Условия наблюдения фотосферы солнца кратко

Обновлено: 05.07.2024

Яркость солнечного диска не одинакова, а уменьшается от центра к краю (рис. 1). Это явление называется потемнением к краю диска. Оно больше в ультрафиолетовых лучах, меньше в визуальных и еще меньше в инфракрасных.

Потемнение к краю диска Солнца перестает быть заметным при длинах волн 8—10 мкм. Кроме того, диск Солнца имеет бесчисленные мелкие неоднородности яркости, придающие ему зернистый вид. Явление это, называемое грануляцией, — постоянное свойство солнечной поверхности, но наблюдается оно с трудом из-за того, что зерна (гранулы) имеют очень малые угловые размеры, отчего их изображения замываются при сколько-нибудь неспокойной земной атмосфере.

Рис. 1. Фотография Солнца, полученная 25 декабря 1957 г., когда на Солнце наблюдалось особенно много пятен (относительное число Вольфа W = 257). На краю диска заметно потемнение и видны факелы

Рассеяние в атмосфере также стирает различия яркости светлых и темных мест грануляции. Солнечная грануляция известна давно, главным образом на основании визуальных наблюдений; лучшие фотографии ее получают в наше время с помощью телескопов, установленных на высотных аэростатах и самолетах, в условиях относительного спокойствия атмосферы и весьма малых изменений ее оптической однородности (рис. 2).

Угловые размеры гранул составляют в среднем Редко встречаются много меньшие (до 0,3") и много большие (до 10") гранулы. Полутора угловым секундам соответствует на Солнце расстояние около 1000 км — таковы средние линейные размеры солнечных гранул. Гранулы — нестойкие образования, в среднем они существуют 7 — 10 минут.

Они на 35-40% ярче, чем промежутки между ними. Это означает, что их температура превышает окружающую на 350—400 К.

Другим типичным образованием солнечной поверхности являются солнечные пятна (см. рис. 2), которые почти всегда присутствуют на Солнце, а в иные годы бывают очень многочисленны. Большинство их имеет размеры меньше , но нередки пятна или группы их (рис. 3) весьма большие, легко видимые невооруженным глазом (глаз, однако, должен быть при этом чем-либо защищен от чрезмерного светового потока).

(кликните для просмотра скана)

Только длительность их существования измеряется часами, т. е. значительно дольше, чем у гранул.

Ядро и визуально, и на фотографиях представляется очень темным, но это лишь по контрасту с окружающим фоном. Недавно было обнаружено, что и ядро пятна обладает грануляцией. Спектрофотометрическое сравнение пятен с фоном указывает на температуру пятна около 4500 К, что значительно превышает температуру вольтовой дуги. Интегральное излучение пятна, измеренное при помощи термоэлемента, составляет около четверти излучения такого же участка нормальной солнечной поверхности, откуда следует, что температура пятна равна приблизительно 4100 К.

На краю солнечного диска при хороших изображениях можно наблюдать довольно большие светлые образования неправильной, несколько волокнистой формы, так называемые факелы (рис. 4), или — когда они имеют весьма большие размеры и сложную структуру — факельные поля.

Грануляция, пятна и факелы — образования, наблюдаемые на Солнце в интегральном свете (а не только в свете избранных участков спектра), принадлежат тому несколько неопределенному уровню газообразного Солнца, от которого мы получаем подавляющую долю лучистой энергии, исходящей от всего Солнца, в частности свет. Этот уровень определяет собой и видимую границу Солнца. Он называется фотосферой. Итак, грануляция, пятна и факелы — фотосферные образования.

Фотосфера — это поверхность Солнца, которую может увидеть человеческий глаз с помощью увеличительных устройств лучше всего. Её толщина очень невелика в сравнении с другими слоями Звезды, и равна она 100 км. Если сопоставить её со всем радиусом Солнца, то всё становится наглядно видно 100/700,000. Этот слой полностью закрывает излучение, исходящее из ядра, из-за чего люди не могут заглянуть внутрь звезды. На картинке указана схема строения Солнца.

Графическое представление слоев Солнца

Графическое представление слоев Солнца

Если вы купите телескоп, чтобы рассмотреть фотосферу Солнца поближе, то наверняка вас заинтересует очень интересное явление, называемое солнечными пятнами или же яркими фотосферными факелами. Чтобы изучить другие процессы, происходящие в фотосфере, необходимо выяснить скорость движения плазмы. Для этого используется эффект Доплера. Благодаря ему, ученые сделали такие открытия, как гигантские турбулентные движения плазмы (супер грануляция) и осцилляция солнечной поверхности.

Земная атмосфера – это воздух, которым мы дышим, привычная нам газовая оболочка Земли. Такие оболочки есть и у других планет. Звезды целиком состоят из газа, но их внешние слои также именуют атмосферой. При этом внешними считаются те слои, откуда хотя бы часть излучения может беспрепятственно, не поглощаясь вышележащими слоями, уйти в окружающее пространство.

Фотосфера – атмосфера Солнца

Фотосфера – атмосфера Солнца начинается на 200-300 км глубже видимого края солнечного края. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более одной трехтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца.

Фотосфера - солнечная атмосфера

Фотосфера – солнечная атмосфера. Именно её мы, собственно, и видим с Земли

Плотность газов в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних слоях.

Солнечная поверхность, наблюдаемая в телескоп в видимом диапазоне длин волн, представляется совокупностью ярких площадок, окружённых относительно тёмными тонкими промежутками. Это – солнечные гранулы, их размеры различны и составляют в среднем 700 км, “время жизни” (появление и угасание гранулы) примерно 8 мин. Гранулы разделяются тёмными промежутками шириной около 300 км.

Температура же того среднего слоя, излучение которого мы воспринимаем, около 6000 К. При таких условиях почти все молекулы газа распадаются на отдельные атомы. Лишь в самых верхних слоях фотосферы сохранятся относительно немного простейших молекул и радикалов типа H2, OH, CH.

Особую роль в солнечной атмосфере играет не встречающийся в земной природе отрицательный ион водорода, который представляет собой протон с двумя электронами. Это необычное соединение возникает в тонком внешнем, наиболее холодном слое фотосферы при “налипании” на нейтральные атомы водорода отрицательно заряженных свободных электронов, которые поставляются легко ионизуемыми атомами кальция, натрия, магния, железа и других металлов.

При возникновении отрицательные ионы водорода излучают большую часть видимого света. Этот же свет ионы жадно поглощают, из-за чего непрозрачность атмосферы с глубиной быстро растет. Поэтому видимый край Солнца и кажется нам очень резким.

Почти все наши знания о Солнце основаны на изучении его спектра – узенькой разноцветной полоски, имеющей ту же природу, что и радуга. Впервые, поставив призму на пути солнечного луча, такую полоску получил Ньютон и воскликнул: “Спектрум!” (лат. spectrum – “видение”). Позже в спектре Солнца заметили темные линии и сочли их границами цветов.

В телескоп с большим увеличением можно наблюдать тонкие детали фотосферы: вся она кажется усыпанной мелкими яркими зернышками – гранулами, разделенными сетью узких темных дорожек. Грануляция является результатом перемешивания всплывающих более теплых потоков газа и опускающихся более холодных.

Разность температур между ними в наружных слоях сравнительно невелика (200-300 К), но глубже, в конвективной зоне, она больше, и перемешивание происходит значительно интенсивнее. Конвекция во внешних слоях Солнца играет огромную роль, определяя общую структуру атмосферы. В конечном счете именно конвекция в результате сложного взаимодействия с солнечными магнитными полями является причиной всех многообразных проявлений солнечной активности. Магнитные поля участвуют во всех процессах на Солнце.

Временами в небольшой области солнечной атмосферы возникают концентрированные магнитные поля, в несколько тысяч раз более сильные, чем на Земле. Ионизованная плазма – хороший проводник, она не может перемещаться поперек линий магнитной индукции сильного магнитного поля. Поэтому в таких местах перемешивание и подъем горячих газов снизу тормозится, и возникает темная область – солнечное пятно. На фоне ослепительной фотосферы оно кажется совсем черным, хотя в действительности яркость его слабее только в десять.

С течением времени величина и форма пятен сильно меняются. Возникнув в виде едва заметной точки – поры, пятно постепенно увеличивает свои размеры до нескольких десятков тысяч километров. Крупные пятна, как правило, состоят из темной части (ядра) и менее темной – полутени, структура которой придает пятну вид вихря. Пятна бывают окружены более яркими участками фотосферы, называемыми факелами или факельными полями.

Фотосфера постепенно переходит в более разреженные внешние слои солнечной атмосферы – хромосферу и солнечную корону.

Хромосфера Солнца

Хромосфера Солнца (греч. “сфера цвета”) названа так за свою красновато-фиолетовую окраску. Она видна во время полных солнечных затмений как клочковатое яркое кольцо вокруг черного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы.

хромосфера Солнца во время затмения

Во время полного солнечно затмения, когда диск Солнца скрыт от наших глаз, мы видим хромосферу – тонкий яркий ореол по краям солнечного диска

Температура этих хромосферных струй в два-три раза выше, чем в фотосфере, а плотность в сотни тысяч раз меньше. Общая протяженность хромосферы 10-15 тыс. километров.

Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в нее из конвективной зоны. Вещество нагревается примерно так же, как если бы это происходило в гигантской микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной атмосферы, которые расположены выше хромосферы.

Наиболее распространены “спокойные” протуберанцы, появление которых обычно связано с развитием группы пятен, но существуют они значительно дольше пятен (до 1 года). Непосредственно в зоне пятен наблюдаются после вспышек, протуберанцы солнечных пятен – потоки газа, втекающего из короны в зону пятен со скоростями в неск. десятков км/с. Другой вид протуберанцев связан с выбросами вещества вверх (обычно после вспышек) со скоростями 100-1000 км/с (быстрые эруптивные протуберанцы).

Над поверхностью Солнца можно наблюдать причудливой формы “фонтаны”, “облака”, “воронки”, “кусты”, “арки” и прочие ярко светящиеся образования из хромосферного вещества. Они бывают неподвижными или медленно изменяющимися, окруженными плавными изогнутыми струями, которые втекают в хромосферу или вытекают из нее, поднимаясь на десятки и сотни тысяч километров. Это самые грандиозные образования солнечной атмосферы – протуберанцы.

При наблюдении в красной спектральной линии, излучаемой атомами водорода, они кажутся на фоне солнечного диска темными, длинными и изогнутыми волокнами.

Протуберанцы имеют примерно ту же плотность и температуру, что и хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца.

Впервые спектр протуберанца вне затмения наблюдали французский астроном Пьер Жансен и его английский коллега Джозеф Локьер в 1868 г. Щель спектроскопа располагают так, чтобы она пересекала край Солнца, и если вблизи него находится протуберанец, то можно заметить спектр его излучения.

Направляя щель на различные участки протуберанца или хромосферы, можно изучить их по частям. Спектр протуберанцев, как и хромосферы, состоит из ярких линий, главным образом водорода, гелия и кальция. Линии излучения других химических элементов тоже присутствуют, но они намного слабее.

Некоторые протуберанцы, пробыв долгое время без заметных изменений, внезапно как бы взрываются, и вещество их со скоростью в сотни километров в секунду выбрасывается в межпланетное пространство. Вид хромосферы также часто меняется, что указывает на непрерывное движение составляющих ее газов.

Иногда нечто похожее на взрывы происходит в очень небольших по размеру областях атмосферы Солнца. Это так называемые хромосферные вспышки (самые мощные взрывоподобные процессы, могут продолжаться всего несколько минут, но за это время выделяется энергия, которая иногда достигает 1025 Дж).

Они длятся обычно несколько десятков минут. Во время вспышек в спектральных линиях водорода, гелия, ионизованного кальция и некоторых других элементов свечение отдельного участка хромосферы внезапно увеличивается в десятки раз. Особенно сильно возрастает ультрафиолетовое и рентгеновское излучение: порой его мощность в несколько раз превышает общую мощность излучения Солнца в этой коротковолновой области спектра до вспышки.

Пятна, факелы, протуберанцы, хромосферные вспышки – все это проявления солнечной активности. С повышением активности число этих образований на Солнце становится больше.

Солнечная корона

Корона – в отличие от фотосферы и хромосферы самая внешняя часть атмосферы Солнца обладает огромной протяженностью: она простирается на миллионы километров, что соответствует нескольким солнечным радиусам, а ее слабое продолжение уходит еще дальше.

Солнечная корона, снимок сделан опять же во время полного солнечного затмения

Солнечная корона, снимок сделан опять же во время полного солнечного затмения

Плотность вещества в солнечной короне убывает с высотой значительно медленнее, чем плотность воздуха в земной атмосфере. Уменьшение плотности воздуха при подъеме вверх определяется притяжением Земли. На поверхности Солнца сила тяжести значительно больше, и, казалось бы, его атмосфера не должна быть высокой.

В действительности она необычайно обширна. Следовательно, имеются какие-то силы, действующие против притяжения Солнца. Эти силы связаны с огромными скоростями движения атомов и электронов в короне, разогретой до температуры 1-2 млн градусов!

Корону лучше всего наблюдать во время полной фазы солнечного затмения. Правда, за те несколько минут, что она длится, очень трудно зарисовать не только отдельные детали, но даже общий вид короны. Глаз наблюдателя едва лишь начинает привыкать к внезапно наступившим сумеркам, а появившийся из-за края Луны яркий луч Солнца уже возвещает о конце затмения. Поэтому часто зарисовки короны, выполненные опытными наблюдателями во время одного и того же затмения, сильно различались. Не удавалось даже точно определить ее цвет.

Изобретение фотографии дало астрономам объективный и документальный метод исследования. Однако получить хороший снимок короны тоже нелегко. Дело в том, что ближайшая к Солнцу ее часть, так называемая внутренняя корона, сравнительно яркая, в то время как далеко простирающаяся внешняя корона представляется очень бледным сиянием. Поэтому если на фотографиях хорошо видна внешняя корона, то внутренняя оказывается передержанной, а на снимках, где просматриваются детали внутренней короны, внешняя совершенно незаметна.

Чтобы преодолеть эту трудность, во время затмения обычно стараются получить сразу несколько снимков короны – с большими и маленькими выдержками. Или же корону фотографируют, помещая перед фотопластинкой специальный “радиальный” фильтр, ослабляющий кольцевые зоны ярких внутренних частей короны. На таких снимках ее структуру можно проследить до расстояний во много солнечных радиусов.

Уже первые удачные фотографии позволили обнаружить в короне большое количество деталей: корональные лучи, всевозможные “дуги”, “шлемы” и другие сложные образования, четко связанные с активными областями.

Главной особенностью короны является лучистая структура. Корональные лучи имеют самую разнообразную форму: иногда они короткие, иногда длинные, бывают лучи прямые, а иногда они сильно изогнуты. Еще в 1897 г. пулковский астроном Алексей Павлович Ганский обнаружил, что общий вид солнечной короны периодически меняется. Оказалось, что это связано с 11-летним циклом солнечной активности.

С 11-летним периодом меняется как общая яркость, так и форма солнечной короны.

В эпоху максимума солнечных пятен она имеет сравнительно округлую форму. Прямые и направленные вдоль радиуса Солнца лучи короны наблюдаются как у солнечного экватора, так и в полярных областях. Когда же пятен мало, корональные лучи образуются лишь в экваториальных и средних широтах. Форма короны становится вытянутой. У полюсов появляются характерные короткие лучи, так называемые полярные щеточки. При этом общая яркость короны уменьшается.

Эта интересная особенность короны, по видимому, связана с постепенным перемещением в течении 11-летнего цикла зоны преимущественного образования пятен. После минимума пятна начинают возникать по обе стороны от экватора на широтах 30-40°. Затем зона пятнообразования постепенно опускается к экватору.

Тщательные исследования позволили установить, что между структурой короны и отдельными образованиями в атмосфере Солнца существуют определенная связь. Например, над пятнами и факелами обычно наблюдаются яркие и прямые корональные лучи. В их сторону изгибаются соседние лучи. В основании корональных лучей яркость хромосферы увеличивается.

Такую ее область называют обычно возбужденной. Она горячее и плотнее соседних, невозбужденных областей. Над пятнами в короне наблюдаются яркие сложные образования. Протуберанцы также часто бывают окружены оболочками из корональной материи.

Корона оказалась уникальной естественной лабораторией, в которой можно наблюдать вещество в самых необычных и недостижимых на Земле условиях.

На рубеже XIX-XX столетий, когда физика плазмы фактически еще не существовала, наблюдаемые особенности короны представлялись необъяснимой загадкой. Так, по цвету корона удивительно похожа на Солнце, как будто его свет отражается зеркалом. При этом, однако, во внутренней короне совсем исчезают характерные для солнечного спектра фраунгоферовы линии. Они вновь появляются далеко от края Солнца, во внешней короне, но уже очень слабые.

Кроме того, свет короны поляризован: плоскости, в которых колеблются световые волны, располагаются в основном касательно к солнечному диску. С удалением от Солнца доля поляризованных лучей сначала увеличивается (почти до 50%), а затем уменьшается. Наконец, в спектре короны появляются яркие эмиссионные линии, которые почти до середины XX в. не удалось отождествить ни с одним из известных химических элементов.

Оказалось, что главная причина всех этих особенностей короны – высокая температура сильно разреженного газа. При температуре свыше 1 млн градусов средние скорости атомов водорода превышают 100 км/с, а у свободных электронов они еще раз в 40 больше. При таких скоростях, несмотря на сильную разреженность вещества (всего 100 млн частиц в куб см, что в 100 млрд раз разреженнее воздуха на Земле!), сравнительно часты столкновения атомов, особенно с электронами.

Силы электронных ударов так велики, что атомы легких элементов практически полностью лишаются всех своих электронов и от них остаются лишь “голые” атомные ядра. Более тяжелые элементы сохраняют самые глубокие электронные оболочки, переходя в состояние высокой степени ионизации.

Итак, корональный газ – это высокоионизованная плазма; она состоит из множества положительно заряженных ионов всевозможных химических элементов и чуть большего количества свободных электронов, возникающих при ионизации атомов водорода (по одному электрону), гелия (по два электрона) и более тяжелых атомов.

Поскольку в таком газе основную роль играют подвижные электроны, его часто называют электронным газом, хотя при этом подразумевается наличие такого количества положительных ионов, которое полностью обеспечивало бы нейтральность плазмы в целом.

Белый цвет короны объясняется рассеиванием обычного солнечного света на свободных электронах. Они не вкладывают своей энергии при рассеивании: колеблясь в такт световой волны, они лишь изменяют направление рассеиваемого света, при этом поляризуя его. Таинственные яркие линии в спектре порождены необычным излучением высокоионизированных атомов железа, аргона, никеля, кальция и других элементов, возникающим только в условиях сильного разрежения.

Наконец, линии поглощения во внешней короне вызваны рассеиванием на пылевых частицах, которые постоянно присутствуют в межзвездной среде. А отсутствие линии во внутренней короне связано с тем, что при рассеянии на очень быстро движущихся электронах все световые кванты испытывают столь значительные изменения частот, что даже сильные фраунгоферовы линии солнечного спектра полностью “замываются”.

Итак, корона Солнца – самая внешняя часть его атмосферы, самая разреженная и самая горячая. Добавим, что она и самая близкая к нам: оказывается, она простирается далеко от Солнца в виде постоянно движущегося от него потоках плазмы – солнечного ветра. Вблизи Земли его скорость составляет в среднем 400-500 км/с, а порой достигает почти 1000 км/с.

Распространяясь далеко за пределы орбит Юпитера и Сатурна, солнечный ветер образует гигантскую гелиосферу, граничащую с еще более разреженной межзвездной средой.

Фактически мы живем окруженные солнечной короной, хотя и защищенные от ее проникающей радиации надежным барьером в виде земного магнитного поля. Через корону солнечная активность влияет на многие процессы, происходящие на Земле (геофизические явления).

Солнце, звезда, космос, огонь, жар, красное, иллюстрация

Солнце является основным источником энергии для Земли и всей Солнечной системы. Без него жизнь на нашей планете была бы невозможна. Неслучайно у многих древнейших цивилизаций (например, у египтян) именно бог Солнца считался верховным божеством, которому все остальные Боги были подчинены. Однако современная наука может рассказать о нашем светиле значительно больше, чем древнеегипетские мифы. Какие процессы протекают внутри Солнца, какова история этой звезды, и какое будущее ожидает ее через миллиарды лет?

Общая характеристика

Солнце – это огромный разогретый шар из газа, чей диаметр оценивается в 1,392 млн км. Это в 109 раз больше диаметра нашей планеты. На звезду приходится 99,87% всей массы Солнечной системы.

С Земли кажется, что светило имеет желтый цвет, однако это иллюзия, связанная с влиянием атмосферы нашей планеты на солнечный свет. На самом деле Солнце излучает почти белый свет.

Солнце – это одна из сотен миллиардов звезд галактики Млечный путь. Ближайшая к Солнцу звезда – это Проксима Центавра, находящаяся от неё на расстоянии 4,24 световых лет. Для сравнения – расстояние от Земли до Солнца, принимаемое за астрономическую единицу (а.е.), солнечный свет проходит всего за 8,32 минут.

Влияние Солнца на окружающие небесные тела огромно. Солнечный ветер (частицы вещества, излучаемого звездой), доминируют в межпланетном пространстве на расстоянии до 100-150 а.е. от светила. Считается, что гравитация нашей звезды определяет орбиты тел, находящихся даже на расстоянии светового года от неё (в облаке Оорта).

Само Солнце также вращается вокруг своей оси. Так как оно состоит из газов, то разные его слои вращаются с разной угловой скоростью. Если в районе экватора период обращения составляет 25 дней, то на полюсах он увеличивается до 34 дней. Более того, последние исследования показывают, что внутренние области совершают оборот значительно быстрее, чем внешняя оболочка.

Таблица “Основные физические характеристики Солнца”

Солнце, структура, строение, схема, диаграмма, рисунок

Внутреннее строение Солнца

Внутренняя структура нашей звезды включает следующие слои:

В центре светила располагается ядро. Именно в этой области идут термоядерные реакции. Радиус ядра оценивается в 150 тыс. км. Температура здесь не опускается ниже 13,5 млн градусов, а давление доходит до 200 млрд атм. Из-за этого вещество здесь находится в крайне плотном состоянии. Его плотность составляет 150 г/куб. см. Это в 7,5 раз выше плотности золота. Именно такие условия необходимы для протекания термоядерных реакций. Надо понимать, что именно в ядре вырабатывается энергия, которую и излучает Солнце. Все остальные области звезды лишь обогреваются ядром, но сами ее не вырабатывают.

Зона лучистого переноса

Зона конвективного переноса

Выше располагается зона конвективного переноса толщиной 200 тыс. км. Здесь плотность уже невысока, и вещество активно перемешивается – нагретые газы поднимаются наверх, отдают тепло, остывают и снова погружаются вниз. Скорость газовых потоков может достигать 6 км/с. Именно это движение порождает магнитное поле Солнца. Температура на поверхности падает до 6000° С, а плотность на три порядка ниже плотности земной атмосферы.

Атмосфера

Атмосфера Солнца состоит из следующих слоев:

Фотосфера

Нижний слой атмосферы называют фотосферой. Именно она излучает тот свет, который согревает планеты Солнечной системы. Толщина фотосферы колеблется от 100 до 400 км. На внешней границе фотосферы температура падает до 4700° С.

Хромосфера

Над фотосферой располагается хромосфера – слой толщиной около 2000 км. Её яркость очень мала, поэтому с Земли её можно наблюдать довольно сложно. Удобнее всего это делать во время солнечных затмений. Она имеет специфический красный оттенок. В хромосфере можно наблюдать спикулы – столбы плазмы, выбрасываемые из нижних слоев хромосферы. Время существования одной спикулы не превышает 10 минут, а длина доходит до 20 тыс. км. Одновременно в хромосфере находится около миллиона спикул. Интересно, что с увеличением высоты температура хромосферы не падает, а растет, и на верхней границе может доходить до 20 000° С.

Корона

Верхний слой атмосферы называется короной. Ее верхняя граница до сих пор четко не определена. Вещество в ней крайне разрежено, однако температура в ней может достигать нескольких миллионов градусов. На сегодня ученым не удалось полностью объяснить, за счет каких механизмов солнечная корона разогревается до такой температуры. В короне можно наблюдать протуберанцы – выбросы солнечного вещества, чья высота над поверхностью звезды может достигать 1,7 млн км.

Магнитное поле Солнца

Солнце, звезда, магнитное поле

У Солнца есть магнитное поле. Исследователи выделяют глобальное поле звезды и множество локальных полей.

В разных районах Солнца могут наблюдаться и малые, то есть локальные магнитные поля. Их напряженность может в тысячи раз превышать напряженность глобального поля, однако время их существования редко превышает несколько десятков дней. Особенно часто локальные поля наблюдаются в районе солнечных пятен. Дело в том, что эти пятна как раз и являются теми точками, через которые магнитные поля из внутренних областей выходят наружу.

Жизненный цикл Солнца


Возраст Солнца оценивается учеными в 4,5 млрд лет. Сформировалось оно из газопылевого облака, которое постепенно сжималось под действием собственной гравитации. Из этого же облака возникли планеты и почти все остальные объекты в Солнечной системе. Когда в центре сжимающегося облака плотность, а вместе с ней температура и давление выросли до критических значений, началась термоядерная реакция – так зажглось Солнце.

Постепенно из-за выгорания водорода ядро будет уменьшаться в размерах, а вся звезда в целом – увеличиваться. Через 6,4 млрд лет водород в ядре закончится, радиус звезды в этот момент будет больше современного в 1,59 раз. В течение 700 млн лет звезда расширится до 2,3 современных радиусов.

Далее рост температуры приведет к тому, что термоядерные реакции горения водорода запустятся уже не в ядре, а в оболочке звезды. Из-за этого она резко расширится, и ее внешние слои будут достигать современной земной орбиты. Однако к тому моменту светило потеряет значительную часть своей массы (28%), что позволит нашей планете перейти на более отдаленную орбиту. Солнце в этот период своей жизни, который продлится 10 млн лет, будет являться красным гигантом.

Из-за пульсаций, связанных с изменениями температуры Солнца, его внешние слои отделятся от ядра и образуют планетарную туманность. Само же ядро превратится в белый карлик – объект, чьи размеры будут сопоставимы размерами Земли, а масса будет равна половине современной солнечной массы. Далее этот карлик, состоящий из углерода и кислорода, будет постепенно остывать. Никаких термоядерных реакций в белом карлике идти не будет, поэтому со временем (за десятки млрд лет) он превратится в черный карлик – остывшую плотную массу вещества. На этом эволюция Солнца завершится.

Орбита и расположение Солнца в галактике Млечный путь

Млечный путь, солнце, карта, схема, иллюстрация, галактика, звезды, космос

Солнце вместе со всей Солнечной системой вращается относительно центра Млечного пути, в котором располагается огромная черная дыра. Расстояние от нее до нашего светила составляет 26 тыс. св. лет. Один оборот Солнечная система совершает примерно за 225-250 млн лет. Скорость движения звезды относительно центра галактики составляет 225 км/с.

Исследование Солнца

Солнце, космический зонд, изучение, исследование, иллюстрация

Аристарх Самосский в III в. до н. э. первым предположил, что именно Земля вращается вокруг Солнца, а не наоборот. Но лишь во времена Коперника и Галилея эта теория была принята научным сообществом. Тогда же начались исследования Солнца с помощью телескопа. Галилей понял, что солнечные пятна – это часть светила. Изучая их, он понял, что звезда вращается вокруг своей оси, и даже смог определить период обращения.

В 1672 г. Д. Кассини смог достаточно точно рассчитать расстояние до светила. Для этого он определял положение Марса на небосводе в Париже и Кайенне (Южная Америка). Он получил значение в 140 млн км.

В XIX в. физики стали изучать спектр солнечного света. Этот метод позволял определить химический состав звезды. В 1868 г. было обнаружено, что в состав светила входит элемент, до того неизвестный человечеству. Его назвали гелием.

Большой загадкой для ученых оставалась природа энергии, излучаемой Солнцем. Выдвигались ошибочные версии, что звезда нагревается за счет падения на нее метеоритов или за счет гравитационного сжатия. Лишь с открытием ядерных реакций физики смогли предположить, что источник солнечного тепла – это термоядерный синтез.

Интересные факты о Солнце

Солнце, закат, небо, облака, вечер

Для любого объекта, излучающего тепло, можно посчитать отношение мощности к его объему. Оказывается, что удельная мощность Солнца примерно в тысячу раз меньше, чем удельная мощность человеческого организма! Это означает, что огромный объем выделяемого светилом тепла в первую очередь объясняется его гигантскими размерами.

Периодически всплески солнечной активности приводят к геомагнитным бурям. Мощнейшая из них произошла в 1859 г. В результате на Земле перестала работать телеграфная связь, а северное сияние наблюдалось даже над Кубой.

Сейчас общепризнанна теория, что Солнце образовалось из газопылевого облака. Однако откуда появилось само облако? Ученые предполагают, что оно является остатком предыдущих звезд. Химический анализ показывает, что Солнце является звездой уже третьего поколения. Это значит, что вещество, из которого состоит светило, ранее входило в состав двух других звезд, уже прекративших существование.

Хотя большинство планет вращаются вокруг Солнца в плоскости эклиптики, экватор самой звезды не совпадает с этой плоскостью, а наклонен на 7°. Эту аномалию до сих пор не удалось объяснить. Возможно, причиной этого является существование ещё одной планеты в Солнечной системе, чья орбита лежит не в плоскости эклиптики, а под углом к ней. Ряд наблюдений подтверждает существование Девятой планеты, но пока что говорить об ее открытии преждевременно.

Читайте также: