Ssd принцип работы кратко

Обновлено: 02.07.2024

SSD, он же Solid State Drive – современный твердотельный накопитель, сменивший на посту хранения данных старый добрый HDD. В жестком диске (HDD) информация хранится на нескольких дисках с намагниченной поверхностью, по которой скользит считывающая головка. В SSD вместо них используются микросхемы.

Впервые предшественник твердотельного накопителя появился в 1978 году и широкой известности не получил. Далее конструкция и тип памяти накопителя нового формата претерпели значительные изменения, пока не пришли к своему практически современному виду – небольшой плате с контактами для подключения и рабочими модулями. Появившийся в 1989 году Flashdisk компании Toshiba стал первым коммерческим флэш-накопителем с NAND-памятью и стоил тогда 5000 долларов (11 000 в современном эквиваленте).

Типы памяти и ресурс SSD дисков

  • SLC (Single Level Cell), где в каждой ячейке хранится по одному биту;
  • MLC (Multi Level Cells) – несмотря на нелогичное название, здесь всего два бита;
  • TLC (Triple Level Cells) с тремя битами на ячейку;
  • QLC (Quadruple Level Cells) – четыре бита на ячейку.

3D NAND – отдельная технология памяти, в которой ячейки как бы накладываются друг на друга, позволяя вместить больше ячеек и больше данных при тех же размерах SSD.

В чем же разница между ними?

Память типа SLC требует больше ячеек для хранения информации и стоит дороже, если сравнивать ее с MLC и другими типами, так как у нее больше ресурс перезаписи. Для сравнения:

  • SLC — до 100 000 циклов перезаписи;
  • MLC — 3000–35 000 циклов перезаписи;
  • TLC — 300–3000 циклов перезаписи;
  • QLC — 150–1000 циклов перезаписи.

TBW показывает, какое количество данных можно перезаписать до того, как SSD станет непригодным для записи – все верно, после отказа с них можно считывать информацию, но не записывать. Так, накопитель с TBW 600 TB способен гарантированно перезаписать 600 терабайт данных – весьма впечатляющее число. MTBF – менее информативный показатель, так как выражается в часах работы до отказа.

Что находится внутри SSD?

SSD типа 2,5" выглядит как обычный жесткий диск такого же формата. Но стоит снять крышку корпуса – разница заметна сразу же. Внутри можно увидеть печатную плату с чипами – массивами памяти и контроллером вместо металлических пластин и подвижной считывающей головки.

Принцип работы SSD

Память твердотельного диска работает на транзисторах, упорядоченных определенным образом. Каждая ячейка имеет от одного до состояний заряда в зависимости от типа памяти – SLC, MLC, TLC или QLC. Заряд означает состояние ячейки: 1 – разряжена, 0 – заряжена.

Контроллер обрабатывает данные и запускает по ячейкам ток, проходящий через всю цепочку транзисторов. В результате ячейки с данными получают состояние 0. В ячейке есть два транзистора или затвора – управляющий и плавающий. Ток проходит через плавающий затвор, а электроны поступают в управляющий канал, создавая положительный заряд и записывают информацию.

Способы подключения SSD диска

SSD формата 2,5" подключается к разъему SATA и его модификациям (SATA II и SATA III). Компьютер или ноутбук, выпущенный после 2012 года, вероятнее всего, будет снабжен разъемом типа SATA III с пропускной способностью 600 Мбайт/с. Если же установить накопитель SATA III в более старый разъем, скорость передачи данных будет ниже. Такие диски часто используются для апгрейда старых компьютеров и ноутбуков.

SSD формата M.2 в виде узкой длинной карты помещается не в специальный отсек, а крепится к материнской плате через разъем M.2. Однако здесь есть свои особенности: разъем накопителей M.2 может также быть типа SATA или NVMe/PCIe. Внешне это выражается в разном типе контактов. Они имеют одну или две прорези – так называемый ключ. M.2 SATA обладает пропускной способностью в 560-600 Мбайт/с, а PCI-Express показывает скорость до 3500 Мбайт/с в версии 3.0 и до 4000 Мбайт/с в версии 4.0.

Еще один любопытный факт – формат SSD M.2 имеет одинаковую ширину, но отличается по длине и представлен в четырех вариантах: 2230, 2242, 2260 и 2280, где 22 – это ширина, а остальные цифры – длина планки. Размер 2280 стал самым популярным среди накопителей такого формата.

Типы контроллеров

  • отличаются поддержкой шифра AES, надежны и удобны. Иногда при переполненном кэше падает скорость передачи данных;
  • хороший баланс между высокой производительностью и доступной ценой;
  • обеспечивают высокую скорость работы, но увеличивают стоимость накопителя;
  • недорогие; скорость передачи данных падает, если на диске осталось мало свободного места.

Скорость чтения и записи

Как было сказано выше, скорость передачи данных зависит от интерфейса твердотельного накопителя: диск с SATA III поддерживает до 600 Мбайт/сек, а PCI-Express 3.0 - до 3500 Мбайт/с и до 4000 Мбайт/с в версии 4.0. Но и это не предел – при подключении SSD к PCIe 4.0 по четырем линиям скорость может достигать 7,9 Гбайт/с.

Эти цифры показаны при работе в идеальных условиях, на практике же пропускная способность зависит от контроллера, срока эксплуатации и объема заполнения данными диска, наличия кэша и других параметров.

Кэш SSD

Зачем SSD нужен кэш? В кэш помещаются обрабатываемые файлы перед записью на сам накопитель, а также часто используемые данные, за счет чего уменьшается время доступа к ним.

Накопители могут обходиться без кэша (он же буфер), особенно с SLC-памятью, но на самом деле кэш значительно ускоряет работу устройства. Особенно это заметно, когда накопитель одновременно выполняет несколько процессов чтения и записи, запущенных разными программами.

В некоторых накопителях вместо DRAM-кэша встречается SLC-кэш – небольшое количество SLC-ячеек, которые поддерживают высокую скорость передачи данных. SSD без кэша использует вместо него оперативную память ноутбука или компьютера.

Преимущества и недостатки SSD дисков

SSD выигрывают у жестких дисков по следующим параметрам:

  • высокая производительность;
  • бесшумная работа и устойчивость к ударам и тряске благодаря конструкции без движущихся механизмов;
  • больше количество произвольных операций ввода-вывода (IOPS) по сравнению с HDD – быстрее обработка данных;
  • низкая чувствительность к воздействию электромагнитных полей;
  • низкое энергопотребление;
  • меньший нагрев, за исключением мощных накопителей NVMe – они могут сильно греться и даже снабжаются радиатором для отвода тепла;
  • меньшие габариты и вес.
  • ограниченное количество циклов перезаписи – от 150 до 100 000;
  • стоимость по-прежнему выше, чем у HDD;
  • невозможность восстановления данных после применения команды TRIM, удаляющей информацию из ячеек;
  • производительность может снижаться при обработке файлов большого объема, особенно это заметно в бюджетных моделях и в моделях небольшой емкости;
  • чувствительность к скачкам напряжения – сгорает и контроллер, и память. Правда, это можно предотвратить использованием стабилизатора напряжения, да и с ноутбуками такая ситуация случается очень редко.

В любом случае, SSD будет полезен тем, кто хочет добиться высокой производительности для решения ресурсоемких задач: обработки графики, видео- и аудиофайлов. Любители игр также оценят прирост быстродействия – для них SDD уже относится к категории must-have.

Также это недорогое и простое решение для апгрейда старого компьютера или ноутбука: SSD даже небольшой емкости, на котором будет установлена операционная система, значительно повысит производительность, а старый HDD можно использовать в качестве хранилища файлов.

На SSD большой емкости можно полностью клонировать содержимое HDD без необходимости переустановки программ и операционной системы и наслаждаться высокой производительностью любимого ноутбука или компьютера.

image

Точно так же, как транзисторы совершили революцию в компьютерной области, увеличив скорость переключения и выполнения математических операций, использование полупроводниковых устройств в качестве накопителей привело к такому же результату.

Первые шаги на этом пути были сделаны компанией Toshiba, предложившей в 1980 году концепцию флеш-памяти. Четыре года спустя она создала NOR-память, а в 1987 году — NAND-память. Первый коммерческий накопитель с использованием флеш-памяти (solid state drive, или SSD) был выпущен SunDisk (позже переименованной в SanDisk) в 1991 году.

Большинство людей начало своё знакомство с твердотельными накопителями с так называемых USB-флешек. Даже сегодня их структура в целом напоминает конструкцию большинства SSD.


Если ячейка не заряжена, то при подаче пониженного напряжения ток течёт. Это даёт системе понять, что ячейка имеет состояние 0; в противоположном случае она имеет состояние 1 (т.е. при подаче напряжения ток не течёт). Благодаря этому чтение из NAND-памяти выполняется очень быстро, но запись и удаление данных не так быстры.

Самые лучшие ячейки памяти, называаемые одноуровневыми ячейками (single level cells, SLC), имеют только одну величину заряда, создаваемого на участке транзистора; однако существуют и ячейки памяти, способные иметь несколько уровней заряда. В общем случае всех их называют многоуровневыми ячейками (multi-level cells, MLC), но в отрасли производства NAND-памяти аббревиатурой MLC обозначают 4 уровня заряда. Другие типы имеют похожие названия: трёхуровневые (triple level, TLC) и четырёхуровневые (quad level, QLC) имеют, соответственно, 8 и 16 различных уровней заряда.

Это влияет на то, сколько данных можно хранить в каждой ячейке:

  • SLC — 1 уровень = 1 бит
  • MLC — 4 уровня = 2 бита
  • TLC — 8 уровней = 3 бита
  • QLC — 16 уровней = 4 бита

В отличие от SRAM и DRAM, при отключении питания заряд в флеш-памяти сохраняется и его утечка происходит очень медленно. В случае системной памяти ячейки разряжаются за наносекунды, а поэтому постоянно должны обновляться. К сожалению, использование напряжения и подача заряда повреждают ячейки, и поэтому SSD со временем изнашиваются. Чтобы бороться с этим, используются хитрые процедуры, минимизирующие скорость износа; обычно они делают так, чтобы использование ячеек было наиболее равномерным.

Эту функцию контролирует управляющий чип, показанный справа. Ещё он выполняет те же задачи, что и чип LSI, используемый в HDD. Однако в приводах с вращающимися дисками есть отдельные чипы для DRAM-кэша и встроенного ПО Serial Flash, а в USB-флешке оба контроллера встроены. И поскольку они проектируются так, чтобы быть дешёвыми, особой функциональности вы от них не получите.

Но благодаря отсутствию подвижных частей можно с уверенностью ожидать, что производительность флеш-памяти будет выше, чем у HDD. Давайте посмотрим на показатели с помощью CrystalDiskMark:


Поначалу результаты разочаровывают. Скорость последовательного чтения/записи и случайной записи гораздо хуже, чем у протестированного HDD; однако произвольное чтение намного лучше, и это то преимущество, которое обеспечивает флеш-память. Запись и удаление данных выполняются довольно медленно, зато считывание обычно производится мгновенно.

Однако у этого теста есть ещё одна незаметная особенность. Тест USB-памяти обеспечивает подключение только по стандарту USB 2.0, который имеет максимальную скорость передачи всего 60 МБ/с, а HDD использовал порт SATA 3.3, обеспечивающий пропускную способность в 10 раз больше. К тому же использованная технология флеш-памяти довольно проста: ячейки имеют тип TLC и выстроены в длинные параллельные полосы; такая компоновка называется плоской (planar) или двухмерной (2D).

Флеш-память, используемая в лучших современных SSD, имеет тип SLC или MLC, то есть она работает чуть быстрее и изнашивается чуть медленнее, а полосы согнуты пополам и выстроены стоймя, образуя вертикальную или трёхмерную структуру ячеек. Также в них используется интерфейс SATA 3.0, хотя всё чаще применяется более быстрая система PCI Express через интерфейс NVMe.

Давайте взглянем на один такой пример: Samsung 850 Pro, в котором использованы эти хитрости с вертикальным расположением.


В отличие от тяжёлого 3,5-дюймового привода Seagate, этот SSD имеет размер всего 2,5 дюйма и намного тоньше и легче.

Откроем его (спасибо Samsung за использование таких дешёвых болтов Torx, которые чуть не развалились при демонтаже. ) и увидим, почему:


В нём почти ничего нет!

Ни дисков, ни рычагов, ни магнитов — просто одна печатная плата, состоящая из нескольких чипов.


Так что же мы тут видим? Небольшие чёрные чипы — это регуляторы напряжения, а остальные выполняют следующие функции:

  • Samsung S4LN045X01-8030: трёхъядерный процессор на основе ARM Cortex R4, занимающийся обработкой инструкций, данными, коррекцией ошибок, шифрованием и управлением износом
  • Samsung K4P4G324EQ-FGC2: 512 МБ памяти DDR2 SDRAM, используемой для кэша
  • Samsung K9PRGY8S7M: каждый чип — это 64 ГБ 32-слойной вертикальной флеш-памяти NAND типа MLC (в сумме 4 чипа, два расположены на другой стороне платы)


Улучшение оказалось огромным. Скорость и чтения, и записи стала значительно выше, а задержки намного меньше. Что ещё нужно для счастья? Меньше и легче, нет подвижных деталей; к тому же SSD потребляют меньше энергии, чем механические дисковые накопители.

Некоторые производители изготавливали гибридные HDD — стандартные жёсткие диски, на печатных платах которых было размещено немного флеш-памяти; она используется для хранения данных на дисках, к которым часто осуществляется доступ. Ниже показана плата из гибридного накопителя Samsung ёмкостью 1 ТБ (иногда называемого SSHD).


В правом верхнем углу платы находятся чип NAND и его контроллер. Всё остальное примерно такое же, как и в модели Seagate, которую мы рассматривали в предыдущем посте.

Мы можем в последний раз воспользоваться CrystalDiskMark, чтобы посмотреть, есть ли какая-то ощутимая выгода от использования флеш-памяти в качестве кэша, но сравнение будет нечестным, так как диски этого накопителя вращаются со скоростью 7200 rpm (а у HDD WD, который мы использовали для аутопсии — всего с 5400 rpm):


Показатели немного лучше, но причиной этого, вероятно, является повышенная скорость вращения — чем быстрее диск перемещается под головками чтения-записи, тем быстрее можно передавать данные. Стоит также заметить, что файлы, сгенерированные тестом бенчмарка, не будут распознаны алгоритмом как активно считываемые, а значит, контроллер скорее всего не сможет правильно использовать флеш-память.

Несмотря на это, более качественное тестирование показало улучшение производительности HDD с встроенным SSD. Однако дешёвая флеш-память, скорее всего, выйдет из строя намного быстрее, чем качественный HDD, поэтому гибридные накопители, вероятно, не стоят нашего внимания — индустрия производства накопителей гораздо сильнее заинтересована в SSD.

Прежде чем мы двинемся дальше, стоит упомянуть, что флеш-память — не единственная технология, используемая в твёрдотельных накопителях. Intel и Micron совместно изобрели систему под названием 3D XPoint. Вместо записи и стирания зарядов зарядов в ячейках для создания состояний 0 и 1, для генерации битов в этой системе ячейки изменяют своё электрическое сопротивление.

Intel рекламировала эту новую память под брендом Optane, и когда мы протестировали её, производительность оказалась выдающейся. Как и цена системы, но в плохом смысле. Накопитель Optane всего на 1 ТБ сегодня стоит более 1 200 долларов — в четыре раза больше, чем SSD такого же объёма на основе флеш-памяти.

Третьим и последним накопителем, который мы исследуем в следующей статье, будут оптические приводы.

Как устроен SSD — разбираемся в деталях

SSD-накопители стали логичным продолжением эволюции устройств для хранения информации. Новые требования к производительности не могли не сказаться на техническом устройстве SSD-накопителей. Их внутреннее наполнение кардинально изменилось по сравнению с привычным жестким диском.

Корпус


Корпус устройства — неотъемлемая часть накопителя, которая призвана защитить хрупкие внутренние детали. В зависимости от используемого форм-фактора накопителя его внешняя оболочка может кардинально различаться. Так устройства форм-фактора M.2 могут иметь в своем арсенале лишь бумажную или металлизированную наклейку, нанесенную поверх компонентов, или же цельный металлический радиатор как и модели с физическим интерфейсом PCI-E. Основной упор в этом случае возлагается на снижение температуры SSD, а его физическая защита уходит на второй план.


Что касается накопителей форм-фактора 2.5, ситуация диаметрально противоположная. В основном, они поставляются в стандартных пластиковых кейсах, которые защищают внутренности накопителя при неаккуратном обращении. И даже падение устройства не станет для него фатальным в отличие от тех же жестких дисков. Устройствам с интерфейсом SATA свойственен невысокий нагрев, поэтому производители зачастую пренебрегают добавлением каких-либо термопрокладок. Единственным теплоотводом служит непосредственно корпус.

Снятие наклейки лишает возможности гарантийного обслуживания.

Интерфейс подключения


HOST Interface — часть накопителя, отвечающая за подключение устройства к системе. SSD-накопители форм-фактора 2.5 имеют стандартные разъемы, свойственные жестким дискам. Для подключения используются два привычных SATA-разъема. Это семиконтактный разъем для подключения шины данных и пятнадцатиконтактный — для подключения питания. Передача данных осуществляется от контроллера к системе и обратно путем использования двух каналов передачи данных. Этот тип подключения имеет ограничение пропускной способности в 6 Гбит/с. Преимущество разъемов SATA — обратная совместимость SATA III и SATA II. Это позволяет подключить современный накопитель к плате, которой уже немало лет.


Для подключения SSD-накопителей форм-фактора M.2 используется современный интерфейс, разработанный как компактная альтернатива SATA-разъему. Все необходимое питание для работы устройства обеспечивается материнской платой. Данный интерфейс имеет в своем распоряжении 75 позиций контактов. В зависимости от конкретной модели часть этих позиций удалена слева, справа или с обеих сторон, образуя соответствующие разрезы. Эти разрезы обозначают ключ, используемый в накопителе: B, M или B&M. Накопители форм-фактора M.2 могут подключаться посредством интерфейса SATA или PCI-Express.

Печатная плата


Печатная плата — базовая основа, на которой располагаются элементы внутренней начинки накопителя. Она представляет собой пластину из диэлектрика с электропроводящими цепями электронной схемы. Компоненты на плате соединены посредством проводящего рисунка и пайки. Размер печатной платы может варьироваться в зависимости от конкретной модели и исполнения. В свою очередь размещение микросхем может быть произведено как лишь на одной стороне платы, так и с обеих сторон.

Контроллер памяти


Флэш-память


DRAM кэш и конденсаторы


DRAM кэш представляет собой отдельную микросхему, которая по функционалу напоминает оперативную память компьютера. Она ускоряет работу накопителя, используя некоторый объем памяти для временного хранения данных. Такой подход позволяет ускорить доступ к файлам и стабилизировать износ памяти. Этот чип отсутствует в большинстве бюджетных решений.

Намного реже встречающийся компонент в бытовых SSD-накопителях — конденсаторы. Они призваны помочь в решении проблемы потери электропитания. Неожиданные отключения питания пагубно влияют на информацию, с которой работает SSD-накопитель, а конденсаторы позволяют уменьшить вероятность повреждения и утери данных. Из-за специфичности данной функции используются они в серверных решениях.

Устройство флеш-памяти представляет особенный интерес. Когда традиционные жесткие диски хранят информацию на нескольких магнитных пластинах (платтерах), где актуатор со считывающими головками получает информацию с вращающегося диска, в SSD информация хранится при помощи флеш-памяти NAND. Изначально данная технология была доступна только для использования по проводу, однако производители твердотельных накопителей не стоят на месте, поэтому сейчас рынок активно штурмуют как проводные, так и беспроводные SSD.


Рассмотрим принцип работы SSD. Информация хранится в массиве ячеек памяти, который состоит из транзисторов с плавающим затвором. Электроны в зависимости от направления напряжения перемещаются между управляющим затвором и каналом NAND. Когда на управляющий затвор подается напряжение, электроны начинают притягиваться вверх, и полученное электрическое поле помогает им достичь плавающего затвора, преодолев при этом препятствие из оксида. Благодаря ему электроны не двигаются дальше плавающего затвора. Так происходит программирование ячейки.


Отсутствие движущихся дисков подвижных частей — одно из главных преимуществ SSD над жесткими дисками, и именно это дает твердотельным накопителям работать на скоростях, заметно превосходящих HDD. Для наглядности — вот сводная таблица по времени задержки различных типов NAND и HDD.


SLC, MLC, TLC — количество бит в каждой ячейке. В SLC (Single) это один бит, в MLC (Multi) — два бита, в TLC (Triple) — соответственно, три бита. Следовательно, MLC хранит в два раза больше информации, чем SLC, и это при том, что количество ячеек то же самое. В целом, принцип работы у этих типов NAND одинаковый, что нельзя сказать о выносливости.

Если, к примеру, взять кристалл NAND плотностью 16 Гбит, получим SLC 16 Гбит при том, что в каждой ячейке один бит. Соответственно, для MLC это будет 32 Гбит, а для TLC — 48 Гбит. Правда, в последнем случае кристалл NAND все равно приходится резать, в итоге получается эквивалент 32 Гбит у MLC.

У TLC по этому параметру самый лучший показатель — этот тип NAND выдерживает широкий диапазон колебаний напряжения. Накопители с данным типом отличаются доступной ценой и большой емкостью — например, эта модель от SILICON POWER или такой накопитель производства SANDISK. Но и с SLC встречаются интересные варианты (SILICON POWER M-Series).


Несколько лет назад на смену планарной флеш-памяти NAND пришла 3D NAND. Она меньше подвержена износу за счет отсутствия необходимости в подаче высокого напряжения при записи данных в ячейку. Производители активно развивают данное направление, и на рынке уже есть много накопителей с типом памяти 3D NAND. По стоимости они дороже (A-DATA с 512 ГБ обойдется почти в 7 000 рублей, а INTEL — почти в 20 000 рублей), но и прослужат такие накопители дольше.


С этими современными технологиями SSD стали еще более производительными и имеют хорошую пропускную способность. Ожидалось, что на смену NAND придет что-то другое, и 3D NAND не заставила себя ждать. А дальше кто знает, куда нас заведут технологии.

Читайте также: