Волновая функция и ее статистический смысл кратко

Обновлено: 08.07.2024

В соответствии с корпускулярно -- волновым дуализмом в квантовой физике состояние частицы описывается при помощи волновой функции ($\psi (\overrightarrow,t)$- пси-функция).

Волновая функция -- это функция, которая используется в квантовой механике. Она описывает состояние системы, которая имеет размеры в пространстве. Она является вектором состояния.

Данная функция является комплексной и формально имеет волновые свойства. Движение любой частицы микромира определено вероятностными законами. Распределение вероятности выявляется при проведении большого числа наблюдений (измерений) или большого количества частиц. Полученное распределение аналогично распределению интенсивности волны. То есть в местах с максимальной интенсивностью отмечено максимальное количество частиц.

Набор аргументов волновой функции определяет ее представление. Так, возможно координатное представление: $\psi(\overrightarrow,t)$, импульсное представление: $\psi'(\overrightarrow

,t)$ и т.д.

В квантовой физике целью ставится не точность предсказания события, а оценка вероятности того или иного события. Зная величину вероятности, находят средние значения физических величин. Волновая функция позволяет находить подобные вероятности.

Так вероятность присутствия микрочастицы в объеме dV в момент времени t может быть определена как:

где $\psi^*$- комплексно сопряженная функция к функции $\psi.$ Плотность вероятности (вероятность в единице объёма) равна:

Вероятность является величиной, которую можно наблюдать в эксперименте. В это же время волновая функция не доступна для наблюдения, так как она является комплексной (в классической физике параметры, которые характеризуют состояние частицы, доступны для наблюдения).

Условие нормировки $\psi$- функции

Волновая функция определена с точностью до произвольного постоянного множителя. Данный факт не оказывает влияния на состояние частицы, которую $\psi$- функция описывает. Однако волновую функцию выбирают таким образом, что она удовлетворяет условию нормировки:

Готовые работы на аналогичную тему

где интеграл берут по всему пространству или по области, в которой волновая функция не равна нулю. Условие нормировки (2) значит то, что во всей области, где $\psi\ne 0$ частица достоверно присутствует. Волновую функцию, которая подчинятся условию нормировки, называют нормированной. Если $<\left|\psi\right|>^2=0$, то данное условие означает, что частицы в исследуемой области наверняка нет.

Нормировка вида (2) возможна при дискретном спектре собственных значений.

Условие нормировки может оказаться не осуществимым. Так, если $\psi$ -- функция является плоской волной де-Бройля и вероятность нахождения частицы является одинаковой для всех точек пространства. Данные случаи рассматривают как идеальную модель, в которой частица присутствует в большой, но имеющей ограничения области пространства.

Принцип суперпозиции волновой функции

Данный принцип является одним их основных постулатов квантовой теории. Его смысл в следующем: если для некоторой системы возможны состояния, описываемые волновыми функциями $\psi_1\ \ $ $\psi_2$, то для этой системы существует состояние:

где $C_и\ C_2$ -- постоянные коэффициенты. Принцип суперпозиции подтверждается эмпирически.

Можно говорить о сложении любого количества квантовых состояний:

где $<\left|C_n\right|>^2$ -- вероятность того, что система обнаруживается в состоянии, которое описывается волновой функцией $\psi_n.$ Для волновых функций, подчиненных условию нормировки (2) выполняется условие:

Стационарные состояния

В квантовой теории особую роль имеют стационарные состояния (состояния в которых все наблюдаемые физические параметры не изменяются во времени). (Сама волновая функция принципиально не наблюдаема). В стационарном состоянии $\psi$- функция имеет вид:

где $\omega =\frac<\hbar >$, $\psi\left(\overrightarrow\right)$ не зависит от времени, $E$- энергия частицы. При виде (3) волновой функции плотность вероятности ($P$) является постоянной времени:

Из физических свойств стационарных состояний следуют математические требования к волновой функции $\psi\left(\overrightarrow\right)\to \ (\psi(x,y,z))$.

Математические требования к волновой функции для стационарных состояний

$\psi\left(\overrightarrow\right)$- функция должна быть во всех точках:

  • непрерывна,
  • однозначна,
  • конечна.

Если потенциальная энергия имеет поверхность разрыва, то на подобных поверхностях функция $\psi\left(\overrightarrow\right)$ и ее первая производная должны оставаться непрерывными. В области пространства, где потенциальная энергия становится бесконечной, $\psi\left(\overrightarrow\right)$ должна быть равна нулю. Непрерывность функции $\psi\left(\overrightarrow\right)$ требует, чтобы на любой границе этой области $\psi\left(\overrightarrow\right)=0$. Условие непрерывности накладывается на частные производные от волновой функции ($\frac<\partial \psi><\partial x>,\ \frac<\partial \psi><\partial y>,\frac<\partial \psi><\partial z>$).


Решение:

Запишем условие нормировки для нашего случая в виде:

где $dV=4\pi r^2dr$ (см.рис.1 Из условий понятно, что задача обладает сферической симметрией). Из условий задачи имеем:

Подставим $dV$ и волновые функции (1.2) в условие нормировки:

Проведем интегрирование в левой части:

Из формулы (1.4) выразим искомый коэффициент:

Задание: Каково наиболее вероятное расстояние ($r_B$) электрона от ядра, если волновая функция, которая описывает основное состояние электрона в атоме водорода может быть определена как: $\psi=Ae^/>$, где $r$- расстояние от электрона до ядра, $a$ -- первый Боровский радиус?

Решение:

Используем формулу, которая определяет вероятность присутствия микрочастицы в объеме $dV$ в момент времени $t$:

где $dV=4\pi r^2dr.\ $Следователно, имеем:

В таком случае, $p=\frac$ запишем как:

Для определения наиболее вероятного расстояния производную $\frac$ приравняетм к нулю:

Найди готовую курсовую работу выполненное домашнее задание решённую задачу готовую лабораторную работу написанный реферат подготовленный доклад готовую ВКР готовую диссертацию готовую НИР готовый отчёт по практике готовые ответы полные лекции полные семинары заполненную рабочую тетрадь подготовленную презентацию переведённый текст написанное изложение написанное сочинение готовую статью

Сделан в Word, графики в электронном виде с ссылками. Курсовая работа. Вариант 33. Гидравлический расчет гидросистемы стенда для испытания центробежных насосов.

Статистический смысл и свойства волновой функции. Уравнение Шредингера в стационарной форме, смысл входящих величин

Волновая функция имеет статистический смысл: квадрат модуля волновой функции определяет плотность вероятности нахождения частицы (электрона): dw/dV = |Ψ| 2 .

Здесь dw вероятность нахождения частицы в элементе объема от V до V+dV.

Свойства волновой функции:

1) Правило нормировки:

<iiintlimits_<-infty></p>
<p>^ <|Psi|>^2 dx,dy,dz>=1

Правило выражает тот факт, что вероятность обнаружить частицу с данной волновой функцией во всем пространстве равна единице.

2) Импульс частицы в каждом из направлений x, y, z пропорционален первой производной волновой функции, делённой на саму волновую функцию, а именно:

_x = -i hbar / Psi ;" />
_y = -i hbar / Psi ;" />
_z = -i hbar / Psi ," />

где px , py , pz — проекции импульсов на соответствующие оси координат, i = √-1 - мнимая единица, ħ = h/2π - постоянная Планка.

<E></p>
<p>3) Кинетическая энергия частицы (<i>p</i> <i>2</i> <i><sub>x</sub></i> + <i>p</i> <i>2</i> <i><sub>y</sub></i> <i>+</i> <i>p</i> <i>2</i> <i><sub>z</sub></i>) / 2m пропорциональна второй производной, или кривизне волновой функции, деленной на эту волновую функцию <br />_K = - ^2 over 2 m > left( ^2 Psi overpartial x^2> + ^2 Psi overpartial y^2> + ^2 Psi overpartial z^2> right) / Psi
.

Стационарное уравнение Шредингера для движения электрона в кулоновском поле ядра атома водорода и водородоподобных атомов имеет вид: ∆ψ + (8π 2 m/h 2 )(E-U)Ψ = 0,

где Ψ – волновая функция, ∆ - оператор Лапласа, Е – полная энергия электрона в атоме, U = -(Ze 2 /4πε0r) – потенциальная энергия.

С учетом наличия у микрочастицы волновых свойств ее состояние в квантовой механике задается с помощью некоторой функции координат и времени ( x , y , z , t), называемой волновой или - функцией.

Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения решения в частных физических задачах. Таким уравнением является уравнение Шрёдингера.

Теория, описывающая движение малых частиц с учетом их волновых свойств, называется квантовой, или волновой механикой. Квантовая механика в своей области (строение и свойства атомов, молекул и отчасти атомных ядер) прекрасно подтверждается опытом.

Волновая функция описывает состояние частицы во всех точках пространства и для любого момента времени. Для понимания физического смысла волновой функции обратимся к опытам по дифракции электронов. (Опыты Томсона и Тартаковского по пропусканию электронов через тонкую металлическую фольгу). Четкие дифракционные картины обнаруживаются даже в том случае, если направлять на мишень одиночные электроны, т.е. когда каждый последующий электрон испускается после того, как предыдущий достигнет экрана. После достаточной продолжительной бомбардировки картина на экране будет в точности соответствовать той, которая получается при одновременном направлении на мишень большого числа электронов.

Из этого можно сделать вывод о том, что движение любой микрочастицы по отдельности, в том числе и место ее обнаружения, подчиняется статистическим (вероятностным) закономерностям, и при направлении на мишень одиночного электрона точку на экране, в которой он будет зафиксирован, заранее со 100%-й уверенностью предсказать невозможно.

В дифракционных опытах Томсона на фотопластинке образовывалась система темных концентрических колец. Можно с уверенностью сказать, что вероятность обнаружения (попадания) каждого испущенного электрона в различных местах фотопластинки неодинакова. В области темных концентрических колец эта вероятность больше, чем в остальных местах экрана. Распределение электронов по всему экрану оказывается таким же, каким является распределение интенсивности электромагнитной волны в аналогичном дифракционном опыте: там, где интенсивность рентгеновской волны велика, частиц в опыте Томсона регистрируется много, а там, где интенсивность мала -- частицы почти не появляются.

С волновой точки зрения наличие максимума числа электронов в некоторых направлениях означает, что эти направления соответствуют наибольшей интенсивности волны де Бройля. Это послужило основанием для статистического (вероятностного) истолкования волны де Бройля.


Для одномерного движения (например, в направлении оси Ox) вероятность dP обнаружения частицы в промежутке между точками x и x + dx в момент времени t равна dP =

где | (x , t)| 2 = ( x , t) *(x , t) - квадрат модуля волновой функции (значок * обозначает комплексное сопряжение).


В общем случае при движении частицы в трехмерном пространстве вероятность dP обнаружения частицы в точке с координатами ( x , y ,z) в пределах бесконечно малого объема dV задается аналогичным уравнением: dP =| ( x , y , z , t )| 2 dV.

Вероятность обнаружить частицу во всем бесконечном пространстве равна единице. Отсюда следует условие нормировки волновой функции:


.


Величина является плотностью вероятности, или плотностью распределение координат частиц. В простейшем случае одномерного движения частицы вдоль оси ОX среднее значение ее координаты вычисляется следующим соотношением:


= .

Чтобы волновая функция являлась объективной характеристикой состояния микрочастицы, она должна удовлетворять ряду ограничительных условий. Функция Ψ, характеризующая вероятность обнаружения микрочастицы в элементе объема, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной), непрерывной (вероятность не может меняться скачком) и гладкой (без изломов) во всем пространстве.

Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Ψ1, Ψ2 , … Ψn , то она может находиться в состоянии, описываемом линейной комбинацией этих функций:


,

где Cn (n = 1, 2, 3…) – произвольные, вообще говоря, комплексные числа.

Среднее расстояние электрона отядра вычисляется по формуле:


.

Таким образом, точно предсказать в дифракционных опытах, в каком месте экрана будет зафиксирован тот или иной электрон, невозможно, даже заранее зная его волновую функцию. Можно лишь с определенной вероятностью предположить, что электрон будет зафиксирован в определенном месте.


Де Бройль использовал представление о фазовых волнах (волнах вещества или волнах де Бройля) для наглядного толкования правила квантования орбит электрона в атоме по Бору в случае одноэлектронного атома. Он рассмотрел фазовую волну, бегущую вокруг ядра по круговой орбите электрона. Если на длине орбиты укладывается целое число этих волн , то волна при обходе вокруг ядра будет всякий раз возвращаться в исходную точку с той же фазой и амплитудой. В этом случае орбита становится стационарной и не возникает излучения. Де Бройль записал условие стационарности орбиты или правило квантования в виде:


,

где r – радиус круговой орбиты, п – целое число (главное квантовое число). Полагая здесь и учитывая, что p есть модуль имрульса, а L = rp есть модуль момента импульса электрона, получим: ,


что совпадает с правилом квантования орбит электрона в атоме водорода по Бору. Однако, в рассуждениях де Бройля предполагалось, что волна распространяется не в пространстве, а вдоль линии – вдоль стационарной орбиты электрона. Этим приближением можно пользоваться в предельном случае, когда длина волны пренебрежимо мала по сравнению с радиусом орбиты электрона.

<\displaystyle \!\Psi (x_<1></p>
<p>,x_,\ldots ,x_)>

зависит от координат (или обобщённых координат) системы и формируется таким образом, чтобы квадрат её

представлял собой плотность вероятности (для дискретных спектров — просто вероятность) обнаружить систему в положении, описываемом координатами

<\displaystyle \!x_<1></p>
<p>=x_,x_=x_,\ldots ,x_=x_>
.

<\displaystyle \!\Psi _<2></p>
<p>Для волновых функций справедлив и >
, то она может пребывать и в состоянии, описываемом волновой функцией

<\displaystyle \!\Psi _<\Sigma ></p>
<p>=c_\Psi _+c_\Psi _>

<\displaystyle \!c_<1></p>
<p>при любых комплексных >
и >" width="" height="" />
. См. также Квантовая суперпозиция.

Матричная и векторная формулировки

Любая функция может быть представлена, как бесконечная таблица из её значений, соответствующих каждому аргументу. Если представить в таком виде волновую функцию, то она станет столбцом координат бесконечномерного вектора в Гильбертовом пространстве, то есть, матрицей.

Одна и та же волновая функция в различных представлениях — будет соответствовать выражению одного и того же Философский смысл волновой функции

Волновая функция представляет собой наиболее полное возможное описание квантовомеханической системы, за исключением, быть может, матрицы плотности, предложенной Л.Д.Ландау, с помощью которой можно описывать системы систем, что невозможно при использовании волновой функции (в случае обычной системы матрица плотности есть тот же квадрат модуля волновой фукнции) скоростей всех её частиц и это описание позволяло описать всё будущее и прошлое системы, то в квантовой механике некоторые параметры описать принципиально невозможно. Согласно квантовой механике, описание системы заканчивается на уровне волновой функции (и матрицы плотности) и только на уровне волновой функции (и матрицы плотности) возможно описать будущее и прошлое системы. Более подробное описание системы, например, с точностью до указания местоположений и скоростей всех её частиц — невозможно, и значения этих параметров оказываются более или менее случайными.

Таким образом, создав квантовую механику, наука дошла до состояния, когда она смогла положить конец многовековому противопоставлению См. также

Читайте также: