Солнечная энергетика история развития кратко

Обновлено: 08.07.2024

Солнце, как известно, является первичным и основным источником энергии для нашей планеты. Оно греет всю Землю, приводит в движение реки и сообщает силу ветру. Под его лучами вырастает 1 квадриллион тонн растений, питающих, в свою очередь, 10 триллионов тонн животных и бактерий. Благодаря тому же Солнцу на 3емле накоплены запасы углеводородов, то есть нефти, угля, торфа и пр., которые мы сейчас активно сжигаем. Для того чтобы сегодня человечество смогло удовлетворить свои потребности в энергоресурсах, требуется в год около 10 миллиардов тонн условного топлива (теплота сгорания условного топлива - 7 000 ккал).

Если энергию, поставляемую на нашу планету Солнцем за год, перевести в то же условное топливо, то эта цифра составит около 100 триллионов тонн. Это в десять тысяч раз больше, чем нам нужно. Считается, что на 3емле запасено 6 триллионов тонн различных углеводородов. Если это так, то содержащуюся в них энергию Солнце отдает планете всего за три недели. И резервы его настолько велики, что светиться так же ярко оно сможет еще около 5 миллиардов лет. 3емные зеленые растения и морские водоросли утилизируют примерно 34% поступающей от Солнца энергии. Остальное теряется почти впустую, расходуясь на поддержание комфортного для жизни микроклимата в глубинах океана и на поверхности Земли. И если бы человек смог взять для своего внутреннего потребления хотя бы один процент (то есть 1 триллион тонн того самого условного топлива в год), то это бы решило многие проблемы на века вперед. И теоретически вполне понятно, как именно взять этот процент.

Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 10 13 ) кВт·ч энергии в год. Общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот, же период.

Солнечная энергия преобразуется в полезную энергию и косвенным образом, трансформируясь в другие формы энергии, например, энергию биомассы, ветра или воды. Энергия Солнца "управляет" погодой на Земле.

История развития солнечной энергетики

Многие из нас не подозревают, что способ получения электроэнергии из солнечного света известен около 130 лет. Явление фотоэффекта впервые наблюдал Эдмон Беккерель в 1839г. Это случайное открытие оставалось незамеченным вплоть до 1873г., когда Уиллоуби Смит обнаружил подобный эффект при облучении светом селеновой пластины. И хотя его первые опыты были далеко несовершенны, они знаменовали собой начало истории полупроводниковых солнечных элементов. В поисках новых источников энергии в лаборатории Белла был изобретен кремниевый солнечный элемент, который стал предшественником современных солнечных фотопреобразователей. Фотоэлектрический метод преобразования солнечной энергии, который ученые называют наиболее перспективным в долговременном развитии мировой энергетики, на самом деле - довольно стар, просто сегодня он получил новый импульс. Первая научная работа по селеновому фотоэлементу была опубликована в 1876 году, в Британии. Лишь в начале 50-х годов 20-го века солнечный элемент достиг относительно высокой степени совершенства.

В 1954 году американцы Пирсон, Фуллер и Чапин запатентовали первый элемент с приемлемым (порядка 6%) КПД.




Исторически сложилось так, что на проектирование зданий влияли местные климатические условия и доступность строительных материалов. Позднее человечество отделило себя от природы, идя по пути господства и контроля над ней. Этот путь привел к однотипному стилю зданий практически для любой местности. В 100 году н. э. историк Плиний Младший построил летний домик в Северной Италии, в одной из комнат которого были окна из тонкой слюды. Комната была теплее других, и для ее обогрева требовалось меньше дров. В известных римских банях в I-IV ст. н. э. специально устанавливались большие окна, выходящие на юг, для того чтобы больше солнечного тепла поступало в здание. К VI ст. солнечные комнаты в домах и общественных зданиях стали настолько обычны, что Джастиниан Коуд ввел "право на солнце", чтобы гарантировать индивидуальный доступ к солнцу. В XIX веке были очень популярны оранжереи, в которых было модно прогуливаться под сенью пышной растительной листвы.

Из-за перебоев с электроэнергией во время второй мировой войны к концу 1947 года в США здания, пассивно использующие солнечную энергию, пользовались таким огромным спросом, что "Libbey-Owens-Ford Glass Company" издала книгу под названием "Ваш Солнечный Дом", в которой были представлены 49 лучших проектов солнечных зданий. В середине 50-х годов ХХ века, архитектор Франк Брайдджерс разработал первое в мире пассивное солнечное здание для офисного помещения. Установленная в нем солнечная система для горячего водоснабжения работает с того времени бесперебойно. Само же здание "Брайдджерс-Пэкстон" занесено в национальный исторический регистр страны как первое в мире офисное здание, обогреваемое при помощи энергии Солнца.

Низкие цены на нефть после второй мировой войны отвлекли внимание населения от солнечных зданий и вопросов энергоэффективности. Начиная с середины 1990-х, рынок меняет свое отношение к экологии и использованию возобновляемой энергии, и в строительстве появляются тенденции, для которых характерно сочетание проекта будущего здания с окружающей природой.

Солнце-источник энергии

Солнце, как известно, является первичным и основным источником энергии для нашей планеты. Оно греет всю Землю, приводит в движение реки и сообщает силу ветру. Под его лучами вырастает 1 квадриллион тонн растений, питающих, в свою очередь, 10 триллионов тонн животных и бактерий. Благодаря тому же Солнцу на 3емле накоплены запасы углеводородов, то есть нефти, угля, торфа и пр., которые мы сейчас активно сжигаем. Для того чтобы сегодня человечество смогло удовлетворить свои потребности в энергоресурсах, требуется в год около 10 миллиардов тонн условного топлива (теплота сгорания условного топлива - 7 000 ккал).

Если энергию, поставляемую на нашу планету Солнцем за год, перевести в то же условное топливо, то эта цифра составит около 100 триллионов тонн. Это в десять тысяч раз больше, чем нам нужно. Считается, что на 3емле запасено 6 триллионов тонн различных углеводородов. Если это так, то содержащуюся в них энергию Солнце отдает планете всего за три недели. И резервы его настолько велики, что светиться так же ярко оно сможет еще около 5 миллиардов лет. 3емные зеленые растения и морские водоросли утилизируют примерно 34% поступающей от Солнца энергии. Остальное теряется почти впустую, расходуясь на поддержание комфортного для жизни микроклимата в глубинах океана и на поверхности Земли. И если бы человек смог взять для своего внутреннего потребления хотя бы один процент (то есть 1 триллион тонн того самого условного топлива в год), то это бы решило многие проблемы на века вперед. И теоретически вполне понятно, как именно взять этот процент.

Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 10 13 ) кВт·ч энергии в год. Общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот, же период.

Солнечная энергия преобразуется в полезную энергию и косвенным образом, трансформируясь в другие формы энергии, например, энергию биомассы, ветра или воды. Энергия Солнца "управляет" погодой на Земле.

История развития солнечной энергетики

Многие из нас не подозревают, что способ получения электроэнергии из солнечного света известен около 130 лет. Явление фотоэффекта впервые наблюдал Эдмон Беккерель в 1839г. Это случайное открытие оставалось незамеченным вплоть до 1873г., когда Уиллоуби Смит обнаружил подобный эффект при облучении светом селеновой пластины. И хотя его первые опыты были далеко несовершенны, они знаменовали собой начало истории полупроводниковых солнечных элементов. В поисках новых источников энергии в лаборатории Белла был изобретен кремниевый солнечный элемент, который стал предшественником современных солнечных фотопреобразователей. Фотоэлектрический метод преобразования солнечной энергии, который ученые называют наиболее перспективным в долговременном развитии мировой энергетики, на самом деле - довольно стар, просто сегодня он получил новый импульс. Первая научная работа по селеновому фотоэлементу была опубликована в 1876 году, в Британии. Лишь в начале 50-х годов 20-го века солнечный элемент достиг относительно высокой степени совершенства.

В 1954 году американцы Пирсон, Фуллер и Чапин запатентовали первый элемент с приемлемым (порядка 6%) КПД.

Исторически сложилось так, что на проектирование зданий влияли местные климатические условия и доступность строительных материалов. Позднее человечество отделило себя от природы, идя по пути господства и контроля над ней. Этот путь привел к однотипному стилю зданий практически для любой местности. В 100 году н. э. историк Плиний Младший построил летний домик в Северной Италии, в одной из комнат которого были окна из тонкой слюды. Комната была теплее других, и для ее обогрева требовалось меньше дров. В известных римских банях в I-IV ст. н. э. специально устанавливались большие окна, выходящие на юг, для того чтобы больше солнечного тепла поступало в здание. К VI ст. солнечные комнаты в домах и общественных зданиях стали настолько обычны, что Джастиниан Коуд ввел "право на солнце", чтобы гарантировать индивидуальный доступ к солнцу. В XIX веке были очень популярны оранжереи, в которых было модно прогуливаться под сенью пышной растительной листвы.

Из-за перебоев с электроэнергией во время второй мировой войны к концу 1947 года в США здания, пассивно использующие солнечную энергию, пользовались таким огромным спросом, что "Libbey-Owens-Ford Glass Company" издала книгу под названием "Ваш Солнечный Дом", в которой были представлены 49 лучших проектов солнечных зданий. В середине 50-х годов ХХ века, архитектор Франк Брайдджерс разработал первое в мире пассивное солнечное здание для офисного помещения. Установленная в нем солнечная система для горячего водоснабжения работает с того времени бесперебойно. Само же здание "Брайдджерс-Пэкстон" занесено в национальный исторический регистр страны как первое в мире офисное здание, обогреваемое при помощи энергии Солнца.

Низкие цены на нефть после второй мировой войны отвлекли внимание населения от солнечных зданий и вопросов энергоэффективности. Начиная с середины 1990-х, рынок меняет свое отношение к экологии и использованию возобновляемой энергии, и в строительстве появляются тенденции, для которых характерно сочетание проекта будущего здания с окружающей природой.


Январь 2018

Лондонский профессор Уильям Гриллс Адамс и его ученик Ричард Эванс Дей наблюдали фотогальванический эффект при воздействии света на селен. Конечно, они не смогли получить количество электроэнергии для работы какого-либо оборудования, но таким образом они доказали возможность выработки электроэнергии твердыми элементами под воздействием солнца. Так возникла идея создания фотогальванической ячейки.

Американский изобретатель Чарльз Фриттс создает первую рабочую фотогальваническую ячейку на основе селена. Он покрыл селеновую основу тонким слоем золота. Этот первый функционирующий солнечный элемент имел КПД всего 1%. Первые в мире солнечные батареи на базе этих элементов были установлены на крыше одного из зданий в Нью-Йорке в 1884 году. Но высокая стоимость таких фотогальванических ячеек препятствовала широкомасштабному внедрению эти солнечных батарей.

Применение концентрации солнечного света использовалось довольно давно и долгое время. Но чисто фотоэлектрическая, солнечная энергетика родилась, только когда ученые из Bell Labs кремниевую фотовольтаическую ячейку. Ученые Bell Labs Дэрил Чапин, Кальвин Фуллер и Джеральд Пирсон добились 6% -ной эффективности с этой первой кремниевой ячейкой, и вскоре ранние солнечные панели были использованы для питания спутников, вращающихся вокруг Земли. В 1958 году Vanguard I был запущен с шестью солнечными батареями мощностью около 1 Вт.

Исследовательские лаборатории по всем миру продолжают улучшать эффективность фотовольтаических ячеек, но коммерциализация идет очень медленно. Однако, в 1963 году Sharp успешно начинает промышленное производство солнечных батарей, что позволяет расширить доступность солнечных батарей для обычных потребителей, а не только для космической области.

Нефтяной кризис 1973 года заставляет людей вкладывать деньги в исследования солнечной энергии. Доктор Эллиот Берман, финансируемый корпорацией Exxon, разрабатывает более дешевую солнечную панель, цена которой снижается со 100 долларов за ватт до 20. Берман обнаружил, что использование в производстве солнечных батарей поликристаллов обходится гораздо дешевле, чем монокристаллов. Однако, при этом страдает и эффективность. Даже сейчас поликристаллические солнечные батареи дешевле, но и менее эффективны, чем монокристаллические.

В 1974 году была создана Ассоциация солнечной энергетики (SEIA), работающая над разработкой, внедрением и продвижением солнечной энергетики с США. Основной задачей организации являлось создание единой, и прибыльной промышленной отрасли.

Министерство энергетики США открывает Исследовательский институт солнечной энергии, который позже становится известным, как Национальная лаборатория возобновляемой энергетики (NREL). Лаборатория получает ежегодное финансирование от конгресса США, используемое в проектах и разработках.

ARCO Solar становится первой компанией, производящей 1 мегаватт солнечных панелей в год. Два года спустя в Калифорнии компания реализовала первый проект солнечной электростанции мощностью 1 мегаватт. В дальнейшем, после серии слияний и поглощений, ARCO становится корпорацией SolarWorld.

ARCO Solar выпускает первый коммерческий тонкопленочный солнечный модуль (из аморфного кремния). Шесть лет спустя Университет Южной Флориды достигает эффективности тонкопленочных солнечных модулей в 15,9%, используя в модулях теллурид кадмия (на сегодняшний день достигнут показатель 22%).

Pacific Gas & Electric становится первой американской компанией, обеспечивающей поддержку централизованной энергосети, за счет солнечной энергии, вырабатываемой на солнечной электростанции 500 кВт в Кермане, Калифорния.

Генерация всех солнечных электростанций в мире переваливает за 1 гигаватт. Только США достигают генерации 1ГВт в 2008 году, и превышают показатель в 25 ГВт в 2015 году.
Компания First Solar открывает крупнейшую в мире фабрику по производству солнечных батарей мощностью 100 МВт в год, до 2005 года мощность производства не превышала 25 МВт.

BP и BP Solar открывают первую заправочную станцию BP Connect в Индианаполисе, использующую полупрозрачные гибкие солнечные модули в качестве крыши и навесов.

Компания Powerlight (которая была в 2006 году приобретена SunPower) устанавливает на крыше тюрьмы Санта-Рита в Дублине, Калифорния, солнечную электростанцию мощностью 1,18 МВт, крупнейшую в США, и четвертую в мире. По расчетам, электростанция должна обеспечить до 30% потребностей тюрьмы в электроэнергии.

Первая конференция и выставка по солнечной энергетике (названная позднее Solar Power International) была проведена в Сан-Франциско.

Компания Nanosolar начинает продажу первых коммерческих тонкопленочных модулей CIGS. В то время это была самая дешевая солнечная панель в мире, ее стоимость составляла 99 центов за 1 ватт.

Компания Enphase выпускает первый коммерческий солнечный сетевой микроинвертер.

Популярность солнечных панелей Zep Solar, основанная на особой инновационной системе крепления солнечных батарей, приводит к тому, что SolarCity покупает компанию Zep Solar в 2013 году.

Google запускает проект Project Sunroof, использующий спутниковые снимки для анализа и принятия решений по размещению солнечных панелей на крышах (в пределах США).

В апреле 2016 года установлен миллионный массив солнечных панелей в США. К 2018 этот объем должен удвоиться.

Генерация солнечных электростанций в США достигла 14,625 МВт в год, что на 95% превысило показатель 2015 года в 7,493 МВт. В 2016 году каждый следующий мегаватт солнечной энергии подключался к сети каждые 36 минут.

В этом году стоимость солнечных панелей падает до рекордно-низкого уровня. Общая стоимость систем для жилых зданий снижается до 2,8 $ за 1 Вт.

Многие процессы жизнедеятельности на земном шаре обеспечиваются ресурсами солнечной энергии. Свет и тепло звезды позволяют осуществляться круговороту воды в природе, расти зелени, а также способствуют выработке топлива за счет накопления углерода. Солнце с древних времен и по сей день играет важную роль в существовании любого живого организма.

Экскурс в историю

О пользе тепла и света предки помнили всегда: в жарких странах праотцы сушили шкуры, готовили пищу на раскаленных камнях, в холодные же времена Солнце согревало и позволяло выжить. После неизбежных процессов эволюционирования в VII веке до нашей эры появились часы, определяющие время по Солнцу. Впервые такой механизм был разработан в Вавилоне, затем опыт переняли предки Рима и Греции. III век до новой эры открыл возможность зажигания огня. Доподлинно известно, что Архимеду при помощи данного метода удалось спалить дотла флот врага, осаждавший город.

В промышленность использование солнечной энергии ввел в Италии Леонардо да Винчи, спроектировав параболическое зеркало, отражающее свет под углами, необходимыми для обогрева котельных фабрик. После во Франции Жорж Луи Леклерк де Бюффон усовершенствовал технологию да Винчи. Теперь появилась возможность использования отраженных лучей в качестве воспламенителя. Бюффону удалось воспламенить таким образом сухое дерево на расстоянии 68 километров от зеркала. В 18 веке было совершено открытие, позволяющее использовать линзы для концентрации тепла. Затем в 19 веке Александр Эдмон Беккерель выявил фотоэффект, Чарльз Фриттс создал первую батарею, а в начале 20 века Альберт Эйнштейн был награжден Нобелевской премией за доработку идеи Беккереля. Недостатком являлся только очень низкий КПД — всего 1%. Середина столетия стала началом эры использования спутников с солнечными блоками, излучавшими энергию для потребления космическими кораблями. Теперь КПД составлял около 20%. В основном, такие мощные устройства в промышленных масштабах разрабатывались в США, Израиле, Саудовской Аравии и некоторых других странах.

Новое время

Сегодня направление солнечной энергетики развивается достаточно быстро. Во многих государствах происходит активная поддержка данной отрасли, создаются специальные программы. Например, владельцы домов в Европе имеют возможность отдать энергию, накопленную солнечными блоками за день, в муниципальную сеть, взамен получив льготы на оплату коммунальных услуг. Компании Германии активно выкупают избыток энергии с целью поддержки инновационных технологий, позволяющих более рационально использовать ресурсы. В ФРГ существует специальная программа государственного масштаба, компенсирующая высокий процент от затрат при переходе на солнечные батареи. Позднее такой опыт переняли США, Япония и Монголия. В Испании согласно законодательству строительство ведется только с применением технологий внедрения батарей на крышах. Европейская Ассоциация Фотовольтаики прогнозирует удовлетворение в среднем 12% мировых потребностей в электроэнергии к 2030 году, используя солнечные батареи в качестве более дорогих аналогов ИБП для котлов.

Российская Федерация

Сегодня страна пока не имеет государственных программ, значительно способствующих развитию данной промышленной ресурсодобывающей отрасли, что можно объяснить большим количеством запаса углерода и дорогой стоимостью солнечной энергии. Несмотря на это, перспектива передового развития данной отрасли есть, к примеру, в некоторой части юга России. Несмотря на привычное тепло и возможность использования солнечной энергии в Краснодарском крае или Астраханской области, ученые Российской Академии Наук установили, что наиболее подходящими регионами для подобных экспериментов являются Приморье и Сибирь. Там ежегодное количество солнечного излучения превышает значение южных территорий. Первая электростанция в России появилась в 2010 году в Белгородской области в качестве экспериментального проекта, но пока сведения о прогрессе государства не упомянуты ни в одном из аналитических докладов Организации Объединенных Наций, обозревающих состояние мировой фотовольтаики.

Преобразование энергии

В науке используется термин солнечной постоянной, равной 1367 ватт и приходящейся на 1 квадратный метр земного шара. Доля света рассеивается в атмосфере, а часть минимизируется в зависимости от угла падения луча и времени суток. Таким образом, максимальное значение солнечной энергии на экваторе будет составлять около 300-350 ватт. Ученые сошлись во мнении, что преобразование происходит путем превращения атомов водорода в ядро гелия, сопровождая данный процесс выделением существенного количества тепловой энергии. Сегодня пока не существует устройства, которое бы работало исключительно на солнечном свете, поэтому для преобразования были созданы батареи и коллекторы. Первые устройства преобразуют ресурс, излучаемый звездой, а вторые вырабатывают тепло.

Среди современных способов получения энергии выделяют следующие:

  • Фотоэлектрический. Самый распространенный метод, позволяющий использовать кремний. Комплекс панелей образует батарею и располагается под солнечными лучами. При применении данного способа необходимо следить, чтобы на модули не попадали тени от деревьев или близлежащих сооружений.
  • Гелиотермальный. Метод основан на нагревании поверхности энергоносителя в коллекторе. Подобным образом можно бесперебойно подавать водоснабжение или тепло в дом.
  • Термовоздушный. Способ основан на захвате и устремлении потока в аэростатный отсек, в котором конденсируется водяной пар. Подобная электростанция имеет преимущество перед другим оборудованием за счет работоспособности в любое время суток.

Преимущества солнечной энергии

  • отсутствие платы за ресурс;
  • не обладает побочными эффектами: преобразование света и тепла в электричество происходит бесшумно, безотходно, не влияя на благоустройство экологии;
  • долговечность - солнечные батареи способны работать около 30 лет;
  • возможность вторичного применения - благодаря современным технологиям блоки могут быть переработаны;
  • легкость использования - оборудование снабжено автономным режимом и не требует постоянного контроля;
  • функциональность - солнечные блоки адаптированы для домашнего применения.

Недостатки

  • различный уровень эффективности в светлое и темное время суток;
  • зависимость от сезона;
  • необходимость аккумулирования преобразованной энергии;
  • высокая стоимость, не позволяющая внедрение данной технологии в каждый дом.

Сферы применения

Вариантов использования солнечного света достаточно много. Самым серьезным считается энергоснабжение домов. С начала текущего века наука шагнула вперед достаточно далеко, и сегодня есть возможность установки солнечных батарей не только в качестве основных источников получения электроэнергии, но и в виде дополнительных, включающихся в работу по необходимости.

При использовании панелей все чаще происходит обогрев помещений или воды. Простейший коллектор наверняка имеется на участке у каждого дачника — летний душ с железным баком на крыше. В данном случае при использовании солнечной энергии принцип обогревания аналогичен. Теплоноситель попадает в бойлер, где происходит увеличение температуры жидкости без расхода электричества. Подобное оборудование позволяет достигать тех же результатов, что и ИБП для газовых котлов, но стоит значительно дороже. В холодное время года такой коллектор способен обеспечить теплый воздух и горячую воду для семьи из 3-5 человек. Стоит отметить, что при установлении панелей для обогрева дома проводятся работы, способствующие улучшению теплоизоляции.

Солнечная энергия становится все популярней в качестве заряда портативных батарей или аккумуляторов. Подобный альтернативный источник устройств обеспечивает работу многих гаджетов — ноутбуков, смартфонов, планшетных компьютеров. Некоторые производители усовершенствуют устройства, добавляя противоударные и водонепроницаемые функции. Принцип работы таких аппаратов прост: солнечный свет попадает на панель и преобразуется в электрический заряд, обеспечивая питание. Среди особенностей использования выделяют необходимость определения оптимального угла падения солнечных лучей.

Это первый лайнер за более чем полвека, заходя в салон которого, вы будете точно знать, что находитесь именно в МС-21, а не в Аэрбас или Боинг.

И это не шутка. Поверить в это действительно сложно, мы же привыкли думать, что в России плохой сервис, климат и вообще всё.

Вступайте в другие наши группы и добавляйте нас в друзья :)

24 февраля 2012 г.

За год человечество использует объём нефти, который образовывался в течение примерно 2 млн. лет. И над всем этим светит Солнце…

Из истории вопроса


С 2011 года в продаже разработанные в подконтрольной Boeing лаборатории Spectrolab солнечные батареи с КПД 39,2%. Исследования Spectrolab показывают, что солнечная ячейка в теории способна преобразовать в ток до 70% падающего солнечного света, а на практике технически достижимым следует признать показатель в 50%. Это число и будет ориентиром для отрасли на ближайшее время.

Солнечное настоящее и будущее

Ныне солнечные батареи, солнечная энергетика, хоть всё ещё и не является ведущей энергоотраслью на планете, всё же находит применение в очень многих областях нашей жизни. Основным материалом для производства солнечных элементов по сей день остаётся достаточно распространенный химический элемент — кремний (Si), составляющий почти четвертую часть массы земной коры. Преобразование энергии в солнечных элементах происходит вследствие, так называемого, фотовольтаического эффекта в неоднородных полупроводниках при воздействии на них солнечного излучения. По своему строению солнечный элемент напоминает бутерброд, который состоит из двух полупроводниковых пластинок. Внешняя пластинка содержит избыток электронов, а внутренняя пластинка — недостаток. Попадание фотона света на внешнюю пластинку вызывает выбивание из нее электрона и переход его на внутреннюю пластину, что и создает электрический ток.

В Монголии солнечные батареи служат электрофикации юрт. В стране есть специальная программа, касающаяся развития солнечной энергетики.

Солнце Родины

Читайте в Дзене

В Объединённой двигателестроительной корпорации Ростеха смотрят в будущее, и поэтому заговорили о создании гибридной силовой установки (ГСУ).

Эту силовую установку планируют использовать в вертолетах Ансат, VRT-500 и Ка-226Т, где сейчас используются импортные двигатели.

Сахалин даже в XXI веке был изрезан "наследием" японкой оккупации словно шрамами на теле. Эти шрамы можно было видеть на любой карте.

Cолнечные панели представляют собой соединенные между собой фото элементы, преобразующей солнечный свет в электрический ток.

Но как же панели приняли тот вид, под которым мы знаем сейчас?

В 1839 году когда французский физик Александр Эдмон Беккерель открыл фотогальванический эффект, или иными словами преобразование энергии солнца в электричество. Инженер-электрик Уиллоуби Смит проводя исследования обнаружил явление фотопроводимости селена. При попадании на него цвета материал начинал проводить электрический ток. Некоторое время спустя в 1880-ом году английский профессор Уильям Грыз Адамс и его студент Ричард Эванс открыли что селен может производить электричество без участия движущихся
частей. В этом плане солнечная энергетика получила преимущество, так как в традиционных в то время средства добычей электроэнергии использующих уголь было много механических частей, которые могли легко сломаться.

Следующим шагом развития солнечной энергетики стал изобретений в 1885 году на основе селена покрытого тонким слоем золота Чарльзу Фрицу удалось достичь КПД в один процент, то есть эффективность первого элемента было крайне мало, тем не менее Фриц был уверен в революционности своего изобретения. Он считал что, в будущем подобные модели заменит большинство существующих электростанций.

В 1880 году немецкий физик Генрих Герц в результате своих
исследований наблюдал взаимодействие света с веществом, при котором энергии фотонов приходит к электронным веществам. Это явление было названо фотоэлектрическим эффектом. Ученый также установил, что энергии получается больше при воздействии ультрафиолетовым светом незаметным для глаза видимым спектром.
Были открытия и у нас в Российской Империи профессор императорского московского университета Александр Григорьевич Столетов сконструировал первый фотоэлемент, который преобразует энергию фотонов в электрическую энергию.
Годом ранее в 1885 году профессор опубликовал свой труд, в котором открыл прямо пропорциональную зависимость силы фототока от интенсивности падающего на фотокатод света.

В 1905 году Альберт Эйнштейн объяснил явление фотоэффекта, за что в
1921 году получил нобелевскую премию. Это дало толчок новым исследованиям, и уже в 1930-х годах советские физики создали новый модуль обрабатывающий электрический ток на основе фотоэффекта, правда КПД составлял около одного процента, но это было только начало. В 1950-х годах американские ученые сумели создать фотоэлемент , эффективность которого было четыре процента. Чуть позднее они смогли повысить КПД до 6 процентов.

В 1954 году впервые была создана солнечная панель на основе кремния. Из тех материалов используемых в исследованиях он оказался самым перспективным.


Уже в 1958 году фотоэлементы стали главными источниками получения электроэнергии, которые получали космические корабли орбитальной станции космоса. И по сей день остается одной из главных сфер
применения фотоэлементов. Совершенствование солнечных панелей тем временем продолжалась.

Уже в 1970-х годах удалось превысить отметку кпд в 10 процентов. Для установки подобных модулей в космические аппараты это было приемлемо, но для использования на земле эффективность все еще и являлась недостаточной.

Примером может послужить первая промышленная солнечная электростанция пиковой мощностью в 5 мегаватт, построенный в Крыму в 1985 году. Проработав десять лет ее закрыли из-за нерентабельности, вырабатываемая с ее помощью электроэнергии оказалось слишком
дорогой.

Так продолжалось до 1990-х годов пока не были созданы панели КПД, которых превысил 15 процентов .Одновременно с применением более дешевых материалов из которых собирались фотоэлементы, использование солнечных модулей некоторых сферах стало экономически оправданным.

Самостоятельно собирать фотоэлементы начали примерно в 2005 году. Такая сборка была дешевле, чем готовая заводская продукция. На сегодняшний день большинство выпускаемых солнечных панелей обладает кпд в среднем от 15 до 20 процентов. Их применяют как промышленных масштабах, так и в личных хозяйствах и домах. В лабораториях существуют экземпляры, показывающий эффективность до 50 процентов, но они единичны и пока не пригодны для массового изготовления .Из-за стоимости наиболее распространенными среди частных владельцев являются поликристаллические панели. Основным материалом из которых сейчас производится солнечные панели по сей день является кремний.

Экологичность одно из главных преимуществ солнечных панелей. При их производстве все же наносится незначительный вред окружающей среде, но значительно ниже, чем при сжигании ископаемого топлива, или при использовании атомных электростанций.
Также достоинством фотоэлементов можно отнести долговечность. Выпускаемые в настоящее время модули имеют срок службы 30 лет, и более не требовательны в уходе. И эксплуатации ещё одна отличительная черта, максимум что потребуется от владельца, смахнуть пыль летом или чистить снег зимой. Это последнее относится только к солнечным
панелям, установленным при определенных углах наклона. Некоторые пользователи монтируют свои модули почти вертикально, что позволяет снегу сползать вниз в под собственным весом.

Наибольшее распространение фотоэлементы получили в США, Китае, Японии и в Европе, Германии.

Уже разрабатываются проекты по которым планируется строительство
солнечных электростанций за пределами земной атмосферы, передача сгенерированной электроэнергии поверхности будет осуществляться при помощи микроволн. Все это звучит фантастично, но уже есть все нужные технологии позволяющие рисовать подобный проект.

В каких сферах используются солнечные панели сегодня?

Перечислим примеры их эксплуатации:

  • снабжение электроэнергии частных домов
  • покрытие фотоэлементами дорог, подзарядка аккумуляторов электромобилей
  • использование в космических аппаратах
  • установка модулей на самолетах работающих полностью на солнечной
    энергии

Некоторых людей очень волнует срок окупаемости. Устанавливать модули имеет смысл в тех местах, где нет постоянного электричества и постоянные перебои с электричеством. В регионах, где солнце светит практически круглый год или альтернативная энергетика это хобби. В
некоторых случаях солнечные панели дают преимущество, когда дом расположен вдали от ЛЭП.
Например, проживая в доме без электричества вдали от ЛЭП стоит выбор
отдать государству полтора миллиона за подключение, или купить необходимое оборудование за 300 тысяч и пользоваться всеми благами цивилизации.
Ответ очевиден, кроме того некоторым людям автономность гораздо важнее финансовых затрат. Можно сказать, что солнечные панели это будущее энергетики. Каждый год с развитием технологии, КПД увеличивается, а материалы становятся дешевле.
Внедрение фотоэлементов различных сферах со временем становится все более и более активным. В итоге человечество избавится от фабрик и заводов и других предприятий загрязняющих окружающую среду, научившись использовать истинный потенциал от солнца, и проблема с загрязнением экологии перестаёт существовать.

Читайте также: