Выталкивающая сила определение кратко

Обновлено: 05.07.2024

План урока:

Сила Архимеда – выталкивающая сила

Сидит на берегу рыбак с удочкой, внимательно смотрит на поплавок, ждет, когда рыбка клюнет. Вряд ли задумываются любители рыбной ловли над тем, какие законы физики используются для изготовления рыболовных снастей. Кроме лески и крючков берутся поплавок и грузило. Предназначение их совершенно противоположное. Поплавок должен плавать на поверхности воды, подергиваться при клеве. Грузило, наоборот, должно затонуть и опустить крючки на глубину, где плавает рыба.

Поплавок и грузило Источник

Простейшие явления, происходящие на воде, которые часто встречаются в жизни и взрослых, и детей, объясняются наличием внутри воды (да и любой жидкости тоже) выталкивающей силы.

Простой лабораторный опыт. Если взять динамометр, прикрепить к нему металлический цилиндр (пружина растянется под весом цилиндра), а затем опустить его в воду, показания динамометра уменьшатся. Это значит, что появилась сила, выталкивающая тело из воды, направленная вверх. Результирующая двух сил стала меньше.

Выталкивающая сила всегда направлена вверх. Какова же причина возникновения такой силы и ее происхождение?

Пусть в стакане с водой находится правильное тело – параллелепипед. Пусть площадь его основания S и высота H.

Все грани параллелепипеда находятся под водой, верхняя - на глубине h1, нижняя – h2. Сверху давление p1 = ρ g h1, а снизу – p2 = ρ g h2.. Давление p2 больше p1, так как h2 больше h1. На вертикальные грани параллелепипеда действуют одинаковые давления, стремящиеся его сжать. Значит, сила давления снизу больше силы давления сверху. Разность этих сил и является силой, выталкивающей тело из жидкости. После алгебраических преобразований получается правило вычисления выталкивающей силы.

F = F2 – F1 = p2 S – p1 S = ρж g h2 S - ρж g h1 S = ρж g S (h2 – h1). Из рисунка видно, что разность h2 – h1 равна высоте параллелепипеда H, но произведение S∙H равно объему данной фигуры Vт. Тогда, F = ρж g S H = ρж g Vт. Результирующая сила, по которой вычисляют выталкивающую силу, запишется в следующем виде:

Легенда такова: правитель города Сиракузы на острове Сицилия был родственником Архимеда. Однажды он приказал мастеру изготовить золотую корону. Когда корона была готова, Гирон засомневался в честности мастера, заподозрив, что мастер заменил частично золото серебром или другими примесями. Герон потребовал от Архимеда установить истину.

Чтобы решить эту проблему, надо знать объем короны и объем золота той же массы. Если они совпадут, то мастер – молодец, в противном случае он – лжец.

Определенные таким способом объемы куска золота и короны оказались различными. Изготовитель короны был нечестен.

В формуле FA = ρж g Vт произведение ρж Vт = m – это масса вытесненной жидкости, объем ее равен объему тела, вытесняющему эту жидкость. Значит,

FA = Pт, т.е. тела выталкиваются из жидкости с силой, такой же, как и вес вытесненной жидкости.

Закон легко доказывается опытным путем:

Для опыта берется ведерко Архимеда, состоящее из двух частей: полое ведерко 2 и тяжелый цилиндр 3 такого же объема, что и ведерко. Ведерко и цилиндр вместе подвешиваются к динамометру 1, показания динамометра фиксируются (рис.а). Под цилиндр помещается сливной стакан 4 (стакан с носиком, направленным вниз для слива жидкости). Жидкость в стакан первоначально налита точно до сливного носика.

В тот момент, когда цилиндр помещается в воду, она вытесняется цилиндром и сливается в сосуд 5. На цилиндр вверх действует архимедова сила, показания динамометра уменьшаются (рис.б), т.е. вес цилиндра становится меньше.

Из сосуда 5 вытесненная жидкость выливается в пустое ведерко 2 (рис. в). Когда вся вода перелита в ведерко, динамометр фиксирует первоначальный вес (рис. г). Это означает, что при помещении в воду цилиндр потерял вес, равный весу жидкости, которая вытесняется из сливного стакана.

  • на все тела, помещенные в жидкость, оказывает действие направленная вверх архимедова сила;
  • архимедова сила связана с давлением, а значит, с плотностью жидкости, и объемом тела, помещенного в жидкость;
  • архимедова сила не зависит от плотности изучаемого тела и глубины погружения.

О жидкости, в которой нельзя утонуть

В воде одни тела сразу тонут, а другие плавают. Тот же поплавок у рыбака держится на поверхности, а грузило плавает. Не тонет сухая древесина, но, если она долго пробудет в воде, пропитается ею, то окажется на дне. Существуют древесные породы, например, бакаут [1] (железное дерево) и черное дерево [2] , тонущие в воде в сухом виде. Почему одни тела свободно плавают, а другие тонут?

На тело, помещенное в жидкость, вниз действует сила тяжести и вверх - архимедова сила. Которая из двух сил преобладает, туда и направлена равнодействующая. Тело переместится в сторону равнодействующей силы:

Следует особо обратить внимание на разницу двух из приведенных случаев. Обычно говорят, что тело плавает, независимо, где оно плавает: внутри жидкости или на поверхности. Но, если Fтяж = FA, тело плавает внутри. Если Fтяж ˂ FA, тело плавает на поверхности (тело не может выпрыгнуть из жидкости и повиснуть над ней, сила тяжести вернет его).

При сравнении формул обеих сил просматривается объяснение, при каком условии силы различны или одинаковы.

В обеих формулах есть одинаковые множители: g и Vт. Отличие в плотностях. Видно, что, если ρт ˂ ρж, то сила тяжести меньше архимедовой – тело поднимается к поверхности жидкости. Если ρт ˃ ρж, то сила тяжести больше выталкивающей – тело идет на дно. Если ρт = ρж, силы тоже равны – тело плавает между дном и поверхностью (внутри) жидкости.

Именно поэтому поплавок, который обычно полый внутри (плотность воздуха 1,29 кг/м 3 ), плавает на воде (плотность воды 1000 кг/м 3 ). Свинцовое грузило (плотность свинца 11 300 кг/м 3 ) тонет.

Конечно, условия такого плавания подходят для сплошных тел. Например, стекло с плотностью 2600 кг/м 3 тонет в воде, а закупоренная стеклянная бутылка плавает, потому что весь объем закрытой бутылки занимает воздух с небольшой плотностью.

Способность бутылки плавать издавна использовали мореплаватели для передачи посланий о крушениях на землю. В пустую бутылку вкладывали свиток с текстом, бутылку закупоривали и бросали за борт. Долго бутылка путешествовала по морским просторам, но когда-то все равно волнами приливов прибивалась к суше.

Средняя плотность тела человека находится в пределах от 1030 до 1070 кг/м 3 . Значит, в чистой воде человек без умения плавать тонет.

Есть Мертвое море, где нельзя утонуть. В этом море, как и в воде залива Кара-Богаз-Гол (в Каспийском море) и озера Эльтон не утонуть, так как в них вода содержит около 27 % солей. Соли повышают плотность воды до 1180 кг/м 3 , что больше плотности человеческого тела. В обычной морской воде солей 2-3 % и плотность этой морской воды 1030 кг/м 3 .

Некоторые домохозяйки используют для определения свежести купленных куриных яиц (плотность примерно 1090 кг/м 3 ) простой способ. Через мелкие поры в тонкой скорлупе часть жидкости сырого яйца испаряется, замещаясь воздухом. Плотность такого яйца уменьшается. Свежее более плотное яйцо в чистой воде затонет, несвежее – всплывет.

Другой пример из жизни домохозяек. Они наливают в кастрюлю с водой, где отваривают макароны, растительное масло, чтобы макароны не слипались. Как бы ни размешивали смесь масла и воды, масло всплывает наверх. Объяснить просто. Плотность масла 930 кг/м 3 , меньше плотности воды. Стоит ли наливать масло? Не стоит. Масло будет плавать поверх воды. Большая часть макарон будет находиться в чистой воде. Поэтому масло никак не повлияет на макароны.

Нефть, мазут, бензин всегда находятся на поверхности воды, что представляет угрозу для окружающей среды при водных катастрофах, связанных с этими веществами.

Жидкости менее плотные плавают сверху, а более плотные опускаются вниз. В жидкой ртути плавает большинство металлов, только наиболее плотные (осмий, вольфрам, иридий, золото и некоторые другие) тонут.

Интересный пример плавания представляет подводная лодка. Она может плавать на поверхности воды, внутри ее и может залечь на дно. Можно схематически показать, как это происходит.

Конструкция лодки двухкорпусная: внутренний и внешний корпусы. Внутренний корпус предназначен для технических устройств, оборудования, людей. Между внешним и внутренним корпусами находятся балластные цистерны. Когда лодке требуется погружение, открываются кингстоны – отверстия, через которые забортная вода поступает между внутренним и внешним отсеками, заполняя балластные цистерны. Сила тяжести возрастает и становится больше архимедовой. Лодка погружается.

Чтобы прекратить погружение или всплыть, цистерны под большим давлением продуваются компрессорами, вода вытесняется в океан, ее место занимает воздух. Сила тяжести уменьшается. В момент равенства силы тяжести и архимедовой лодка будет плавать внутри воды. При дальнейшем заполнении цистерн воздухом лодка всплывает.

Почему не тонут корабли?

Теперь следует объяснить плавание судов. Понятно, что корабли, изготовленные из строительного деревянного материала, плавают по волнам, так как плотность дерева меньше плотности воды. Условие плавания здесь срабатывает безоговорочно. Современные корабли изготовлены преимущественно из металлов, у которых большая плотность. Почему металлический гвоздь тонет, а корабль нет?

Кораблю придают специальную форму, чтобы он как можно больше вытеснял воды, вес которой превосходит силу тяжести судна. Этот вес равен выталкивающей (архимедовой) силе, и значит, она больше силы тяжести. Из металла делают основной корпус судна, а остальной его объем заполнен воздухом. Корпусом корабль вытесняет значительное количество воды, достаточно глубоко погружаясь в нее.

Глубину погружения судна моряки называют осадкой. После загрузки корабля его осадка увеличивается. Перегружать корабль нельзя, иначе нарушится условие плавания, корабль может затонуть. Рассчитывается максимальная осадка, на судне проводится красная линия, которую называют ватерлинией, ниже ее корабль оседать не должен.

Вес корабля с максимально взятым грузом называется водоизмещением.

Суда используются в различных целях: для пассажирских и грузовых перевозок, для научно-исследовательских работ, для охраны границ государства.

К сожалению, с кораблями происходят и неприятности. Во время шторма или других катастроф они могут затонуть. Опять приходит на помощь закон Архимеда.

Со спасательного судна [3] на прочных стропах опускают полые цилиндры большого объема. Чтобы они затонули, их заполняют водой. Водолазы закрепляют эти цилиндры на корпусе корабля. Сжатым воздухом под большим давлением, подаваемым по шлангам, вода из цилиндров вытесняется, заменяется воздухом. Вес цилиндров резко уменьшается. Они начинают выталкиваться из воды и вместе с кораблем всплывают на поверхность.

Спасение затонувшего корабля

В судоходстве, мореплавании, спасении судов помогает закон Архимеда, как один из самых важных законов природы.

Воздухоплавание

Красивое зрелище: цветные воздушные шары на разной высоте голубого неба. Какая сила поднимает их вверх?

Человек издавна мечтал освоить воздушный океан, как птица, поднявшись в небеса. Мечта стала явью благодаря открытой архимедом силе, действующей во всех жидкостях и газах. На все тела на Земле оказывает действие выталкивающая их из воздуха сила. Для твердых тел она значительно меньше силы тяжести, на практике ее не учитывают. Для газов эта сила имеет существенное значение.

А вот имеет ли воздух вес, проверяется очень легко, даже в домашних условиях: найти середину ровной палочки или линейки, вколотить туда маленький гвоздик так, чтобы палочка могла свободно вокруг него поворачиваться. Можно подвесить палочку на нитке за середину. На края палочки повесить два одинаково надутых шара. Палочка располагается горизонтально, т.е. наблюдается равновесие. Выпустить воздух из одного шарика. Равновесие нарушается. Шарик с воздухом перевешивает.

Опыт в лабораторных условиях проводится также легко и понятно. Находится масса открытого (значит, там есть воздух) стеклянного шара (рис. а). Затем насосом откачивается из шара воздух (рис.б) и шар плотно закрывается пробкой. Новое определение массы показывает, что масса шара без воздуха меньше (рис. в). Зная массу можно найти вес воздуха.

Газ в оболочке шара должен иметь плотность заметно меньшую плотности воздуха, как и плотность тела на поверхности какой-либо жидкости меньше плотности самой жидкости. Плотность гелия 0,18 кг/м 3 , водорода 0,09 кг/м 3 , а плотность воздуха 1,29 кг/м 3 . Поэтому для наполнения оболочек шаров используются подобные газы.

Создать подъемную силу для воздушного шара можно уменьшением плотности воздуха.

Из анализа таблицы зависимости плотности воздуха от температуры следует вывод: с ростом температуры снижается плотность воздуха. Соответственно с повышением температуры разница между архимедовой силой и силой тяжести возрастает. Эта разница сил и является подъемной силой шара.

При подъеме температура воздуха в оболочке шара снижается. Воздух приходится нагревать, что небезопасно.

Подогрев воздуха в шаре

Полет на таких шарах осуществляется недолго. Чтобы продлить его, используют балласт – дополнительный груз, который крепится на гондоле [4] (устройство, где находятся люди и приборы для работы). Сбрасывая балласт, можно подниматься выше. Спуская воздух из оболочки, можно опускаться вниз. Спускаясь или поднимаясь в разные слои атмосферы, можно уловить движение воздушных масс и двигаться в их направлении. Но подобрать нужное направление достаточно сложно. Таким способом можно лишь немного влиять на направление движения. Поэтому воздушные шары обычно движутся по направлению ветра.

На гигантских по своим размерам шарах (20 000 – 30 000 м 3 ) удавалось достигать стратосферы. Такие шары называют стратостатами. Гондола стратостата должна иметь пригодный для жизни человека микроклимат. Воздух и температура в стратосфере не соответствуют условиям жизни человека. Приходится специально обустраивать гондолы стратостатов.

Другие, более простые, воздушные шары называют аэростатами. Если к гондоле шара пристроить двигатель, то получится управляемый человеком аэростат, называемый дирижаблем.

К сожалению, полеты аэростатов зависят от капризов природы. Однако эти устройства обладают неоспоримыми преимуществами:

  • огромная подъемная сила;
  • экологически чистые аппараты;
  • не нуждаются в больших количествах топлива;
  • зрелищны.

Поэтому эти аппараты еще долго будут служить человеку.

Словарь

1. Бакаут (железное дерево) – вечнозеленое дерево тропиков с плотностью древесина близкой к плотности чугуна.

2. Черное эбеновое дерево – вечнозеленое тропическое дерево, в ядре которого не видны годичные кольца. Ядро твердое, тяжелое. Плотность дерева 1300 кг/м 3 .

3. Спасательное судно – судно специального (вспомогательного) назначения, служащее для подъема на поверхность затонувших объектов или для помощи кораблям, терпящим бедствие.

4. Гондола – устройство, крепящееся к воздушному шару для помещения туда людей, различных вещей и аппаратуры.

На поверхность тела, которое находится в жидкости или газе действуют силы давления. Известно, что давление увеличивается с увеличением глубины погружения. Значит, что силы давления, которые действуют на нижнюю часть тела и направлены вверх больше по модулю, чем силы, которые действуют на верхнюю часть тела и направлены вниз.

Определение и формула силы выталкивания

Равнодействующую сил давления на тело, которое погружено в жидкость или газ называют выталкивающей силой. Выталкивающая сила может быть больше, чем сила тяжести, которая действует на тело. Силы выталкивания появляются и в том случае,если тело находится в жидкости или газе частично.

Если тело, находящееся в жидкости оставить в покое, то оно тонет, находится в равновесии или всплывает на поверхность. Это зависит от соотношения силы тяжести и выталкивающей силы (FA),действующих на тело. В первом случае (тело тонет) mg>FA . Если mg=FA, то тело находится в равновесии. При mg A тело всплывает на поверхность.

На тело, погруженное в жидкость или газ, действует сила выталкивания (сила Архимеда FA), равная весу вытесненной им жидкости или газа. В математическом виде данный закон выглядит как:

где $\rho$ – плотность жидкости (газа), в которую погружено тело, g=9,8 м/с 2 – ускорение свободного падения, V – объем тела (его части), которое находится в жидкости (газе). Сила Архимеда приложена к центру тяжести объема части тела, которая находится в жидкости (газе).

Закон Архимеда можно применять для вычисления плотности однородного тела неправильной формы. При этом тело взвешивают два раза: один раз в воздухе, второй раз, погрузив тело в жидкость, плотность которой известна.

Основной единицей измерения силы Архимеда, как и любой силы в системе СИ является: [FA]=Н

Примеры решения задач

Задание. Какова сила выталкивания, которая действует на куб, погруженный в систему жидкостей. Сосуд наполнен водой, поверх воды налит керосин. Граница раздела жидкостей проходит посередине грани куба. Плотность воды считайте равной $\rho$1=10 3 кг/м 3 , плотность керосина равна $\rho$2=0,81•10 3 кг/м 3 . Сторона куба равна a=0,1 м.

Решение. Сделаем рисунок.


Сила выталкивания, которая действует со стороны воды, на половину куба равна:

Сила выталкивания, которая действует со стороны керосина, на половину куба равна:

Обе силы направлены вверх. Приложены они к разным точкам (центрам масс объемов тел, погруженных в соответствующие жидкости), при суммировании векторы можно перенести в одну точку параллельно самим себе. Получим, результирующая сила выталкивания равна:

Подставим компоненты силы (1.2), (1.3) в выражение (1.1), имеем:

Ответ. Ответ: FA=8,8 Н


Мы помогли уже 4 372 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Задание. Какова плотность камня, если его вес в воздухе 3,2 Н, а вес в воде 1,8 Н.

Решение. Вес камня в воздухе:

$$P=\rho g V \rightarrow V=\frac$$

где $\rho$ – плотность камня, V – объем камня. Взвешивая камень в воде, получаем вес камня в жидкости, равный:

где FA – сила выталкивания (сила Архимеда). В соответствии с законом Архимеда:

где $\rho$H2O – плотность воды. Подставим вместо V выражение (2.1), имеем:

Подставим в уравнение (2.2) формулу (2.4), получаем:

Плотность воды будем считать равной $\rho$H2O=10 3 кг/м 3 . Можно провести вычисления:

Трудно переоценить вклад и значение древнегреческих учёных в современную жизнь, ведь многие из созданных в ту пору изобретений, теорий и концепций всё ещё используются сегодня. Один из примеров — сила Архимеда, гидростатическое давление, которое играет основную роль в законе статики жидкости и газов.

Сила архимеда

Определение и формула

Закон Архимеда гласит, что если твёрдое тело погружено в жидкость, то на него действует выталкивающая сила, равная весу жидкости в объёме тела.

При некоторых обстоятельствах объём вещества одинаков объёму воды. В частности, когда твёрдый объект любого класса полностью погружен в воду, объём вытесненной воды должен быть равен объёму объекта. Кроме того, по определению силы Архимеда, при погружении объект получит плавучую силу, одинаковую весу вытесненной воды. Таким образом, объект, взвешенный в воздухе и затем взвешенный при погружении в воду, будет иметь эффективный вес, уменьшенный на вес вытесненной воды, если подъёмная сила воздуха незначительна.

Определение закона Архимеда

Что произойдёт, если стакан наполнить водой доверху, а затем добавить кубики льда? Точно так же, как вода расплескалась через край, когда Архимед сел в свою ванну, жидкость в стакане выльется, если бросить туда кубики льда. Если взвесить разлившуюся воду (вес — это сила, направленная вниз), она будет равняться восходящей силе на предмете. По этой силе можно определить объём или среднюю плотность объекта.

При взвешивании в воздухе предмет получает силу выталкивания, равную весу воздуха, перемещаемого объектом. Однако плотность воздуха довольно мала (по сравнению с плотностью большинства твёрдых частиц), чтобы можно было пренебречь этой плавучей силой при взвешивании большинства твёрдых частиц в воздухе.

Формула силы Архимеда записывается как F = pgV, где:

  1. F = выталкивающая сила тела (сила Архимеда). Единица измерения — ньютон.
  2. p = давление объекта. Измеряется в Паскалях.
  3. g = ускорение под действием силы тяжести. Метр на секунду в квадрате.
  4. V = объём вытесненной жидкости в кубических метрах.

Формула принципа Архимеда полезна для нахождения силы, объёма смещённого тела или плотности жидкости, при условии, что некоторые из этих чисел известны.

При демонстрации закона Архимеда следует отметить, что в этом явлении многое зависит от гравитации. То есть сила плавучести, которая всегда противостоит элементу притяжения, на самом деле вызвана самой гравитацией. Давление внутри флюидов вырастает с увеличением глубины, поскольку внутри жидкости действует гравитационный вес сверху. Это давление, которое постоянно повышается, прикладывает силу к объекту, погруженному в воду, и увеличивается с глубиной жидкости. Результатом этого является плавучесть.

Принцип плавучести

Другими словами, для предмета, плавающего на поверхности жидкости (например, лодки) или плавающего под водой (субмарина или дирижабль в воздухе), вес вытесненной жидкости равен весу объекта. Таким образом, только в особом случае плавания сила выталкивания, действующая на объект, равна его весу.

Принцип плавучести

Например, существует блок из твёрдого железа, который весит 1 тонну. Поскольку железо почти в восемь раз плотнее воды, при погружении оно вытесняет только 1/8 тонны воды, что недостаточно для удержания его на плаву. Теперь следует предположить, что тот же железный блок преобразован в чашу. Он по-прежнему весит 1 тонну, но при помещении в жидкость он вытесняет больший объём воды, чем когда он был блоком. Чем глубже погружена железная чаша, тем больше воды она вытесняет и тем сильнее действует на неё выталкивающая сила. Когда плавучая сила равна 1 тонне, она не опустится дальше.

Когда лодка вытесняет вес воды, равный её собственному весу, она плавает. Каждый корабль, подводная лодка и дирижабль должны быть спроектированы так, чтобы смещать вес жидкости, по крайней мере, равный его собственному весу. Корпус 10000-тонного корабля должен быть достаточно широким, длинным и глубоким, чтобы вытеснять соответствующее количество тонн воды. Он нуждается в дополнительной грани для равновесия и борьбы с волнами, которые иначе заполнили бы его и, увеличив его массу, потопили корабль.

Практически принцип Архимеда позволяет рассчитывать плавучесть объекта, частично или полностью погруженного в жидкость:

Эффект плавучести

  1. Нисходящая сила на объекте — это просто его вес.
  2. Восходящая или выталкивающая сила — это то, что указано выше по закону Архимеда.
  3. Чистая сила — это разница между величинами силы выталкивания и её весом.

Следует отметить, что если вес объекта меньше, чем вес вытесняемой жидкости, объект будет испытывать подъём, как и происходит в случае с деревянным брусом, который остаётся ниже поверхности воды. Объект, который по своей природе тяжелее количества жидкости, которую он может вытеснить, утонет при освобождении, но в то же время испытает потерю веса, равную весу вытесненной жидкости. Фактически, когда дело доходит до взвешивания, необходимо внести поправку, чтобы иметь возможность компенсировать эффект плавучести окружающего его воздуха.

Хотя они связаны с этим, принцип плавания и концепция, согласно которой затопленный объект вытесняет объём жидкости, равный его собственному объёму, не являются законом Архимеда. Как указано выше, он приравнивает подъёмную силу к весу вытесненной жидкости.

Практическое применение

Принцип Архимеда имеет множество применений в области медицины и стоматологии и используется для определения плотности костей и зубов. В статье 1997 года, опубликованной в журнале Medical Engineering & Physics, исследователи использовали силу Архимеда для измерения объёма внутренней губчатой ​​части кости, которая может применяться в различных исследованиях старения, остеопороза, прочности костей, жёсткости и эластичности.

Конусно-лучевая компьютерная томография

В статье, опубликованной в 2017 году в журнале Oral Surgery, использовались различные методы для определения воспроизводимости, одним из которых был принцип Архимеда. Его сравнивали с использованием конусно-лучевой компьютерной томографии для измерения объёма зубов. Тесты, сравнивающие закон и замера КЛКТ, показали, что последние будут точным инструментом при планировании стоматологических процедур.

Простой, надёжный и экономически эффективный проект для подводной лодки, описанный в статье 2014 года в журнале Informatics, Electronics and Vision, основан на принципе Архимеда. Конструкция этой прототипной субмарины использует расчёты, включающие массу, плотность и объём как подводной лодки, так и вытесненной воды, чтобы определить необходимый размер балластного танка. Он должен обозначить количество воды, способное его заполнить, и, следовательно, выяснить нижнюю границу глубины, на которую может погружаться подводная лодка.

Также можно наблюдать действие силы Архимеда в природе:

Плавательный пузырь у рыбы

  1. Определённая группа рыб использует принцип Архимеда, чтобы подниматься и спускаться по воде. Чтобы подняться на поверхность, они наполняют свой плавательный пузырь (воздушные мешки) газами.
  2. В исследовании 2016 года использовался метод измерения теней, оставляемых водомерками, для понимания создаваемой ими кривизны поверхности воды. Авторы утверждают, что есть большой интерес к пониманию физики, стоящей за водными жуками, потому что это позволить создать экспериментальных биомиметических роботов, способных ходить по воде.
  3. Плотность льда ледников и айсбергов меньше плотности океана, поэтому их частично выносит наверх.

Греческий учёный внёс огромный вклад в кораблестроение, сформировав критерии устойчивости плавающих объектов. Закон Архимеда также используется в широком спектре научных исследований, включая медицину, инженерию, энтомологию, инженерию и геологию.

Открытие закона

Открытие закона Архимедом

Однажды Архимед наполнил ванну и заметил, что вода пролилась через край, когда он сел в неё. Тогда учёный понял, что жидкость, вытесненная его телом, была равна его весу. Оборудование для взвешивания объектов с достаточной точностью уже существовало, и теперь, когда Архимед также мог измерить объём, их соотношение дало бы плотность объекта — важный показатель чистоты, поскольку золото почти в два раза плотнее серебра и имеет значительно больший вес для того же объёма вещества при стандартных температурах и давлении.

Если тело находится в жидкости или газе, то на него действует сила, направленная противоположно силе земного притяжения, которая называется архимедовой силой .

arhimed.jpg

1. Если архимедова сила больше силы тяжести, то тело будет подниматься из жидкости — всплывать. В случае с газом это проявляется как поднятие вверх, например, наполненного гелием воздушного шарика.

2. Если архимедова сила равна силе тяжести, то их общая сила равна \(0\), и тело может находиться в равновесии в любом месте жидкости.

5-11_1.jpg

Если тело полностью погружено в жидкость или находится в газе, то архимедова сила равна весу жидкости или газа в объёме, вытесненном телом.

Читайте также: