Теоретическая астрофизика характеристика кратко

Обновлено: 04.07.2024

Эта статья об использовании физики для определения природы астрономических объектов. Об использовании физики для определения их положения и движений см. Небесная механика. Для физического изучения крупномасштабных структур Вселенной см. Физическая космология. Для журнала см. Астрофизика (журнал).

Астрофизика это наука, использующая методы и принципы физика при изучении астрономических объектов и явлений. [1] [2] Среди изучаемых предметов есть солнце, Другой звезды, галактики, внесолнечные планеты, то межзвездная среда и космический микроволновый фон. [3] [4] Выбросы от этих объектов исследуются во всех частях электромагнитный спектр, и изученные свойства включают яркость, плотность, температура, и химический сочинение. Поскольку астрофизика - очень обширная тема, астрофизики применять концепции и методы из многих дисциплин физики, в том числе классическая механика, электромагнетизм, статистическая механика, термодинамика, квантовая механика, относительность, ядерный и физика элементарных частиц, и атомная и молекулярная физика.

На практике современные астрономические исследования часто включают в себя значительный объем работы в области теоретический и физика наблюдений. Некоторые области исследования астрофизиков включают их попытки определить свойства темная материя, темная энергия, черные дыры, и другие небесные тела; и происхождение и окончательная судьба вселенной. [3] Темы, которые также изучаются астрофизиками-теоретиками, включают: Формирование и эволюция Солнечной системы; звездная динамика и эволюция; формирование и эволюция галактик; магнитогидродинамика; крупномасштабная структура из дело во вселенной; происхождение космические лучи; общая теория относительности, специальная теория относительности, квант и физическая космология, в том числе строка космология и физика астрономических частиц.

Содержание

История


Астрономия - древняя наука, давно отделившаяся от изучения физики Земли. в Аристотелевский мировоззрение, тела в небе казались неизменными сферы единственное движение которого было равномерным движением по кругу, в то время как земной мир был царством, которое подверглось рост и распад и в котором естественное движение было по прямой и завершалось, когда движущийся объект достиг своего места назначения. Следовательно, считалось, что небесная область состоит из принципиально иного вида материи, чем та, что находится в земной сфере; либо Огонь как поддерживается Платон, или Эфир как поддерживается Аристотель. [5] [6] В 17 веке натурфилософы, такие как Галилео, [7] Декарт, [8] и Ньютон [9] начал утверждать, что небесные и земные области сделаны из одинаковых материалов и подвержены одинаковым естественные законы. [10] Их проблема заключалась в том, что еще не были изобретены инструменты для доказательства этих утверждений. [11]

На протяжении большей части девятнадцатого века астрономические исследования были сосредоточены на рутинной работе по измерению положения и вычислению движения астрономических объектов. [12] [13] Новая астрономия, которую вскоре назвали астрофизикой, начала появляться, когда Уильям Хайд Волластон и Йозеф фон Фраунгофер независимо друг от друга обнаружили, что при разложении солнечного света множество темные линии (области, где света было меньше или совсем не было) наблюдались в спектр. [14] К 1860 году физик, Густав Кирхгоф, и химик, Роберт Бунзен, продемонстрировал, что темные линии в солнечном спектре соответствует яркие линии в спектрах известных газов специфические линии, соответствующие уникальным химические элементы. [15] Кирхгоф пришел к выводу, что темные линии в солнечном спектре вызваны поглощение от химические элементы в солнечной атмосфере. [16] Таким образом было доказано, что химические элементы, обнаруженные на Солнце и звездах, также были найдены на Земле.

Среди тех, кто расширил изучение солнечных и звездных спектров, был Норман Локьер, который в 1868 году обнаружил как лучистые, так и темные линии в спектрах Солнца. Работа с химиком Эдвард Франкленд Чтобы исследовать спектры элементов при различных температурах и давлениях, он не смог связать желтую линию в солнечном спектре с какими-либо известными элементами. Таким образом, он утверждал, что линия представляет собой новый элемент, который назывался гелий, после греческого Гелиос, Солнце олицетворение. [17] [18]

В 1885 г. Эдвард С. Пикеринг предпринял амбициозную программу спектральной классификации звезд на Обсерватория Гарвардского колледжа, в котором команда женские компьютеры, особенно Уильямина Флеминг, Антония Мори, и Энни Прыгающая Пушка, классифицировал спектры, записанные на фотопластинках. К 1890 году был составлен каталог из более чем 10 000 звезд, в котором они были сгруппированы в тринадцать спектральных классов. Следуя видению Пикеринга, к 1924 году Кэннон расширил каталог до девяти томов и более четверти миллиона звезд, развивая Схема Гарвардской классификации который был принят во всем мире в 1922 году. [19]

В 1895 г. Джордж Эллери Хейл и Джеймс Э. Киллервместе с группой из десяти младших редакторов из Европы и США, [20] установлен Астрофизический журнал: международный обзор спектроскопии и астрономической физики. [21] Предполагалось, что журнал заполнит пробел между журналами по астрономии и физике, предоставив место для публикации статей по астрономическим приложениям спектроскопа; по лабораторным исследованиям, тесно связанным с астрономической физикой, включая определение длин волн металлических и газовых спектров и эксперименты по излучению и поглощению; по теориям Солнца, Луны, планет, комет, метеоров и туманностей; и по приборам для телескопов и лабораторий. [20]

Около 1920 г., после открытия Диаграмма Герцшпрунга – Рассела все еще используется в качестве основы для классификации звезд и их эволюции, Артур Эддингтон предвосхитил открытие и механизм термоядерная реакция процессы в звездыв его статье Внутреннее строение звезд. [22] [23] В то время источник звездной энергии оставался полной загадкой; Эддингтон правильно предположил, что источник был слияние водорода в гелий, высвобождая огромную энергию согласно уравнению Эйнштейна E = mc 2 . Это было особенно выдающимся достижением, поскольку в то время синтез и термоядерная энергия, и даже то, что звезды в значительной степени состояли из водород (увидеть металличность), еще не обнаружен. [24]

К концу 20-го века исследования астрономических спектров расширились, чтобы охватить длины волн, простирающиеся от радиоволн до оптических, рентгеновских и гамма-волн. [27] В 21 веке он расширился и стал включать наблюдения, основанные на гравитационные волны.

Наблюдательная астрофизика


Остаток сверхновой LMC N 63A получен в рентгеновском (синий), оптическом (зеленый) и радио (красный) диапазонах волн. Рентгеновское свечение исходит от материала, нагретого до примерно десяти миллионов градусов Цельсия ударной волной, порожденной взрывом сверхновой.

Наблюдательная астрономия это раздел астрономической науки, который занимается записью и интерпретацией данных, в отличие от теоретическая астрофизика, которая в основном связана с выяснением измеримых последствий физических модели. Это практика наблюдения небесные объекты используя телескопы и другие астрономические аппараты.

Большинство астрофизических наблюдений проводится с использованием электромагнитный спектр.

    изучает излучение с помощью длина волны больше нескольких миллиметров. Примеры областей обучения: радиоволны, обычно испускается холодными объектами, такими как межзвездный газ и пылевые облака; космическое микроволновое фоновое излучение, которое красное смещение свет от Большой взрыв; пульсары, которые впервые были обнаружены в микроволновая печь частоты. Изучение этих волн требует очень большого радиотелескопы. изучает излучение с длиной волны, которая слишком велика, чтобы быть видимой невооруженным глазом, но короче радиоволн. Инфракрасные наблюдения обычно производятся с помощью телескопов, подобных знакомым. оптический телескопы. Объекты холоднее звезд (например, планеты) обычно изучаются в инфракрасном диапазоне. был самым ранним видом астрономии. Телескопы в паре с устройство с зарядовой связью или спектроскопы являются наиболее часто используемыми инструментами. Земли атмосфера несколько мешает оптическим наблюдениям, поэтому адаптивная оптика и космические телескопы используются для получения максимально возможного качества изображения. В этом диапазоне длин волн звезды хорошо видны, и можно наблюдать многие химические спектры для изучения химического состава звезд, галактик и других объектов. туманности. , Рентгеновский и гамма-астрономия изучать очень энергичные процессы, такие как двойные пульсары, черные дыры, магнетары, и многие другие. Эти виды излучения плохо проникают в атмосферу Земли. Для наблюдения за этой частью электромагнитного спектра используются два метода:космические телескопы и наземные съемка воздушных черенковских телескопов (Я ДЕЙСТВУЮ). Примеры Обсерватории первого типа RXTE, то Рентгеновская обсерватория Чандра и Гамма-обсерватория Комптона. Примеры IACT: Стереоскопическая система высокой энергии (H.E.S.S.) и МАГИЯ телескоп.

Помимо электромагнитного излучения, с Земли можно наблюдать несколько вещей, которые происходят с больших расстояний. Немного гравитационная волна Обсерватории были построены, но гравитационные волны чрезвычайно трудно обнаружить. Нейтрино Обсерватории также были построены, прежде всего для изучения нашего Солнца. Космические лучи, состоящие из частиц очень высокой энергии, можно наблюдать, попадая в атмосферу Земли.

Наблюдения также могут различаться по шкале времени. Большинство оптических наблюдений занимают от нескольких минут до часов, поэтому явления, которые меняются быстрее, чем это, невозможно легко наблюдать. Однако есть исторические данные по некоторым объектам, охватывающие века или тысячелетия. С другой стороны, радионаблюдения могут рассматривать события в миллисекундном масштабе времени (миллисекундные пульсары) или объединить данные за годы (замедление пульсара исследования). Информация, полученная из этих разных временных шкал, очень отличается.

Изучение нашего собственного Солнца занимает особое место в наблюдательной астрофизике. Из-за огромного расстояния до всех других звезд Солнце можно наблюдать с детализацией, не имеющей аналогов ни у одной другой звезды. Наше понимание собственного Солнца служит руководством к пониманию других звезд.

Тема того, как меняются звезды или звездная эволюция, часто моделируется путем размещения различных типов звезд на соответствующих позициях на карте. Диаграмма Герцшпрунга – Рассела, который можно рассматривать как представление состояния звездного объекта от рождения до разрушения.

Теоретическая астрофизика

Теоретические астрофизики используют широкий спектр инструментов, в том числе: аналитические модели (Например, политропы чтобы приблизиться к поведению звезды) и вычислительный численное моделирование. У каждого есть свои преимущества. Аналитические модели процесса, как правило, лучше подходят для понимания сути происходящего. Численные модели могут выявить существование явлений и эффектов, которые иначе были бы невидимы. [28] [29]

Теоретики астрофизики стремятся создавать теоретические модели и выяснять наблюдательные последствия этих моделей. Это помогает наблюдателям искать данные, которые могут опровергнуть модель или помочь выбрать между несколькими альтернативными или конфликтующими моделями.

Теоретики также пытаются создавать или модифицировать модели, чтобы учесть новые данные. В случае несоответствия общая тенденция состоит в том, чтобы попытаться внести минимальные изменения в модель, чтобы она соответствовала данным. В некоторых случаях большой объем противоречивых данных с течением времени может привести к полному отказу от модели.

Темы, изучаемые астрофизиками-теоретиками, включают звездную динамику и эволюцию; формирование и эволюция галактик; магнитогидродинамика; крупномасштабная структура материи во Вселенной; происхождение космических лучей; общая теория относительности и физическая космология, в том числе строка космология и физика астрономических частиц. Астрофизическая теория относительности служит инструментом для оценки свойств крупномасштабных структур, для которых гравитация играет значительную роль в исследуемых физических явлениях, и в качестве основы для черная дыра (астро) физика и изучение гравитационные волны.

Некоторые широко признанные и изученные теории и модели в астрофизике, в настоящее время включены в Лямбда-CDM модель, являются Большой взрыв, космическая инфляция, темная материя, темная энергия и фундаментальные теории физики.

Популяризация

Корни астрофизики можно найти в появлении в семнадцатом веке единой физики, в которой одни и те же законы применялись к небесной и земной сферам. [10] Были ученые, обладающие квалификацией как в области физики, так и в астрономии, которые заложили прочный фундамент современной науки астрофизики. В наше время студентов по-прежнему привлекает астрофизика из-за ее популяризации Королевское астрономическое общество и примечательный педагоги такие как известные профессора Лоуренс Краусс, Субраманян Чандрасекар, Стивен Хокинг, Хьюберт Ривз, Карл Саган, Нил де Грасс Тайсон и Патрик Мур. Усилия ранних, поздних и нынешних ученых продолжают привлекать молодых людей к изучению истории и науки астрофизики. [30] [31] [32]

Астрофизика представляет часть астрономии, ориентированную на изучение физического состояния космических объектов и протекающих в них физических процессов.

Астрофизика существенно отличается от физической астрономии, направленной на изучение движений небесных тел (небесную механику). В задачи астрофизики входит также изучение строения поверхности небесных тел, Солнца и различных планет, представляющих интерес для исследователей.

Роль астрофизики в современном мире

Среди главных функций астрофизики – дистанционное исследование объектов с помощью приходящего излучения, которое в дальнейшем анализируется учеными, и на основании этого составляется заключение на тему физического состояния исследуемых объектов. Астрофизика условно делится на практическую и теоретическую.

Предмет исследования в астрофизике представляет вещество в своих разных состояниях и его излучение. Состояния бывают следующими:

  • плазматическое;
  • твердое;
  • газообразное;
  • жидкое.

Астрофизика, представляя составной элемент астрономии, ставит своей задачей исследование физических свойств и химического состава комет, планет, Солнца, туманностей и звезд.

Цели теоретической астрофизики

Теоретическая астрофизика ставит перед собой главные цели:

  • устанавливать законы и разрабатывать теории появления и развития объектов космоса;
  • строить модели физического состояния исследуемых объектов и сравнивать их со своими наблюдениями.

Рисунок 1. Модели Солнца и красного гиганта. Автор24 — интернет-биржа студенческих работ

Готовые работы на аналогичную тему

Существуют такие разновидности моделей: красного гиганта, Солнца

Теоретическая астрофизика в своих исследованиях задействует не только аналитические методы, но и численное моделирование при изучении разнообразных явлений астрофизики, а также возникновения их теорий и построения различных моделей. Подобные модели, построенные при анализе данных наблюдений, можно проверить, сравнивая теоретические предположения с получаемыми данными. Наблюдения также помогают сделать верный выбор среди нескольких альтернативных теорий. В качестве объекта исследований в теоретической астрофизике выступают:

  • магнитогидродинамика;
  • физика межзвездной среды;
  • физика чёрных дыр;
  • эволюция звезд и их строение;
  • эволюция галактик;
  • звёздная динамика;
  • астрофизическая гидродинамика;
  • крупномасштабная структура Вселенной.

Главной задачей теоретической астрофизики является выяснение физической природы процессов и явлений, происходящих в космическом пространстве, и последующая интерпретация информации, полученной, благодаря наблюдениям.

Наиболее полную разработку в настоящее время получили проблемы звездной и солнечной фотосферы, теория туманностей и атмосфер звезд. Результаты и методика современной атомной теории позволяют ученым в полной мере объяснить процессы в поверхностных слоях звезд и другие подобные явления.

Практическая астрофизика и ее задачи

Рисунок 2. Метод фотометрии. Автор24 — интернет-биржа студенческих работ

Среди основных задач практической (наблюдательной) астрофизики выделяют такие:

  • процесс регистрации излучения;
  • процесс разработки специальных приборов;
  • разработку методов регистрации (речь идет об адаптивных системах);
  • разработку методик анализа.

Также существуют следующие методы в практической астрофизике:

  • метод фотометрии;
  • спектрофотометрии и поляриметрии;
  • интерферометрии;
  • спеклинтерферометрии и гравитационного линзирования;
  • метод лучевых скоростей.

Среди основных инструментов, применяемых в практической астрофизике, используют:

  • специальные телескопы видимого диапазона;
  • рентгеновские и радиотелескопы;
  • специальные регистрирующие приборы, такие как фотометры, спектрографы и поляриметры;
  • особые приемники излучения.

Основную часть данных в астрофизике составляют специальные наблюдения объектов в электромагнитных излучениях. При этом исследование направлено не только на прямые изображения, (они получаются на разных по длине волнах), но и на электромагнитные спектры того излучения, которое принимается.

Радиоастрономия своей базовой задачей ставит изучение специальных излучений в пределах диапазона длин волн от 0.1 мм и до 100 м. Радиоволны могут испускать, например, такие холодные объекты, как:

  • пылевые облака;
  • межзвёздный газ;
  • реликтовые излучения (следствие Большого Взрыва);
  • впервые обнаруженные в диапазоне микроволн пульсарами;
  • квазары и далекие радиогалактики.

При наблюдениях в радиодиапазоне должны быть задействованы специальные телескопы довольно больших размеров. Зачастую наблюдения проводят, применяя интерферометры и сети РСДБ.

Инфракрасная астрономия ориентирована на исследование особенностей излучения на волнах, которые находятся в промежутке между видимым светом и радиоизлучением.

Наблюдения в данной области спектра производятся обычно на специальных телескопах, подобных обычному оптическому телескопу. Объекты наблюдения при этом более холодные, чем звезды (межзвездная пыль, планеты).

Оптическая астрономия представляет древнюю область астрофизики. В современном мире ее главными инструментами считаются телескопы с матрицами ПЗС в качестве приемников изображений. Частыми являются наблюдения с применением специальных спектрографов. Ограничителем на наблюдения в рамках оптического диапазона выступает дрожание земной атмосферы. Оно становится определенным препятствием при наблюдениях на телескопах больших размеров.

Устранить эту проблему и получить при этом максимально четкое изображение помогают разнообразные методы (например, адаптивная оптика, спеклинтерферометрия, выведение телескопов в космос за пределы атмосферы). Такой диапазон позволяет астрофизикам четко рассматривать планетарные туманности и звезды, а также заниматься изучением их расположения и химического строения.

Такие виды астрономии, как ультрафиолетовая, рентгеновская и гамма, своей базовой задачей ставят исследование объектов, в которых астрофизики наблюдают формирование высокоэнергетических частиц.

В число таких объектов могут входить черные дыры, двойные пульсары, магнетары и др. Земная атмосфера для излучения в этой части спектра будет непрозрачной. Поэтому имеется несколько методов наблюдений:

  • наблюдение с космических телескопов;
  • наблюдение черенковского эффекта в земной атмосфере др. типов излучений, которые могут также наблюдаться с Земли.

В попытках наблюдать за гравитационными волнами было создано несколько обсерваторий. Так, ученые создали нейтринные обсерватории, которые позволили им доказать существование в центре Солнца термоядерных реакций. Благодаря этим детекторам, изучались также удаленные объекты. Исследования высокоэнергетических частиц ученые проводят на основании наблюдений их столкновений с земной атмосферой.

Теоретическая астрофизика. Цель теоретической астрофизики – объяснение изучаемых явлений на основе общих законов физики. При этом она пользуется как методами, уже разработанными в теоретической физике, так и специальными методами, разработанными для изучения явлений в небесных телах и связанными со специфическими свойствами этих тел. Поскольку вся информация об астрофизических процессах получается на основе регистрации достигающего нас излучения, то первая задача теоретической астофизики – прямое истолкование результатов наблюдений и составление на первом этапе внешней картины развёртывающегося процесса (например, наблюдения блеска и спектров новых звёзд удалось истолковать на основе представления о выбросе наружных слоев звезды в окружающее пространство). Однако конечная её цель – выяснение механизма и причин явления (в приведённом примере – причины взрыва, который приводит к выбрасыванию оболочки). Основным отличием процессов, изучаемых астрофизикой, в большинстве случаев является существенная роль взаимодействия вещества с излучением. Поэтому теоретическая астрофизика, наряду с решением конкретных задач, разрабатывает также общие методы исследования этого взаимодействия. В то время, как теоретическая физика интересуется элементарными процессами этого типа, астрофизика изучает результаты многократного и сложного взаимодействия в больших системах; так, теория переноса излучения в материальной среде, которая применяется и в других разделах физики, достигла большого совершенства именно в астрофизике Успешное развитие в трудах советского астронома В. В. Соболева теории переноса излучения в спектральных линиях позволило установить точные закономерности образования в звёздных атмосферах линий поглощения и линий излучения. Таким образом стала возможной количественная интерпретация звёздных спектров. Разработаны также общие методы вычисления состояний равновесия звёздных масс. Большие работы по конфигурациям равновесия газовых звёзд выполнены М. Шварцшильдом (США) и А. Г. Масевич (СССР). Теория вырожденных конфигураций, в которой учитывается вырождение электронного газа, была разработана во 2-й четверти 20 в. Э. Милном (Великобритания) и С. Чандрасекаром (Индия). В случае сверхплотных конфигураций (в которых вырожден уже барионный газ) расчёты следует вести на основе общей теории относительности. Эти вопросы так же, как и теоретические исследования, касающиеся процесса расширения Вселенной в целом, составляют новую отрасль теоретической астрофизики, получившую название релятивистской астрофизики.

Происходящая в настоящее время модернизация образования направлена на повышение качества обучения физике. Одно из важнейших направлений в этой области - демонстрация универсальности физических законов и их справедливости для всех явлений природы во Вселенной - связано с новым подходом к проблеме межпредметных связей. Особое положение и роль здесь отводится изучению вопросов астрофизики, существенно расширяющих и углубляющих наши представления о строении и свойствах окружающего мира.

Значение астрономии школьники видят в том, "чтобы изучать мир за пределами нашей Земли, перемещаться на другую планету, изучать космические объекты, расширять свои знания о мире и его устройстве, в развитии культуры и знаний человечества, понять кто мы и что мы такое, изучать физические явления в космосе, предсказать приближение какого-то тела к Земле" и т. д.

Следует отметить, что тенденция включения вопросов астрофизики в учебные пособия по физике получила широкое и устойчивое распространение в системе обучения физике в США. При этом соответствующие вопросы и темы излагаются как в виде самостоятельных разделов, так и включаются в качестве примеров при изложении традиционных вопросов физики. Отдельные вопросы астрофизики включаются и в отечественные учебные пособия.

Многие учителя используют астрономический материал на своих уроках в разделах "Механика", "Электромагнитное излучение", "Геометрическая оптика", "Тепловые явления", "Магнитное поле", "Атомная физика", "Квантовая физика".

Не нарушая баланс времени школьного курса физики, надо внести доступный научный материал по астрофизике ,который должен отвечать следующим принципам: важность, научность, доступность.

Вопросы физики мегамира можно внести в следующие темы курса физики в средней и старшей школе:

-время распространения света, световой год

-видимое движение звезд

-небесная сфера, горизонтальная и экваториальная системы координат, измерение времени

-видимое движение и фазы Луны

-суточное и годичное движения Солнца, солнечные и звездные сутки

-движение Солнца среди звезд

-видимое движение планет, его объяснение по Копернику

-тангенциальная и лучевая скорости звезды

-определение расстояний до тел Солнечной системы

-расстояния до звезд и их светимости

-движение тел под действием взаимного притяжения

-определение масс небесных тел

-движение космических аппаратов

-первая и вторая космическая скорости

-закон всемирного тяготения и физика небесных тел

-уникальность физических условий на Земле

-магнитное поле Солнца

-космические лучи и межзвездные магнитные поля

-поведение вещества в сверхсильных магнитных полях (например, в пульсарах)

-шкала электромагнитных волн

-окна прозрачности атмосферы

-увеличение или угловое расширение

-солнечные и лунные затмения

-законы излучения абсолютно твердого тела

В настоящее время космические корабли исследуют планеты Солнечной системы, а межпланетные станции позволяют получать детальные фотографии с относительно близкого расстояния всех планет и спутников

Вопрос: с каких точек поверхности Земли выгоден запуск космического корабля? С каких планет, спутников?

Предложенный материал по физике мегамира актуализирует ранее изученные законы, подводит к обобщению изученного и, в результате, к осознанию естественнонаучной картины мира. Часть данного материала уже используется учителями физики на уроках, но, к сожалению, в большинстве случаев бессистемно. В результате теряется целостное представление о физике мегамира и вообще о физике. Наш развивающийся мир претерпевает изменения, и они более глобальны и значимы в космических масштабах. В школьном курсе должны своевременно отражаться такие изменения. Это условие современного образования является одной из важнейших мотиваций обучения. Учащихся на уроках необходимо знакомить с тем, что происходит в космосе, а также с перспективами на будущее, которые обозначаются современной наукой.

Итак, наука - живой, развивающийся организм, а непрерывное расширение пространственных и временных границ познанной части Вселенной дает человеку уверенность в собственной значимости, столь необходимую сегодня.

Вторая половина XX века с его выдающимися достижениями в физике, астрономии, космонавтике характеризуется существенным приростом в целостном представлении естественнонаучной картины мира. Накопление знаний о Космосе важно для человечества, поскольку существование земной цивилизации зависит от того, что представляет собой наша Вселенная, как она развивается.

В современных условиях возросла роль образования в осознании человеком, что он является жителем планеты Земля. В процессе обучения становится актуальным развитие такого типа мышления учащихся, которое способствует системному видению современных проблем человечества, в том числе и проблем космического уровня.

Качество знаний по физике у учащихся общеобразовательных школ может быть повышено в процессе усвоения курса физики, гармонично включающего в себя вопросы астрофизики, опирающиеся на общую методологию физики, за счет мировоззренческого характера этих вопросов, комплексного характера решаемых ими проблем, за счет содержания в них большого потенциала для развития мышления учащихся.

Методологическую основу исследования составляют:

-труды ученых-физиков по мировоззренческим и методологическим аспектам достижений физической науки (Л. Бройль, С.И. Вавилов, Р. Фейнман, А. Эйнштейн и др.);

-труды ученых - физиков и астрофизиков (В. А. Амбарцумян, В. JI. Гинзбург, Д. Лейзер, И. Д. Новиков, И. Пригожин, С. Хокинг и др); -достижения и тенденции развития теории и методики обучения физике, методологические основы школьного курса физики (С. В. Бубликов, Г. А. Бордовский, А. С. Кондратьев, В. В. Лаптев, А. А. Самарский и др.);

-методическая система преподавания астрономии (Б. А. Воронцов-Вельяминов, М. М. Дагаев, Е. Ю. Диркова, А. В. Засов, В. В. Иванов, Е. П. Левитан, В. Г. Сурдин и др.);

-теория модернизации отечественного образования (JI. С. Выготский, JI. Я. Зорина, В. В. Краевский, 3. И. Калмыкова, Максимова В.Н., В. Т. Фоменко и др.).

На основании проведенных теоретических исследований и результатов педагогического эксперимента на базе кафедры методики обучения физике РГПУ им. А. И. Герцена можно сделать следующие выводы:

1. Повышение качества физического школьного образования возможно благодаря включению в курс физики средней школы вопросов астрофизики, целью изучения которых является демонстрация универсальности физических законов для всего материального мира от элементарных частиц до галактик и повышение мировоззренческого аспекта физики.

3. Использование астрофизического материала в школьном курсе физики способствует развитию научного стиля мышления и повышению уровня физического понимания, формированию методологической и исследовательской культуры учащихся.

4. Преподавание астрофизических вопросов в курсе физики должно опираться на общую методологию физики и надежные качественные методы, не нарушая структуры курса физики, научного стиля изложения материала.

5. При включении астрофизических вопросов целесообразно использовать два методических подхода: 1) астрофизический материал используется в качестве иллюстрации определенного свойства вещества и действия законов физики на уровне мегамира; 2) некоторые астрофизические вопросы могут рассматриваться в качестве самостоятельных тем как продолжение определенных тем стандартного школьного курса физики, тогда появляется возможность создания на основе изучаемого материала четкой целостной картины некоторого круга явлений и выработки правильных в научном смысле представлений о строении и свойствах Вселенной.

6. Основными критериями отбора астрофизического материала для школьного курса физики являются: возможность демонстрации универсального характера физических законов, их применимости для описания явлений космического масштаба; высокая научная и познавательная ценность изучаемого материала как в плане усвоения основных положений методологии физики, так и в плане практической и мировоззренческой полезности сообщаемых знаний; достоверность материала; доступность материала как в плане использования основных положений и представлений физики, так и в плане используемого математического аппарата; возможность создания на основе изучаемого материала четкой целостной картины некоторого определенного круга явлений и, в результате, формировании физической картины Мира.

7. Обучение современной физике по предложенной методике способствует повышению качества знаний по физике благодаря формированию целостного системного мышления.

Включение вопросов астрофизики в курс физики средней школы соответствует современному состоянию науки, которая находится в поисках единой теории строения Вселенной. Такое включение ориентирует педагогов на анализ и формирование межпредметных связей, обеспечивающих целостность образовательного процесса.

1. А. С. Кондратьев, М. А. Крупнова, И. Я. Ланина. Современные проблемы реализации межпредметных связей при изучении физики. //Сб. "Актуальные проблемы обучения физике в школе и вузе". -СПб., 2003.

2. Е.П. Левитан, А.Ю. Румянцев. Дидактика астрономии: от ХХ к ХХI веку. //Земля и Вселенная

4. Матарцева Е.А. Об интеграции физики и астрономии. //Физика в школе и вузе: Сборник научных статей,- СПб.: Изд-во РГПУ им. А. И. Герцена, 2001. С.92-94.

6. Матарцева Е.А. Мировоззренческая функция астрономии в интегрированном курсе физики и астрономии. //Современная астрономия и методика ее преподавания: Материалы III Всероссийской научно-практической конференции. - СПб: Изд-во РГПУ им. А. И. Герцена, 2002. С. 159, 160.

АСТРОФИ́ЗИКА, раз­дел ас­тро­но­мии, изу­чаю­щий не­бес­ные те­ла, их сис­те­мы и про­стран­ст­во ме­ж­ду ни­ми на ос­но­ве ана­ли­за про­ис­хо­дя­щих во Все­лен­ной фи­зич. про­цес­сов и яв­ле­ний. А. изу­ча­ет не­бес­ные объ­ек­ты лю­бых мас­шта­бов, от кос­мич. пы­ли­нок до меж­га­лак­тич. струк­тур и Все­лен­ной в це­лом, все ви­ды по­лей (гра­ви­та­ци­он­ные, маг­нит­ные, элек­тро­маг­нит­но­го из­лу­че­ния) и гео­мет­рич. свой­ст­ва са­мо­го кос­мич. про­стран­ст­ва. Цель ас­т­ро­фи­зич. ис­сле­до­ва­ний – по­ни­ма­ние строе­ния, взаи­мо­дей­ст­вия и эво­лю­ции не­бес­ных тел, их сис­тем и Все­лен­ной как це­ло­го. Диа­па­зон фи­зич. па­ра­мет­ров – плот­но­сти, темп-ры, дав­ле­ния, на­пря­жён­но­сти маг­нит­но­го по­ля и др., с ко­то­ры­ми при­хо­дит­ся иметь де­ло в А., – да­ле­ко пре­вос­хо­дит дос­ти­жи­мый в зем­ных ла­бо­ра­то­ри­ях. По­это­му мн. астро­фи­зич. объ­ек­ты вы­сту­па­ют в ро­ли уни­каль­ной фи­зич. ла­бо­ра­то­рии, пре­до­став­ляю­щей воз­мож­но­сти для изу­че­ния ве­ще­ст­ва и по­лей в экс­тре­маль­ных ус­ло­ви­ях. Это де­ла­ет А. не­отъ­ем­ле­мой частью фи­зи­ки.


Вы можете поделиться своими знаниями, улучшив их ( как? ) Согласно рекомендациям соответствующих проектов .

Теоретическая астрофизика является дисциплиной , которая стремится объяснить явления , наблюдаемые астрономами в натуральном выражении с теоретическим подходом. С этой целью астрофизики- теоретики создают и развивают модели и теории для воспроизведения и предсказания наблюдений. В большинстве случаев попытка понять значение физических моделей непросто и требует много времени и усилий.

Теоретические астрофизики используют широкий спектр инструментов, включая аналитические модели (например, политропы для аппроксимации поведения звезды ) и вычислимый численный анализ . У каждого есть свои преимущества: аналитические модели процесса, как правило, лучше дают подробное представление о том, что происходит, в то время как численные модели могут выявить существование явлений и эффектов, которые в противном случае остались бы незамеченными.

Теоретики астрофизики стремятся создать теоретические модели и определить последствия этих моделей для наблюдений. Эта помощь позволяет наблюдателям искать данные, которые могут противоречить модели или помочь выбрать между несколькими альтернативными или конфликтующими моделями.

Теоретики также пытаются создавать или модифицировать модели с учетом новых данных. В случае противоречия общая тенденция состоит в том, чтобы попытаться внести как можно меньше изменений в модель для соответствия данным. В некоторых случаях большой объем противоречивых данных может привести к тому, что модель будет полностью отвергнута.

В астрономическом сообществе теоретиков часто карикатурно изображают за то, что они механически некомпетентны и недовольны своими наблюдениями. Наличие теоретика в обсерватории может навредить текущему наблюдению, вызвать сбои компьютера или даже вызвать появление облаков.

Темы, изучаемые астрофизиками-теоретиками, включают: звездную динамику и эволюцию звезд ; образование и эволюция галактик ; великие структуры материи во Вселенной ; происхождение космических лучей ; общая теория относительности и космология . Астрофизический относительности служит в качестве инструмента для оценки свойств крупномасштабных структур , для которых сила тяжести играет важную роль и служит в качестве основы для ( астро ) физики из черных дыр и изучения гравитационных волн .

Некоторые широко распространенные теории / модели включают: Большой взрыв , космическую инфляцию , темную материю и фундаментальные теории физики . Одна из астрофизических теорий, которая имеет сторонников, но не согласна с наблюдениями, - это плазменная космология . Примером астрофизической теории, которая не получила широкого признания, но оказалась достаточно жизнеспособной, чтобы заслужить дальнейшего изучения, является теория модифицированной ньютоновской динамики .

Читайте также: