

Значит, чтобы наблюдать релятивистские эффекты, нужна какая-то особая, выделенная система отсчёта. Например, предполагается, что мы наблюдаем релятивистское увеличение времени жизни мюонов, если они движутся с околосветовой скоростью относительно Земли. Это значит, что Земля должна (причём, безальтернативно) обладать свойствами приоритетной, базовой системы отсчёта, что противоречит первому постулату СТО. Приоритет возможен только в случае, если Земля является центром вселенной, что согласуется только с первобытной картиной мира и противоречит физике.

Неинерциальные системы отсчёта как неудачный способ объяснения парадокса близнецов

Попытки объяснить приоритет "земной" системы отсчёта не выдерживают никакой критики. Некоторые ученые такой приоритет связывают именно с фактором инерциальности одной и неинерциальности другой системы отсчёта. При этом систему отсчёта, связанную с наблюдателем на Земле, считают инерциальной, при том, что в физической науке она официально признана неинерциальной (Детлаф, Яворский, курс физики, 2000). Это первое. Второе - это всё тот же принцип равноправия любых систем отсчёта. Так, если космический корабль уходит от Земли с ускорением, то с точки зрения наблюдателя на самом корабле, он статичен, а Земля, напротив, улетает от него с возрастающей скоростью.

Получается, что сама Земля является особой системой отсчёта либо наблюдаемые эффекты имеют иное (не релятивистское) объяснение. Может быть, процессы связаны с особенностями постановки или интерпретации экспериментов, либо с иными физическими механизмами наблюдаемых явлений.

Заключение

Таким образом, неинерциальные системы отсчёта приводят к появлению сил, которые не нашли своего места в законах механики Ньютона. При расчётах для неинерциальных систем учёт этих сил является обязательным, в том числе, при разработке технических изделий.


Все существующие системы отсчета делятся на инерциальные и на неинерциальные. Инерциальная система отсчета лежит в основе механики Ньютона. Так какие системы отсчета называют инерциальными?

Кратко об инерциальной системе отсчета

В системах отсчета, строящихся по типу инерциальности, свободные тела движутся прямолинейно и равномерно (при отсутствии внешнего воздействия), либо не движутся совсем. По отношению к этой системе отсчета пространство является однородным и изотопным.

Этот термин был введен Людвигом Ланге в 1885 году и обозначал систему координат, в которой действуют законы Ньютона.

Движение тела нужно рассматривать относительно других тел, иначе невозможно будет определить положение тела в пространстве. Значит, говоря о явлении инерции, необходимо указать, относительно чего тело покоится или движется равномерно и прямолинейно.

Поэтому первый закон Ньютона, названный законом инерции, формулируется так:

Существуют такие системы отсчета, относительно которых поступательно движущее тело сохраняет свою скорость постоянной, если действие на него других тел скомпенсировано (V=const; R=0 – под векторами).

Портрет Ньютона

Рис. 1. Портрет Ньютона.

Инерциальными являются те системы отсчета, относительно которых тело движется с постоянной скоростью. Таким образом, движение тел в инерциальных системах отсчета происходит с одинаковой скоростью. Именно для таких систем выполняется I закон Ньютона.

Какие же системы отсчета можно отнести к инерциальным?

  • те, в которых при R=0; V=const.
  • те, которые движутся относительно инерциальных систем отсчета равномерно и прямолинейно. Например к ИСО можно отнести далекие звезды. Вообще-то, в природе не существует ситуаций, когда бы на тело не действовали другие тела. Однако если действие одних тел скомпенсировано, а другие оказывают очень слабое действие, то принято считать, что в определенном приближении на тело никакие тела не действуют.

Солнце и Земля не являются инерциальными системами отсчета. Но эффекты, вызванные неинерциальностью относительно Земли и солнца, незначительны. В ряде случаев ими можно пренебречь, правда, далеко не всегда.

Солнце и Земля

Рис. 2. Солнце и Земля.

Во всех инерциальных системах отсчета при одинаковых начальных условиях все механические явления протекают одинаково, то есть подчинены одним законам. Это утверждение называют принципом относительности Галилея.

Галилей

Рис. 3. Галилей.

Неинерциальная система отсчета

К неинерциальным системам отсчета относятся те системы, которые не являются инерциальными. Если система отсчета движется с ускорением относительно инерциальной системы, то эта система является неинерциальной. В таких системах могут возникать сила инерции, центробежная сила и сила Кориолиса.

Инерция – это сила, при которой тело пытается сохранить свое первоначальное состояние.

В неинерциальных системах отсчета законы Ньютона очень часто не работают. Примером силы, обусловленным таким движением, может служить, например, перемещение в лифте, катание на карусели.

Что мы узнали?

Существует два вида систем отсчета: инерциальные и неинерциальные системы отсчета. В системах отсчета первого типа тела движутся прямолинейно и равномерно. Для этой системы действуют законы Ньютона. К системам отсчета второго типа относятся те системы, которые движутся с ускорением относительно инерциальных систем.

Читайте также: