Стабильные химические элементы это определение кратко

Обновлено: 05.07.2024

Элементы, пропавшие за время существования Земли, получают двумя способами. Во-первых, в ядро тяжёлого элемента можно вогнать лишний нейтрон. Там он претерпевает бета-распад, образуя протон, электрон и электронное антинейтрино: n 0 → p + e – + ve. Заряд ядра увеличится на единицу — возникнет новый элемент. Так получали искусственные элементы вплоть до фермия-100 (его изотоп 257 Fm имеет период полураспада 100 лет).

Несмотря на все успехи экспериментальной и теоретической физики, остаётся открытым вопрос: существуют ли в природе сверхтяжёлые элементы, или же они — чисто искусственные, рукотворные вещества, подобные синтетическим материалам — капрону, нейлону, лавсану, — природой никогда не создававшимся?

Условия для образования таких элементов в природе есть. Они создаются в недрах пульсаров и при взрывах сверхновых звёзд. Потоки нейтронов в них достигают огромной плотности — 10 38 n 0 /м 2 и способны порождать сверхтяжёлые ядра. Они разлетаются в космосе в потоке межгалактических космических лучей, но их доля чрезвычайно мала — всего несколько частиц на квадратный метр в год. Поэтому возникла мысль использовать природный детектор—накопитель космического излучения, в котором сверхтяжёлые ядра должны оставить специфический, легко узнаваемый след. Такими детекторами с успехом послужили метеориты.

Исследователи из Физического института им. П. Н. Лебедева (ФИАН) и Института геохимии и аналитической химии им. В. И. Вернадского (ГЕОХИ РАН) изучают два палласита — железоникелиевые метеориты с вкраплениями оливина (группа полупрозрачных минералов, в которых к двуокиси кремния SiO4 присоединены в разных пропорциях Mg2, (Mg, Fe)2 и (Mn, Fe)2; прозрачный оливин называется хризолитом). Возраст этих метеоритов — 185 и 300 миллионов лет.

Тяжёлые ядра, пролетая сквозь кристалл оливина, повреждают его решётку, оставляя в ней свои следы — треки. Они становятся видны после химической обработки кристалла — травления. А поскольку оливин полупрозрачен, треки эти можно наблюдать и изучать в микроскоп. По толщине трека, его длине и форме можно судить о заряде и атомной массе ядра. Исследования сильно осложняет то, что кристаллы оливина имеют размеры порядка нескольких миллиметров, а трек тяжёлой частицы гораздо длиннее. Поэтому о величине её заряда приходится судить по косвенным данным — скорости травления, уменьшению толщины трека и пр.

Полученные экспериментальные результаты подтверждают реальность существования в природе стабильных сверхтяжёлых элементов.

olegov 01.02.2013 09:45 Ответить

Мы сотрудничали с институтом Дубны помнню сколько было радости когда ИЮПАК большинством голосов присвоил 105 элементу название Дубний Db105. Однако на тот момент были синтезированы элементы до 109, за эти годы дошли уже до 118, если темпы останутся прежними лет через 15 достигнем острова стабильноти.

niki olegov 01.02.2013 12:58 Ответить

Говорили, что остров можно лишь обойти, но не достичь, потому что нет способа получить необходимый избыток нейтронов над протонами. Сейчас есть идеи как это сделать?

olegov niki 01.02.2013 13:32 Ответить

Нсколько помню элемент с числом 124 пытались получить на германиевой мишени бомбардировкой ядрами урана. Вроде даже были положительные результаты.

niki olegov 01.02.2013 13:48 Ответить

Не, это как раз нейтронодефицитные ядра. На них именно обходили остров сбоку, чтобы показать, что он есть. Насколько я понимаю проблема в том, что нет двух долгоживущих ядер, при слиянии которых мог бы получится элемент с нужным числом нейтронов. А добавлять нейтроны по одному не получается, через несколько шагов, обязательно получается нечто что быстро распадается.

olegov niki 01.02.2013 16:46 Ответить

Ну как сказать сбоку, по сути проходили по его краю, потому что у 112, 114 и 116 элементов сроки полураспада составляли порядка минуты, т.е. практически 10 минут с ним можно работать. По сравнением с предшествующими элементами с временами жизни 10^-15 сек. Это огромная стабильность.

niki olegov 01.02.2013 16:39 Ответить

aa 01.02.2013 11:36 Ответить

интересно, если в космосе возможено образование сверхтяжелых стабильных элементов - почему не искали "спектроскопические подтверждения"? Или там слишком мало их? Так же, напомните, если можно - в чем физическая природа возникновения острова стабильности? Здесь "эеффект зеркальных ядер". или что другое? ясно, ято "в лоб" уравнения квантовых полей даже никто и непытался решать. Поэтому, там должны быть более простые физические соображения.

Angl 01.02.2013 13:36 Ответить

rnk Angl 01.02.2013 16:10 Ответить

Плотности порядка 30-40 можно найти применение. Например, пули для пращи отливать, как инки когда-то из золота (шутка).

И ещё надо посмотреть, что с температурой плавления, если она будет порядка 5 килокельвин, то можно будет со спокойной совестью сдать в утиль энергосберегающие лампочки.

olegov Angl 01.02.2013 16:49 Ответить

Соединения данного элемента могут демонстрировать уникальные свойства, для промышленности, биотехнологий и прочих высоких технологий, всяких квантовых компьютеров и т.п.

Angl olegov 02.02.2013 16:02 Ответить

Ну вот есть обедненный уран (фактически чистый U-238), будет еще в полтора раза тяжелее. Где его применение в промышленности и биотехнологиях? Правильно сказали, снаряды только делать.

Kolya Angl 03.02.2013 02:04 Ответить

А википедия, по видимому, как всегда врёт:

Angl Kolya 03.02.2013 18:32 Ответить

Интересно, не знал. Но для мегадорогого материала балласт вряд ли будет когда-либо выгодным применением. Надежда только на экстремальные физико-химические свойства.

Aab Kolya 07.02.2013 21:35 Ответить

olegov Angl 03.02.2013 10:08 Ответить

Понимаете мы не знаем ожидаемую химию и размеры данных ядер, поэтому не знаем какие кристаллические решетки оно будет образовывать, может найти с применение и в сверпроводимости и в нанотехнологиях и в биотехнологиях. И кстати уран еще используется в аналитической химии для определения натрия в растворах.

Degen1103 01.02.2013 17:32 Ответить

А у меня всё теплится надежда, что найдётся-таки сверхплотное вещество Амбарцумяна (оно же Тёмная Материя) и бюраканская космогония восторжествует :)

Яков 01.02.2013 23:27 Ответить

Непонятно почему ни слова не сказано о В.М. Струтинском, который теоретически обосновал существование сверхтяжёлых элементов и предсказал остров стабильности в районе 114 элемента :(

wandarer 04.02.2013 12:25 Ответить

niki wandarer 04.02.2013 13:49 Ответить

dudenkov 05.02.2013 11:52 Ответить

niki dudenkov 05.02.2013 16:09 Ответить

Aab dudenkov 07.02.2013 22:05 Ответить

== или даже в специально сконструированном неразрушаемом помещении с оборудованием для быстрого извлечения продуктов. ==

Ого! И такое возможно?! Как же такое "неразрушаемое помещение" выглядит? Какова мощность взрывов внутри него допустима? В МХТИ, говорят, есть уютная камера в подвальчике.

Вот уж точно, little hell :)

Кстати. В такую камеру можно билеты продавать на эвтаназию (или бесплатно, для членов профсоюза, так сказать): скорость разрушения нейросети будет больше скорости распространения нервного импульса. Но, это так, чёрный юмор. Прошу прощения, если Вам такие шутки не нравятся, но просто не смог утерпеть: камерка навеяла.

its4me 08.04.2019 23:41 Ответить

сверхтяжёлые элементы — чисто искусственные, рукотворные вещества. Хватит тратить деньги налогоплательщиков и заниматься обманом.

Химический элемент — совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева [1] . Каждый химический элемент имеет свои название и символ, которые приводятся в Периодической системе элементов Дмитрия Ивановича Менделеева. [2]

Формой существования химических элементов в свободном виде являются простые вещества (одноэлементные) [3]

Содержание

История становления понятия


Символы химических элементов по Дж. Дальтону: 1 — водород; 2 — магний; 3 — кислород; 4 — сера; 5 — аммиак; 6 — диоксид углерода

Благодаря Джону Дальтону в начале XIX в. в химии возобладала атомно-молекулярная гипотеза, рассматривающая химический элемент как отдельный вид атомов и указывающая на природу простых и сложных веществ, как состоящих, соответственно, из атомов одного или различного видов. Дальтон же впервые указывает на атомный вес как важнейшее свойство элементов, определяющее его химическую природу. Благодаря усилиям Йенса Берцелиуса и его последователей были весьма точно определены атомные веса (атомные массы) известных элементов. Середина XIX в. ознаменовалась целым рядом открытий новых элементов. На международном съезде химиков в г. Карлсруэ в 1860 г. были приняты определения понятий молекулы и атома.

Однако с открытием изотопов стало ясно, что различные совокупности атомов одного и того же элемента могут иметь различающиеся атомные массы; так, радиогенный гелий, выделенный из урановых минералов, в связи с преобладанием изотопа 4 He имеет атомную массу больше, чем гелий космических лучей.

Современное понимание химического элемента как совокупности атомов, характеризующихся одинаковым положительным зарядом ядра, равным номеру элемента в Периодической таблице, появилось благодаря фундаментальным работам Генри Мозли (1915) и Джеймса Чедвика (1920) [7] .

Известные химические элементы

Не все из известных на сегодня 118 элементов имеют утвержденные ИЮПАК постоянные названия. Самым тяжёлым из официально признанных элементов, имеющих официальные постоянные названия, является 116-й, получивший в мае 2012 года имя ливерморий вместе со 114-м элементом флеровием.

Названия сверхтяжёлых элементов с номерами 113, 115, 117, 118, полученные в 2002—2010 годах в России и США, официально пока не утверждены. Они имеют временные систематические названия.

Символы химических элементов

Символы химических элементов используются как сокращения для названия элементов. В качестве символа обычно берут начальную букву названия элемента и в случае необходимости добавляют следующую или одну из следующих. Обычно это начальные буквы латинских названий элементов: Cu — медь (cuprum), Ag — серебро (argentum), Fe — железо (ferrum), Au — золото (aurum), Hg — ртуть (hydrargirum). Такая система химических символов была предложена в 1811 г. шведским химиком Я. Берцелиусом.

Цифрами меньшего размера возле символа элемента обозначаются: слева вверху — атомная масса, слева внизу — порядковый номер, справа вверху — заряд иона, справа внизу — число атомов в молекуле [7] :

атомная масса заряд иона
Символ элемента
порядковый номер число атомов в молекуле

Временные символы элементов состоят из трёх букв, представляющих аббревиатуру их атомного номера на латыни.

В Периодической таблице карточка химического элемента обычно включает следующие характеристики:

  • 1 — обозначение химического элемента.
  • 2 — русское название.
  • 3 — порядковый номер химического элемента, равный количеству протонов в атомном ядре.
  • 4 — атомная масса: среднее значение атомной массы устойчивых изотопов в земной коре или атомная масса наиболее долгоживущего изотопа (для радиоактивных элементов).
  • 5 — распределение электронов по энергетическим уровням.
  • 6 — электронная конфигурация.

Распространённость химических элементов в природе


Из всех химических элементов в природе найдено 88; такие элементы, как технеций Tc (порядковый номер 43), прометий Pm (61), астат At (85) и франций Fr (87), а также все элементы, следующие за ураном U (порядковый номер 92), впервые получены искусственно. Некоторые из них в исчезающе малых количествах обнаружены в природе.

Из химических элементов наиболее распространены в земной коре кислород и кремний. Эти элементы вместе с элементами алюминий, железо, кальций, натрий, калий, магний, водород и титан составляют более 99 % массы земной оболочки, так что на остальные элементы приходится менее 1 %. В морской воде, помимо кислорода и водорода — составных частей самой воды, высокое содержание имеют такие элементы, как хлор, натрий, магний, сера, калий, бром и углерод. Массовое содержание элемента в земной коре называется кларковым числом или кларком элемента.

Содержание элементов в коре Земли отличается от содержания элементов в Земле, взятой как целое, поскольку химсоставы коры, мантии и ядра Земли различны. Так, ядро состоит в основном из железа и никеля. В свою очередь, содержания элементов в Солнечной системе и в целом во Вселенной также отличаются от земных. Наиболее распространённым элементом во Вселенной является водород, за ним идёт гелий. Исследование относительных распространённостей химических элементов и их изотопов в космосе является важным источником информации о процессах нуклеосинтеза и об эволюции Солнечной системы и небесных тел.

Классификация химических элементов

Согласно замыслу одного из участников Википедии, на этом месте должен располагаться специальный раздел.
Вы можете помочь проекту, написав этот раздел.

Химические элементы как составная часть химических веществ

Химические вещества могут состоять как из одного химического элемента (простое вещество), так и из разных (сложное вещество или химическое соединение).

Химические элементы образуют около 500 простых веществ [10] . Способность одного элемента существовать в виде различных простых веществ, отличающихся по свойствам, называется аллотропией. [10]

В обычных условиях 11 элементов существуют в виде газообразных простых веществ (H, He, N, O, F, Ne, Cl, Ar, Kr, Xe, Rn), 2 — жидкости (Br и Hg), остальные элементы образуют твёрдые тела.

См. также

Ссылки

  • Kедров Б. M. Эволюция понятия элемента в химии. M., 1956
  • Химия и Жизнь (Солтеровская химия). Ч.1. Понятия химии. М.: изд-во РХТУ им. Д. И. Менделеева, 1997
  • Азимов А. Краткая история химии. СПб, Амфора, 2002

Примечания

  • Химические элементы
  • Основные положения и определения в химии

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Химический элемент" в других словарях:

ХИМИЧЕСКИЙ ЭЛЕМЕНТ — совокупность атомов, имеющих одинаковый заряд ядра и, следовательно, одинаковое число электронов в электронной оболочке. Многие из них имеют несколько (см.). Хим. элементы обозначают знаками химическими (см. (9)), а их закономерную взаимосвязь… … Большая политехническая энциклопедия

химический элемент — совокупность атомов с одинаковым зарядом ядра Z (одинаковым порядковым, или атомным, номером в периодической системе химических элементов). В таблицу химических элементов, издаваемую ИЮПАК, на 1998 внесено 109 элементов, имеющих названия (имеются … Энциклопедический словарь

химический элемент — cheminis elementas statusas T sritis chemija apibrėžtis Atomų rūšis, turinti vienodą branduolio krūvį. atitikmenys: angl. chemical element; element rus. химический элемент; элемент ryšiai: sinonimas – elementas … Chemijos terminų aiškinamasis žodynas

химический элемент — cheminis elementas statusas T sritis Standartizacija ir metrologija apibrėžtis Atomų rūšis, turinti vienodą branduolio krūvį. atitikmenys: angl. chemical element vok. chemisches Element, n rus. химический элемент, m pranc. élément chimique, m … Penkiakalbis aiškinamasis metrologijos terminų žodynas

химический элемент — cheminis elementas statusas T sritis chemija apibrėžtis Elektrocheminio elemento tipas. atitikmenys: angl. chemical element rus. химический элемент … Chemijos terminų aiškinamasis žodynas

химический элемент — cheminis elementas statusas T sritis fizika atitikmenys: angl. chemical element vok. chemisches Element, n rus. химический элемент, m pranc. élément chimique, m … Fizikos terminų žodynas

ХИМИЧЕСКИЙ ЭЛЕМЕНТ — вид атомов, обладающих одинаковым зарядом ядра. X. э. в свободном состоянии являются простыми (не разложимыми хим. методами на более простые) в вами. Мн. X. э. состоят из неск. изотопов. Взаимосвязь X. э. отражает периодическая система элементов… … Большой энциклопедический политехнический словарь

ХИМИЧЕСКИЙ ЭЛЕМЕНТ — совокупность атомов с одинаковым зарядом ядра Z (одинаковым порядковым, или атомным, номером в периодической системе химических элементов). В таблицу X. э., издаваемую ИЮПАК, на 1998 внесено 109 элементов, имеющих названия (есть сведения о… … Естествознание. Энциклопедический словарь

ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ представляет собой классификацию химических элементов в соответствии с периодическим законом, устанавливающим периодическое изменение свойств химических элементов по мере увеличения их атомной массы, связанного с увеличением заряда ядра их атомов; поэтому заряд ядра атома совпадает с порядковым номером элемента в периодической системе и называется атомным номером элемента. Периодическая система элементов оформляется в виде таблицы (периодическая таблица элементов), в горизонтальных рядах которой – периодах – происходит постепенное изменение свойств элементов, а при переходе от одного периода к другому – периодическое повторение общих свойств; вертикальные столбцы – группы – объединяют элементы со сходными свойствами. Периодическая система позволяет без специальных исследований узнать о свойствах элемента только на основании известных свойств соседних по группе или периоду элементов. Физические и химические свойства (агрегатное состояние, твердость, цвет, валентность, ионизация, стабильность, металличность или неметалличность и т.д.) можно предсказывать для элемента на основании периодической таблицы.

В конце 18 и начале 19 вв. химики пытались создавать классификации химических элементов в соответствии с их физическими и химическими свойствами, в частности на основе агрегатного состояния элемента, удельного веса (плотности), электропроводности, металличности – неметалличности, основности – кислотности и т.д.

(т.е. по относительной атомной массе).

Гипотеза Праута.

В 1805 Дж.Дальтон определил атомные веса нескольких элементов, приняв за единицу атомную массу водорода, а Й.Берцелиус в 1815 значительно уточнил величины атомных весов. Ученые пытались установить простые (целочисленные) соотношения между атомными весами элементов. У.Праут в 1815 предположил, что атомные веса всех элементов связаны простыми кратными отношениями с атомным весом водорода. Но более точные определения атомных весов, выполненные Ж.Дюма и особенно Берцелиусом, а впоследствии и Ж.Стасом, разрушили гипотезу Праута, так как были получены дробные величины атомных весов. И только в начале 20 в., когда стало известно строение атома, идеи Праута возродились.

Триады Доберейнера.

И.Доберейнер в 1816–1829 установил, что для триад сходных элементов, таких, как Cl, Br, I и Ca, Sr, Ba, атомные массы и величины некоторых физических свойств находятся в арифметической прогрессии и для каждого второго элемента свойство можно предсказать как среднее между свойствами двух крайних. Существование такой прямой взаимосвязи для всех элементов казалось вероятным, но количественная оценка была невозможна из-за путаницы между атомными и эквивалентными весами до тех пор, пока С.Канниццаро в 1858 не пересмотрел величины атомных весов.

Октавы Ньюлендса.

Дж.Ньюлендс в 1864, анализируя все известные триады и расширяя по возможности их в семейства по 4–5 элементов, получил общую таблицу, что позволило ему предположить существование одного или двух неоткрытых элементов. Затем он перестроил классификацию элементов в порядке увеличения атомного веса и обнаружил периодическую повторяемость свойств у каждого восьмого элемента. К сожалению, Ньюлендс не оставил свободные места в таблице для неоткрытых элементов, а его предложение назвать новую таблицу законом октав встретило холодный прием.

Периодический закон.

Два других химика, русский ученый Д.И.Менделеев и немецкий ученый Л.Мейер независимо друг от друга предложили классификацию элементов в виде семейств, в которых периодически повторяются сходные свойства, когда элементы расположены в порядке увеличения атомного веса. Оба опубликовали свои таблицы (Менделеев – в 1869, а Мейер – в 1870) и дали формулировку нового открытого периодического закона. Уверенность Менделеева в правильности периодического закона была так велика, что он не колеблясь исправил известные значения атомных весов на основании открытого закона. Он предсказал существование и довольно точно описал свойства трех новых, еще неизвестных тогда элементов, которые были открыты через несколько лет: галлия (1875), скандия (1879) и германия (1886).

Периодическая таблица.

Менделеев расположил элементы в порядке увеличения их атомного веса и в 1869 предложил таблицу размещения семейств элементов (табл. 1). Модифицированная форма таблицы (табл. 2), в которой семейства (группы) элементов расположены в колонках, была предложена им в 1871 и существует до настоящего времени. Наряду с ней получила распространение развернутая форма таблицы. См. также ХИМИЯ; ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ.

Таблица 1. Периодическая таблица элементов, опубликованная Менделеевым в 1869
Таблица 1. ПЕРИОДИЧЕСКАЯ ТАБЛИЦА ЭЛЕМЕНТОВ, ОПУБЛИКОВАННАЯ МЕНДЕЛЕЕВЫМ В 1869
(первая версия)
Ti = 50 Zr = 90 ? = 180
V = 51 Nb = 94 Ta = 182
Cr = 52 Mo = 96 W = 186
Mn = 55 Rh = 104,4 Pt = 197,4
Fe = 56 Ru = 104,4 Ir = 198
Ni = Co = 59 Pd = 106,6 Os = 199
H = 1 Cu = 63,4 Ag = 108 Hg = 200
Be = 9,4 Mg = 24 Zn = 65,2 Cd = 112
B = 11 Al = 27,4 ? = 68 Ur = 116 Au = 197?
C = 12 Si = 28 ? = 70 Sn = 118
N = 14 P = 31 As = 75 Sb = 122 Bi = 210?
O = 16 S = 32 Se = 79,4 Te = 128?
F = 19 Cl = 35,5 Br = 80 I = 127
Li = 7 Na = 23 K = 39 Rb = 85,4 Cs = 133 Tl = 204
Ca = 40 Sr = 87,6 Ba = 137 Pb = 207
? = 45 Ce = 92
?Er = 56 La = 94
?Yt = 60 Di = 95
?In = 75,6 Th = 118
Таблица 2. Модифицированная Таблица Менделеева
Таблица 2. МОДИФИЦИРОВАННАЯ ТАБЛИЦА МЕНДЕЛЕЕВА
Группа I II III IV V VI VII VIII 0
Формула оксида или гидрида
Подгруппа
R2O

Периоды.

В этой таблице Менделеев расположил элементы в горизонтальных рядах – периодах. Таблица начинается с очень короткого периода, содержащего только водород и гелий. Следующие два коротких периода содержат по 8 элементов. Затем располагаются четыре длинных периода. Все периоды, кроме первого, начинаются со щелочного металла (Li, Na, K, Rb, Cs), и все периоды заканчиваются благородным газом. В 6-м периоде находится серия из 14 элементов – лантаноиды, которой формально нет места в таблице и ее обычно располагают под таблицей. Другая аналогичная серия – актиноиды – находится в 7-м периоде. Эта серия включает элементы, полученные в лаборатории, например бомбардировкой урана субатомными частицами, и также размещается под таблицей ниже лантаноидов.

Группы и подгруппы.

Металлы, неметаллы.

Диагональ от водорода к радону примерно делит все элементы на металлы и неметаллы, при этом неметаллы находятся выше диагонали. (К неметаллам относят 22 элемента – H, B, C, Si, N, P, As, O, S, Se, Te, галогены и инертные газы, к металлам – все остальные элементы.) Вдоль этой линии располагаются элементы, которые обладают некоторыми свойствами металлов и неметаллов (металлоиды – устаревшее название таких элементов). При рассмотрении свойств по подгруппам сверху вниз наблюдается увеличение металлических свойств и ослабление неметаллических свойств.

Валентность.

Наиболее общее определение валентности элемента – это способность его атомов соединяться с другими атомами в определенных соотношениях. Иногда валентность элемента заменяют близким ему понятием степени окисления (с.о.). Степень окисления соответствует заряду, который приобрел бы атом, если бы все электронные пары его химических связей сместились в сторону более электроотрицательных атомов. В любом периоде слева направо происходит увеличение положительной степени окисления элементов. Элементы I группы имеют с.о., равную +1 и формулу оксида R2O, элементы II группы – соответственно +2 и RO и т.д. Элементы с отрицательной с.о. находятся в V, VI и VII группах; считается, что углерод и кремний, находящиеся в IV группе, не имеют отрицательной степени окисления. Галогены, имеющие степень окисления –1, образуют соединения с водородом состава RH. В целом положительная степень окисления элементов соответствует номеру группы, а отрицательная равна разности восемь минус номер группы. Из таблицы нельзя определить наличие или отсутствие других степеней окисления.

Физический смысл атомного номера.

Истинное понимание периодической таблицы возможно только на основе современных представлений о строении атома. Порядковый номер элемента в периодической таблице – его атомный номер – значительно важнее величины его атомного веса (т.е. относительной атомной массы) для понимания химических свойств.

Строение атома.

В 1913 Н.Бор использовал ядерную модель строения атома для объяснения спектра атома водорода, наиболее легкого и поэтому наиболее простого атома. Бор предположил, что атом водорода состоит из одного протона, составляющего ядро атома, и одного электрона, вращающегося вокруг ядра.

Определение понятия атомного номера.

В 1913 А.ван ден Брук предположил, что порядковый номер элемента – его атомный номер – должен идентифицироваться с числом электронов, вращающихся вокруг ядра нейтрального атома, и с положительным зарядом ядра атома в единицах заряда электрона. Однако необходимо было экспериментальное подтверждение идентичности заряда атома и атомного номера. Бор далее постулировал, что характеристическое рентгеновское излучение элемента должно подчиняться такому же закону, что и спектр водорода. Так, если атомный номер Z идентифицируется с зарядом ядра в единицах заряда электрона, то частоты (длины волн) соответствующих линий в рентгеновских спектрах различных элементов должны быть пропорциональны Z 2 , квадрату атомного номера элемента.

В 1913–1914 Г.Мозли, изучая характеристическое рентгеновское излучение атомов различных элементов, получил блестящее подтверждение гипотезы Бора. Работа Мозли таким образом подтвердила предположение ван ден Брука об идентичности атомного номера элемента с зарядом его ядра; атомный номер, а не атомная масса, является истинной основой для определения химических свойств элемента.

Периодичность и атомная структура.

Электронные конфигурации.

В следующей таблице приведены возможные количества электронов для различных энергетических состояний. Главное квантовое число n = 1, 2, 3. характеризует энергетический уровень электронов (1-й уровень располагается ближе к ядру). Орбитальное квантовое число l = 0, 1, 2. n – 1 характеризует орбитальный момент импульса. Орбитальное квантовое число всегда меньше главного квантового числа, а максимальное его значение равно главному минус 1. Каждому значению l отвечает определенный тип орбитали – s, p, d, f . (это обозначение происходит от спектроскопической номенклатуры 18 в., когда различные серии наблюдаемых спектральных линий назывались sharp, principal, diffuse и fundamental).

Таблица 3. Число электронов в различных энергетических состояниях атома
Таблица 3. ЧИСЛО ЭЛЕКТРОНОВ В РАЗЛИЧНЫХ ЭНЕРГЕТИЧЕСКИХ СОСТОЯНИЯХ АТОМА
Главное квантовое число Орбитальное квантовое число Количество электронов на оболочке Обозначение энергетического состояния (тип орбитали)
1 0 2 1s
2 0 2 2s
1 6 2p
3 0 2 3s
1 6 3p
2 10 3d
4 0 2 4s
1 6 4p
2 10 4d
3 14 4f
5 0 2 5s
1 6 5p
2 10 5d
5 14 5f
4 18 5g
6 0 2 6s
1 6 6p
2 10 6d
. . . .
7 0 2 7s

Короткие и длинные периоды.

Низшая полностью завершенная электронная оболочка (орбиталь) обозначается 1s и реализуется у гелия. Следующие уровни – 2s и 2p – соответствуют застройке оболочек атомов элементов 2-го периода и при полной застройке, у неона, содержат в сумме 8 электронов. С увеличением значений главного квантового числа энергетическое состояние низшего орбитального числа для большего главного может оказаться ниже энергетического состояния наиболее высокого орбитального квантового числа, соответствующего меньшему главному. Так, энергетическое состояние 3d выше, чем 4s, поэтому у элементов 3-го периода происходит застройка 3s- и 3p-орбиталей, заканчиваясь формированием устойчивой структуры благородного газа аргона. Далее происходит последовательная застройка 4s-, 3d- и 4p-орбиталей у элементов 4-го периода, вплоть до завершения внешней устойчивой электронной оболочки из 18 электронов у криптона. Это и приводит к появлению первого длинного периода. Аналогично происходит застройка 5s-, 4d- и 5p-орбиталей атомов элементов 5-го (т.е. второго длинного) периода, завершаясь электронной структурой ксенона.

Лантаноиды и актиноиды.

Последовательное заполнение электронами 6s-, 4f-, 5d- и 6p-орбиталей у элементов 6-го (т.е. третьего длинного) периода приводит к появлению новых 32 электронов, которые формируют структуру последнего элемента этого периода – радона. Начиная с 57 элемента, лантана, последовательно располагаются 14 элементов, мало отличающихся по химическим свойствам. Они образуют серию лантаноидов, или редкоземельных элементов, у которых застраивается 4f-оболочка, содержащая 14 электронов.

Серия актиноидов, которая располагается за актинием (атомный номер 89), характеризуется застройкой 5f-оболочки; она также включает 14 элементов, весьма близких по химическим свойствам. Элемент с атомным номером 104 (резерфордий), следующий за последним из актиноидов, уже отличается по химическим свойствам: он является аналогом гафния. Для элементов за резерфордием приняты названия: 105 – дубний (Db), 106 – сиборгий (Sg), 107 – борий (Bh), 108 – хассий (Hs), 109 – мейтнерий (Mt).

Применение периодической таблицы.

Знание периодической таблицы позволяет химику предсказывать с определенной степенью точности свойства любого элемента, прежде чем он приступит к работе с ним. Металлурги, например, считают периодическую таблицу полезной для создания новых сплавов, так как, используя периодическую таблицу, можно заменить один из металлов сплава, подобрав ему замену среди его соседей по таблице так, что с определенной степенью вероятности не произойдет значительного изменения свойств образующегося из них сплава.

Менделеев Д.И. Периодический закон. Основные статьи. М., 1958
Химия и периодическая таблица. М., 1982
Мельников В.П., Дмитриев И.С. Дополнительные виды периодичности в периодической системе Д.И.Менделеева. М., 1988


Все, что нас окружает, мы сами, Земля, на которой мы живем, состоит из самых разнообразных веществ. А из чего состоят сами вещества? Ведь их можно дробить на более мелкие части, а те, в свою очередь, на еще более мелкие. Где предел такого деления? Что представляют собой частицы, которые дальше уже нельзя раздробить обычными способами? Над этими вопросами задумывались ученые еще в глубокой древности.

Атомное строение веществ

Первые представления об атомах как мельчайших, далее неделимых частицах веществ появились у философов Древней Греции еще за 400 лет до н. э. Они считали, что каждое вещество составлено из присущих только ему атомов, т. е. существуют атомы, например, мяса, песка, дерева, воды и т. д. Другими словами, сколько есть веществ, столько и видов атомов.

Доказательств существования атомов в то время, конечно, не было, и это учение было забыто почти на две тысячи лет. И только в самом начале XIX в. идея атомного строения веществ была возрождена английским ученым Дж. Дальтоном.

Согласно его теории все вещества состоят из очень маленьких частиц — атомов. В процессе химических превращений атомы не разрушаются и не возникают вновь, а только переходят из одних веществ в другие. Они являются как бы деталями конструктора, из которых можно собирать всевозможные изделия.

Атомы — мельчайшие, химически неделимые частицы.

Химические элементы

Общее число атомов во Вселенной невообразимо велико. Однако видов атомов сравнительно немного. Каждый такой определенный вид атомов называется химическим элементом.

Химический элемент — определенный вид атомов.

Позже, после изучения строения атома, вы узнаете более точное определение этого понятия.

Всего в настоящее время известно 118 химических элементов. Атомы одного и того же элемента имеют одинаковые размеры, практически одинаковое строение и массу. Атомы разных элементов различаются между собой, прежде всего, строением, размерами, массой и целым рядом других характеристик.

На заметку: Из 118 химических элементов в природе встречается только 92, а остальные 26 получены искусственно с помощью специальных физических методов.

Из атомов такого небольшого числа химических элементов построены все вещества, существующие в природе и полученные химиками в лабораториях. А это более 60 млн веществ. Все они представляют собой самые различные сочетания атомов тех или иных элементов. Так же, как из 33 букв алфавита составлены все слова русского языка, из атомов относительно небольшого числа элементов состоят все известные вещества.

Символы химических элементов

Каждый элемент имеет свое название и условное обозначение — химический символ (знак).

Химический символ (знак) — условное обозначение химического элемента с помощью букв его латинского названия.

Символы химических элементов состоят из одной или двух букв их латинских названий. Понятно, что вторая буква нужна, чтобы различать элементы, в названиях которых первая буква одинакова. Например, элемент углерод обозначается первой буквой С его латинского названия — Carboneum (карбонеум), а элемент медь — двумя первыми буквами Cu его латинского названия — Cuprum (купрум).

Современные символы и названия наиболее распространенных элементов, необходимые вам на начальном этапе изучения химии, приведены в таблице под спойлером.

Название химического элементаХимический знак элементаОтносительная атомная масса (округленная)
АзотN14
АлюминийAl27
ВодородH1
ЖелезоFe56
ЗолотоAu197
КалийK39
КальцийCa40
КислородO16
КремнийSi28
МагнийMg24
МедьCu64
НатрийNa23
РтутьHg201
СвинецPb207
СераS32
СереброAg108
УглеродC12
ФосфорP31
ХлорCl35,5
ЦинкZn65

Если вы хотите познакомиться с названиями и символами всех химических элементов, загляните сюда. Там представлена периодическая система элементов, о которой вы узнаете позже.

Распространенность химических элементов в природе крайне неравномерна. Самый распространенный элемент в земной коре (слое толщиной 16 км) — кислород О. Его содержание составляет 49,13 % от общего числа атомов всех элементов. Доли остальных элементов показаны на рис. 28.

Распространенность химических элементов в земной коре

В организме человека на долю атомов кислорода приходится 65 % от массы тела, в то время как доля атомов углерода — 18 %, водорода — 10 %, азота — 3 % (см. рис. 29).

Содержание химических элементов в организме человека

Во всей нашей Галактике почти 92 % от общего числа всех атомов приходится на долю водорода Н, 7,9 % — на долю гелия He и только 0,10 % — на атомы всех остальных элементов. Именно эти два самых легких элемента составляют основу звездной материи.

Краткие выводы урока:

  1. Атомы — мельчайшие, химически неделимые частицы.
  2. При химических реакциях атомы не исчезают и не возникают из ничего, а только переходят из одних веществ в другие.
  3. Каждый отдельный вид атомов называется химическим элементом. Он имеет свое название и обозначение — химический символ (знак).
  4. Атомы разных химических элементов различаются массой, размерами и строением.

Читайте также: