Топографическое картирование электрической активности мозга ткэам сущность метода кратко

Обновлено: 04.07.2024

ТКЭАМ – топографическое картирование электрической активности мозга – область электрофизиологии, оперирующая с множеством количественных методов анализа электроэнцефалограммы и вызванных потенциалов. Широкое применение этого метода стало возможным при появлении относительно недорогих и быстродействующих персональных компьютеров. Топографическое картирование существенным образом повышает эффективность ЭЭГ метода. ТКЭАМ позволяет очень тонко и дифференцированно анализировать изменения функциональных состояний мозга на локальном уровне в соответствии с видами выполняемой испытуемым психической деятельности. Однако, следует подчеркнуть, что метод картирования мозга является не более, чем очень удобной формой представления на экране дисплея статистического анализа ЭЭГ и ВП.

Сам метод картирования мозга можно разложить на три основные составляющие: регистрацию, анализ и представление данных.

Важно, что при большом числе активных электродов можно использовать лишь один референтный электрод, т.е. тот электрод относительно которого регистрируется ЭЭГ всех остальных точек постановки электродов. Местом приложения референтного электрода служат мочки ушей, переносица или некоторые точки на поверхности скальпа (затылок, вертекс). Существуют такие модификации этого метода, которые позволяют вообще не использовать референтный электрод, заменяя его значениями потенциала, вычисленными на компьютере.

Анализ данных. Выделяют несколько основных способов количественного анализа ЭЭГ: временной, частотный и пространственный.

Первый представляет собой вариант отражения данных ЭЭГ и ВП на графике, при этом время откладывается по горизонтальной оси, а амплитуда – по вертикальной. Временной анализ применяют для оценки суммарных потенциалов, пиков ВП. эпилептических разрядов. Частотный анализ заключается в группировке данных по частотным диапазонам: дельта, тета, альфа, бета. Пространственный анализ сопряжен с использованием различных статистических методов обработки при сопоставлении ЭЭГ из разных отведений. Наиболее часто применяемый способ – это вычисление когерентности.

Топографические карты представляют собой контур черепа, на котором изображен какой-либо закодированный цветом параметр ЭЭГ в определенный момент времени, причем разные градации этого параметра (степень выраженности) представлены разными цветовыми оттенками. Поскольку параметры ЭЭГ постоянно меняются по ходу обследования, соответственно этому изменяется цветовая композиция на экране, позволяя визуально отслеживать динамику ЭЭГ процессов. Параллельно с наблюдением исследователь получает в свое распоряжение и статистические данные, лежащие в основе карт (рис.2.5).



ТКЭАМ — топографическое картирование электрической активности мозга — область электрофизиологии, оперирующая с множеством количественных методов анализа электроэнцефалограммы и вызванных потенциалов. Широкое применение этого метода стало возможным при появлении относительно недорогих и быстродействующих персональных компьютеров. Топографическое картирование существенным образом повышает эффективность ЭЭГ-метода. ТКЭАМ позволяет очень тонко и дифференцированно анализировать изменения функциональных состояний мозга на локальном уровне в соответствии с видами выполняемой испытуемым психической деятельности. Однако, следует подчеркнуть, что метод картирования мозга является не более чем очень удобной формой представления на экране дисплея статистического анализа ЭЭГ и ВП.

  • Сам метод картирования мозга можно разложить на три основные составляющие:
    • регистрацию данных;
    • анализ данных;
    • представление данных.

    Анализ данных. Выделяют несколько основных способов количественного анализа ЭЭГ: временной, частотный и пространственный.
    Временный представляет собой вариант отражения данных ЭЭГ и ВП на графике, при этом время откладывается по горизонтальной оси, а амплитуда — по вертикальной. Временной анализ применяют для оценки суммарных потенциалов, пиков ВП, эпилептических разрядов.
    Частотный анализ заключается в группировке данных по частотным диапазонам: дельта, тета, альфа, бета.
    Пространственный анализ сопряжен с использованием различных статистических методов обработки при сопоставлении ЭЭГ из разных отведений. Наиболее часто применяемый способ — это вычисление когерентности.

    Способы представления данных. Самые современные компьютерные средства картирования мозга позволяют легко отражать на дисплее все этапы анализа: "сырые данные" ЭЭГ и ВП, спектры мощности, топографические карты — как статистические, так и динамические в виде мультфильмов, различные графики, диаграммы и таблицы, а также, по желанию исследователя, — различные комплексные представления. Следует особо указать на то, что применение разнообразных форм визуализации данных позволяет лучше понять особенности протекания сложных мозговых процессов.


    ЭЭГ-карты, представляющие топографическое расположение значений спектральной мощности ЭЭГ (по Н.Л. Горбачевской с соавт., 1991). Под каждой картой указан диапазон анализируемых частот. Справа - шкала значений спектральной мощности ЭЭГ, мкВ

    Топографические карты представляют собой контур черепа, на котором изображен какой-либо закодированный цветом параметр ЭЭГ в определенный момент времени, причем разные градации этого параметра (степень выраженности) представлены разными цветовыми оттенками. Поскольку параметры ЭЭГ постоянно меняются по ходу обследования, соответственно этому изменяется цветовая композиция на экране, позволяя визуально отслеживать динамику ЭЭГ процессов. Параллельно с наблюдением исследователь получает в свое распоряжение статистические данные, лежащие в основе карт.
    Использование ТКЭАМ в психофизиологии наиболее продуктивно при применении психологических проб, которые являются "топографически контрастными", т.е. адресуются к разным отделам мозга (например, вербальные и пространственные задания).

    Компьютерная томография (КТ)



    Компьютерная томография (КТ) — новейший метод, дающий точные и детальные изображения малейших изменений плотности мозгового вещества. КТ соединила в себе последние достижения рентгеновской и вычислительной техники, отличаясь принципиальной новизной технических решений и математического обеспечения.
    Главное отличие КТ от рентгенографии состоит в том, что рентген дает только один вид части тела. При помощи компьютерной томографии можно получить множество изображений одного и того же органа и таким образом построить внутренний поперечный срез, или "ломтик" этой части тела. Томографическое изображение — это результат точных измерений и вычислений показателей ослабления рентгеновского излучения, относящихся только к конкретному органу.
    Таким образом, метод позволяет различать ткани, незначительно отличающиеся между собой по поглощающей способности. Измеренные излучение и степень его ослабления получают цифровое выражение. По совокупности измерений каждого слоя проводится компьютерный синтез томограммы. Завершающий этап — построение изображения исследуемого слоя на экране дисплея. Для проведения томографических исследований мозга используется прибор нейротомограф.
    Помимо решения клинических задач (например, определения местоположения опухоли) с помощью КТ можно получить представление о распределении регионального мозгового кровотока. Благодаря этому КТ может быть использована для изучения обмена веществ и кровоснабжения мозга.
    В ходе жизнедеятельности нейроны потребляют различные химические вещества, которые можно пометить радиоактивными изотопами (например, глюкозу). При активизации нервных клеток кровоснабжение соответствующего участка мозга возрастает, в результате в нем скапливаются меченые вещества и возрастает радиоактивность. Измеряя уровень радиоактивности различных участков мозга, можно сделать выводы об изменениях активности мозга при разных видах психической деятельности. Последние исследования показали, что определение максимально активизированных участков мозга может осуществляться с точностью до 1 мм.


    Ядерно-магнитно-резонансная томография мозга. Компьютерная томография стала родоночальницей ряда других еще более совершенных методов исследования: томографии с использованием эффекта ядерного магнитного резонанса (ЯМР-томография), позитронной эмиссионной томографии (ПЭТ), функционального магнитного резонанса (ФМР). Эти методы относятся к наиболее перспективным способам неинвазивного совмещенного изучения структуры, метаболизма и кровотока мозга.
    При ЯМР-томографии получение изображения основано на определении в мозговом веществе распределения плотности ядер водорода (протонов) и на регистрации некоторых их характеристик при помощи мощных электромагнитов, расположенных вокруг тела человека. Полученные посредством ЯМР-томографии изображения дают информацию об изучаемых структурах головного мозга не только анатомического, но и физикохимического характера. Помимо этого преимущество ядерно-магнитного резонанса заключается в отсутствии ионизирующего излучения; в возможности многоплоскостного исследования, осуществляемого исключительно электронными средствами; в большей разрешающей способности. Другими словами, с помощью этого метода можно получить четкие изображения "срезов" мозга в различных плоскостях.
    Позитронно-Эмиссионная трансаксиальная Томография (ПЭТ-сканеры) сочетает возможности КТ и радиоизотопной диагностики. В ней используются ультракороткоживущие позитронизлучающие изотопы ("красители"), входящие в состав естественных метаболитов мозга, которые вводятся в организм человека через дыхательные пути или внутривенно. Активным участкам мозга нужен больший приток крови, поэтому в рабочих зонах мозга скапливается больше радиоактивного "красителя". Излучения этого "красителя" преобразуют в изображения на дисплее.
    С помощью ПЭТ измеряют региональный мозговой кровоток и метаболизм глюкозы или кислорода в отдельных участках головного мозга. ПЭТ позволяет осуществлять прижизненное картирование на "срезах" мозга регионального обмена веществ и кровотока.
    В настоящее время разрабатываются новые технологии для изучения и измерения происходящих в мозге процессов, основанные, в частности, на сочетании метода ЯМР с измерением мозгового метаболизма при помощи позитронной эмиссии. Эти технологии получили название метода функционального магнитного резонанса (ФМР).

    Нейрональная активность


    Варианты осциллограмм импульсной активности нейронных популяций, регистрируемых в различных корковых и подкорковых структурах (по Н.П. Бехтеревой с соавт., 1985). Вверху - отметки времени (100 мс). Латинские буквы справа - условные обозначения структур мозга человека

    Методы воздействия на мозг

    Выше были представлены методы, общая цель которых — регистрация физиологических проявлений и показателей функционирования головного мозга человека и животных. Наряду с этим исследователи всегда стремились проникнуть в механизмы мозга, оказывая на него прямое или косвенное воздействие и оценивая последствия этих воздействий. Для психофизиолога использование различных приемов стимуляции — прямая возможность моделирования поведения и психической деятельности в лабораторных условиях.

    Сенсорная стимуляция. Самый простой способ воздействия на мозг — это использование естественных или близких к ним стимулов (зрительных, слуховых, обонятельных, тактильных и пр.). Манипулируя физическими параметрами стимула и его содержательными характеристиками, исследователь может моделировать разные стороны психической деятельности и поведения человека.
    Диапазон применяемых стимулов весьма широк:
    в сфере зрительного восприятия — от элементарных зрительных стимулов (вспышки, шахматные поля, решетки) до зрительно предъявляемых слов и предложений, с тонко дифференцируемой семантикой;
    в сфере слухового восприятия — от неречевых стимулов (тонов, щелчков) до фонем, слов и предложений.
    При изучении тактильной чувствительности применяется стимуляция: механическая и электрическими стимулами, не достигающими порога болевой чувствительности, при этом раздражение может наноситься на разные участки тела.
    Реакции ЦНС на такое воздействие изучены хорошо и путем регистрации активности нейронов, и методом вызванных потенциалов. Помимо сказанного, в психофизиологии широко используются приемы ритмической стимуляции светом или звуком, вызывающие эффекты навязывания — воспроизведения в спектре ЭЭГ частот, соответствующих частоте действующего стимула (или кратных этой частоте).

    Электрическая стимуляция мозга является плодотворным методом изучения функций его отдельных структур. Она осуществляется через введенные в мозг электроды в "острых" опытах на животных или во время хирургических операций на мозге у человека. Кроме того, возможна стимуляция и в условиях длительного наблюдения с помощью предварительно вживленных оперативным путем электродов. При хронически вживленных электродах можно изучать особый феномен электрической самостимуляции, когда животное с помощью какого-нибудь действия (нажатия на рычаг) замыкает электрическую цепь и таким образом регулирует силу раздражения собственного мозга. У человека электрическая стимуляция мозга применяется для изучения связи между психическими процессами и функциями и отделами мозга. Так, например, можно изучать физиологические основы речи, памяти, эмоций.
    В лабораторных условиях используется метод микрополяризации, суть которого состоит в пропускании слабого постоянного тока через отдельные участки коры головного мозга. При этом электроды прикладываются к поверхности черепа в области стимуляции. Локальная микрополяризация не разрушает ткань мозга, а лишь оказывает влияние на сдвиги потенциала коры в стимулируемом участке, поэтому она может быть использована в психофизиологических исследованиях.


    Наряду с электрической допустима стимуляция коры мозга человека слабым электромагнитным полем. Основу этого метода составляет принципиальная возможность изменения характеристик деятельности ЦНС под влиянием контролируемых магнитных полей. В этом случае также не оказывается разрушающего воздействия на клетки мозга. В то же время, по некоторым данным, воздействие электромагнитным полем ощутимо влияет на протекание психических процессов, следовательно, этот метод представляет интерес для психофизиологии.

    Разрушение участков мозга. Повреждение или удаление части головного мозга для установления ее функций в обеспечении поведения — один из наиболее старых и распространенных методов изучения физиологических основ поведения. В чистом виде метод применяется в экспериментах с животными. Наряду с этим распространено психофизиологическое обследование людей, которым по медицинским показаниям было проведено удаление части мозга.


    • Разрушающее вмешательство может осуществляться путем:
      • перерезки отдельных путей или полного отделения структур (например, разделение полушарий путем рассечения межполушарной связки — мозолистого тела);
      • разрушения структур при пропускании постоянного тока (электролитическое разрушение) или тока высокой частоты (термокоагуляция) через введенные в соответствующие участки мозга электроды;
      • хирургического удаления ткани скальпелем или отсасыванием с помощью специального вакуумного насоса, выполняющего роль ловушки для отсасываемой ткани;
      • химических разрушений с помощью специальных препаратов, истощающих запасы медиаторов или разрушающих нейроны;
      • обратимого функционального разрушения, которое достигается за счет охлаждения, местной анестезии и других приемов.

      Итак, в общем метод разрушения мозга включает в себя разрушение, удаление и рассечение ткани, истощение нейрохимических веществ, в первую очередь медиаторов, а также временное функциональное выключение отдельных областей головного мозга и оценку влияния вышеперечисленных эффектов на поведение животных.


      Это метод, который показывает распределение волн различных частот в мозгу путем анализа записи электрической активности мозга, взятой из корки головы, и, таким образом, предоставляет косвенную информацию о работе мозга. Когда QEEG повторяется после лечения, оно может показать положительные изменения, обеспечиваемые лечением. Как видно из профилей, полученных до и после лечения, при регистрации биоэлектрической активности можно наблюдать, что лечение устраняет нарушения химических процессов в мозге.

      Поскольку многие психические расстройства являются заболеваниями головного мозга, обследование функций мозга важны для эффективного лечения. Мониторинг биологического измерения вместе с психологическим или социальным измерением в лечении депрессии является особенно ценным. С помощью QEEG можно измерять биоэлектрическую активность, которая является конечным продуктом биологических процессов в мозге.

      Где используется QEEG?


      Биодоступность

      В клинике NPİSTANBUL система Quantitative Pharmaco EEG может предоставить предварительную информацию о том, оказывает ли препарат антидепрессантный, антипсихотический, антиоксидантный или когнитивный активаторный эффект на мозг человека. Эта информация повышает чувствительность и специфичность, даже если она не точно на сто процентов.

      Это вспомогательный метод при многих психоневрологических заболеваниях, таких как депрессия, паническое расстройство, потеря памяти, деменция, алкоголизм, дефицит внимания, гиперактивность.

      Этот тест может предоставить значимую предварительную информацию об использовании специальных рецептурных препаратов (риталин . ), таких как Red Prescription, у детей и молодых людей.


      Сложности, связанные с извлечением клинически полезной информации только с помощью визуального контроля из огромного количества данных, содержащихся в многоканальных полиграфических записях, ограничивают точность и диапазон полезности электроэнцефалографии и вызванных потенциалов. Вследствие вышесказанного, представляют интерес методы концентрации и интеграции в процессе анализа пространственно- временной информации , содержащихся в записях биоэлектрической активности мозга снимаемых с большого количества электродов. Информативность таких записей увеличивается благодаря топографическому отображению в виед цветных карт электрической активности мозга.

      Сигналы ЭЭГ отражают потенциальные различия между актьивностью мозга , исследуемойц различными электродами кожи головы. ЭОГ-топографическое картирование (ЭЭГ-ТМ), впервые было предложено Даффи Ф. Х. ( Duffy F. H) в 1979 году, также известны : картирование электрической активности мозга (BEAM) или количественная электроэнцефалограмма (QEEG).

      BEAM включает компьютерную визуализацию и статистический анализ электрической активности мозга. Идея этого метода заключается в том, что значительные отклонения в электрической активности мозга связаны с нейропсихиатрическими расстройствами, поэтому выявление аберрантной электрической активности потенциально полезно для диагностики этой патологии . BEAM относительно недорогой, неинвазивный метод исследования и позволяет вопроизвести яркие изображения электрической активности.

      Читайте также: