Смартфон принцип работы кратко

Обновлено: 05.07.2024

Смартфоны - самые популярные гаджеты у подавляющего большинства людей. Мы пользуемся ими каждый день, а ведь практически не знаем из каких частей он состоит. Можно долго спорить необходимы ли эти знания обычному пользователю, но в ряде ситуаций информация будет полезной. Особенно при покупке нового девайса. Итак, начнём:


▌Дисплей (экран)

Технологий здесь несколько IPS, Amoled, TFT, Super Amoled. Amoled и Super Amoled используют свет каждого пикселя, что при их чёрном цвете (выключенном состоянии) позволяет экономить энергию смартфона. IPS же обладает более приближенными к жизни цветами, используя подсветку целостного экрана.

Аккумулятор бывает съёмным и несъёмным. Выполнены они или по литий-ионной, или по литий-полимерной технологии. Первые теряют свою ёмкость от времени, независимо от того сколько раз их заряжили/разрядили. Литий-полимерные же наоборот полностью зависят от циклов заряда, хорошие АКБ начинают умирать спустя в среднем 1000 циклов.

▌Процессор и материнская палата

К материнской плате относится не только процессор и графический ускоритель, а и все дополнительные модели смартфона, вроде Wi-Fi, Bluetooth, NFC и т.д. Что касается процессоров в смартфоне - о них на нашем канале скоро выйдет отдельная статья, с оценками решений от каждого производителя для разных ценовых категорий.

Памяти в смартфоне 2 типа: внутренняя и оперативная. Оперативная нужна для работы приложений и в целом смартфона. Внутренняя хранит всю информацию на смартфоне. Память бывает различных классов и отличается по объёму.

Чип LTE, который отвечает за сотовую связь.

В современных смартфонах их две - фронтальная и основная. Разрешающая способность отражена в пикселях. Но за хорошие фото отвечают далеко не они, если хотите узнать как устроена камера - поставьте лайк и подпишитесь на канал, мы оперативно выпустим материал.

▌Различные датчики и сканеры

Сканер отпечатка пальца, сканер лица, акселерометр (нужен для ориентации устройства в пространстве), компас (север, юг, ну Вы помните), гироскоп (более детально работает с положением в пространстве), датчик освещённости (отвечает за автоматическую регулировку яркости), датчик приближения (определяет, когда его закрывают, выключая экран смартфона во время беседы по сотовой связи, иногда может использоваться для жестов).

Если Вы узнали что-то новое или вспомнили забытое - поставьте лайк и подпишитесь на канал, а чтобы не пропустить другие материалы - подпишитесь на канал .

Происхождение термина и функции смартфона


Телефон в классическом понимании – это не сенсорное устройство, которое не обладает той производительностью, что рассматриваемый гаджет. Можно сказать, что основная задача телефона — звонить, плюс на нем можно слушать музыку, играть в простейшие игры, отправлять картинки через ммс. Функции смартфона гораздо обширнее – здесь доступен скоростной выход в интернет, работа с файлами, серьезные игры, звонки, отправка фотографий и других данных множеством способов, можно делать очень качественные фото.

На заметку! Коммуникатор и смартфон – это очень близкие понятия. Если углубиться в историю создания, то можно увидеть, что из коммуникаторов появились смартфоны. Можно утверждать, что смартфон – это обычный телефон, интегрированный в коммуникатор.

Как был создан смартфон: основные вехи

Идея создать телефон с функционалом ПК витала в воздухе очень давно, если говорить точно, то об этом задумались после выпуска первых КПК (1990е годы).

Первый смартфон появился в 1992 году — IBM Simon. Справедливости ради стоит отметить, что это лишь прототип, но далеко не полноценный вариант в нынешнем его состоянии. Через два года он стал продаваться по цене 1000$. Возможностями смартфона IBM Simon были помимо звонков — отправка факсов, органайзер, почта, игры. Управление устройством осуществлялось сенсором. Большой вес в 1 кг не дал телефону стать популярным.

IBM Simon

Вторая попытка — 1996 год. Детище компаний HP и Nokia — HP 700LX. В данном случае аппарат состоял из двух частей – КПК от HP с возможностью подключить мобильный аппарат Nokia 2110. Программное обеспечение было переписано таким образом, чтобы устройства могли работать друг с другом. Конечно, модель не является смартфоном в классическом понимании и выступает скорее симбиозом двух отдельных устройств, хотя ее можно представить, как прототип современного гаджета.

HP 700LX

Позже выходит Nokia 900 Commutator. Здесь оба девайса интегрировали в один корпус. В закрытом формате внешний вид увеличенного телефона, в открытом становилась доступна клавиатура. ОС — GEOS, минусом которой являлось отсутствие поддержки сторонних программ.

В 1997 году на Тайване появляется компания HTC. Цель – создание смартфонов и коммутаторов.

1998 год – это появление суббренда Symbian для создания единой ОС для смартфонов.

Все это предпосылки, а первое устройство, которое официально получило имя смартфон, появилось в 2000 году – это Ericsson R380s. Модель почти смартфон — сенсорный ввод, небольшой размер, ОС — Symbian 5.1. Единственный минус — закрытая операционная система.

Ericsson R380s

2001 год — появляется Nokia 9210 с открытой ОС, которая считается первым полноценным смартфоном.

Nokia 9210

2003 год — появление мобильной ОС от Microsoft.

2007 год — свой смартфон создал ныне самый популярный бренд APPLE. Девайс не имел широкого набора функций, но полностью лишился клавиатуры, а управление осуществляется сенсором с поддержкой функции мульти-тач. Это было невиданно для пользователя и за счет очень агрессивной рекламной компании девайсы стали хитами продаж. Собственная ОС не имела возможности для работы в ней программистов со стороны, и отдельную среду для них создали в 2008 году.

Конец 2007 года — выход Android, а на следующий год Google объявляет, что исходный код ОС становится открытым, то есть любой человек может сам писать программы под эту систему.

2008 год — Apple изобрел первый аппарат с поддержкой сетей третьего поколения и навигационных систем. Поставки в 70 стран Apple 3G, который стал гораздо лучше первой модели, позволяют бренду уже тогда начать захват рынка, и статистика показывает, что 5% всех проданных устройств того времени относится именно к технике Эпл.

Apple

В этом же году появляется HTC Dream на Android (первое использование ОС), Nokia N5800 на Symbian с сенсорным экраном.

2009 год дарит нам Nokia N97 – слайдер с сенсорным экраном и выдвижной полноценной клавиатурой.

Nokia N97

Дальнейшее развитие устройств – это изменение концепции, размеров, функций и многих других вещей, которые привели к появлению современных аппаратов. Многие считают, что смартфон придумал Стив Джобс. Это не совсем верно, так как Джобс смог совместить самые полезные функции, но, пожалуй, главная его заслуга в том, что уже в 2007 году он понял, как нужно делать устройства и продавать их так, чтобы завоевать мир. Не секрет, что его формула внедрения новых фишек и яростной рекламы работает и сегодня. Не случайно именно Apple задают тенденции, и до настоящего времени практически всем брендам приходится равняться или догонять американскую компанию.

Из чего состоит смартфон

Многие не задумываются о том, что в небольшом корпусе смартфона скрывается огромное количество деталей и узлов, которые обеспечивают те или иные функции. Основные компоненты смартфона:

  • корпус;
  • процессор;
  • материнская плата;
  • память основная и оперативная;
  • батарея;
  • камера;
  • датчики;
  • модули беспроводных интерфейсов;
  • дисплей.

Корпус

Это первое, что бросается в глаза пользователю. Он может иметь разные размеры и формы, но основной важный параметр – это материал исполнения. Он него зависит эргономичность и удобство использования. Основные материалы – стекло, пластик, металл, керамика. Чаще всего производители комбинируют эти материалы, и редкий девайс состоит лишь из одного металла или пластика.

Процессор

По праву сердце смартфона. Именно он отвечает за все действия, совершаемые на устройстве. Вообще процессор — не совсем верное слово, так как он объединяет в себе несколько узлов: чипсет (именно его путают с процессором), графический сопроцессор (аналог видеокарты в компьютере), а также периферию, которая их соединяет. Современные чипсеты изготавливаются на архитектуре ARM по определенному техпроцессу. На данный момент самый современный техпроцесс – 10 нм. Важные показатели процессора – количество ядер и тактовая частота.

ARM

Важно! Процессор при работе выделяет тепло. Значит, данную проблему нужно решать не охлаждением, так как смартфон слишком мал, а силами самого процессора – для этого используются разные модели работы, а также снижают потребление энергии чипсетом.

Материнская плата

Это своего рода костная и кровеносная система устройства. Именно к ней присоединяются все остальные узлы, а также по ней сигналы от одной детали передаются к другой.

Оперативная и основная память

Оперативная память отвечает за быстродействие. В ней хранится информация, необходимая для непосредственной работы процессора. Часто ее называют временной, так как при выключении смартфона информация в ней не сохраняется. Оперативная память имеет относительно небольшую емкость в сравнении с основной, и в настоящий момент в смартфонах достигает 8 гигабайт.

Основной накопитель – своего рода жесткий диск. Здесь постоянно хранится вся информация. В настоящий момент самая быстрая память для оперативной – LPDDR 4X, в 2019 году анонсирован выход 5 поколения этой памяти. У постоянных накопителей самый скоростной тип USF 2.1. Максимальная емкость памяти современного смартфона достигает 512 Гб.

Батарея

Она отвечает за время автономной работы. Основные типы батарей в смартфонах – литий-ионные и литий-полимерные. Последний тип считается более современным и безопасным для работы.

Батарея

Камера

Говорить о ее назначении смысла нет, так как редкий человек не пользуется камерой в своем смартфоне. Развитие современных камер для мобильных устройств идет огромными темпами. Двойная камера уже никого не удивляет, и есть смартфоны, которые работают с тремя или четырьмя матрицами. Основные показатели – фокусное расстояние, количество пикселей, физический размер матрицы. Для телефонов разрабатывается множество дополнительных фишек, которые делают съемку лучше – лазерный фокус, оптическая стабилизация, монохромный сенсор, оптическое приближение и многое другое.

Лазерный фокус

Датчики

Это маленькие узлы, которые делают пользование устройством более приятным. Существуют датчики освещенности, гироскоп, приближения, акселерометр, компас, сканер пальца, сканер лица, пульсометр и множество других.

Модули

Современный смартфон обязан работать с Wi-Fi, в LTE сетях, с GPS. За это отвечают специальные модули, которые имеют антенны, расположенные непосредственно под корпусом девайса.

На заметку! Из последних нововведений, которое еще не получило повсеместное распространение – NFC. Наиболее широкое использование – бесконтактные платежи.

NFC

Дисплей

Любой современный смартфон имеет сенсорное управление. Экран – это лицо смартфона. Сегодня распространенные типы экранов — IPS и AMOLED. У них есть свои преимущества и недостатки. Кроме типа, экраны отличаются размером, соотношением сторон и разрешением. Все это важные параметры. Кроме того, экраны могут иметь разное покрытие – пластиковая пленка или стекло. В дорогих устройствах используется преимущественно стекло.

Противоударный смартфон

Принцип работы смартфона

Процессор обрабатывает данные, которые в него попадают из оперативной и основной памяти. Основная отвечает за длительное хранение информации. Оперативная — своего рода база для процессора, в первую очередь он обращается к ней. Беспроводные интерфейсы работают за счет соответствующих модулей, а для удобства работы используются сенсоры. Все это устанавливается к материнской плате. Питание устройства обеспечивает батарея. Камера не является функционально необходимым элементом, но сегодня она важна для пользователей. Вся конструкция помешается в корпус, а лицевая панель с экраном является средством для ввода и вывода информации.

Виды смартфонов

Конечно, при слове смартфон в голову сразу приходит привычное всем устройство – корпус с дисплеем и ничего лишнего, но по факту видов смартфонов много. Некоторые совсем исчезли, другие еще представлены узким сегментом, третьи возрождаются из небытия. Итак, смартфоны бывают следующих типов.

Без смартфона невозможно представить современную жизнь. Вы пользуетесь им каждый день. Как с любой важной вещью, полезно знать, как она работает. Так вы обезопасите себя от проблем. Как экран реагирует на прикосновения и что значат все эти 3G, 4G, LTE?

Как смартфон реагирует на касания?

Экран работает и как дисплей для отображения информации, и как устройство для передачи команд. Разновидностей таких дисплеев много, но большая часть современных смартфонов использует поверхностно-емкостные и проекционно-емкостные экраны.

Как это работает? В поверхностно-емкостном экране четыре электрода по углам подают на поверхность небольшое переменное напряжение. Когда человек касается сенсорной поверхности, возникает электрический ток. Чем ближе палец к конкретному электроду, тем сильнее сопротивление и, следовательно, меньше сила тока. Данные с угловых электродов передаются на контроллер, который вычисляет место касания.

На внутренней стороне проекционно-емкостного экрана есть электродная сетка. Дотрагиваясь до сенсора, человек вместе с электродом словно превращаются в конденсатор. Контроллер измеряет емкость этого конденсатора и определяет координаты касания по электродам с возросшей емкостью.

Как работает дисплей?

LCD, TFT, AMOLED, QLED — все эти страшные аббревиатуры относятся к матрице дисплея. Некоторые из них могут быть разновидностью других: например TFT — разновидность LCD-дисплея. Две базовые схемы — LCD (жидкие кристаллы) и OLED, использующий органические светодиоды.

Основа LCD-экрана — источник света и два поляризационных фильтра с электродами, пространство между которыми заполнено теми самыми кристаллами. Плоскости поляризации фильтров перпендикулярны друг другу.

Если максимально упростить, свет, который проходит через первый фильтр, полностью блокируется вторым.

Благодаря жидким кристаллам, которые образуют спиральную структуру, свет способен менять поляризацию, и соответственно проходить через второй фильтр. Спиральная структура жидких кристаллов меняется в зависимости от напряжения, которое подается на электроды. Из-за этого меняется и поляризация света, а с ней и его способность проходить через второй фильтр.

Если поляризационный фильтр полностью блокирует свет, на экране появится черная точка.

В OLED-дисплее подсветка не используется. Он состоит из нескольких слоев тонких органических пленок между двумя проводниками. Эти пленки — светодиоды: они излучают свет, когда на электроды подается напряжение. OLED-экраны потребляют гораздо меньше энергии, нежели жидкокристаллические, а еще они гораздо тоньше и могут быть гибкими. Подсветка на OLED регулируется попиксельно, поэтому контрастность у них гораздо лучше. Зато LCD-экраны куда долговечнее.

Как работает смартфон? Хм… на первый взгляд, довольно глупый вопрос.

Включаем экран, нажимаем пальцем на иконку видеоплеера, сенсорный слой считывает координаты прикосновения, смартфон понимает, какая это иконка и запускает соответствующее приложение. Теперь выбираем фильм, происходит загрузка из памяти и картинка отображается на экране, а звук подается на динамики. Вот и всё!

Минутка безумия

Возьмите батарейку, подключите лампочку и выключатель. Если вы замкнете контакты выключателя, лампочка загорится, разомкнете — лампочка погаснет. Теперь спросите у этого механизма, какая завтра будет погода и можете начинать очень быстренько щелкать выключателем. Ну как? Получили ответ? Если нет, попробуйте взять побольше лампочек и выключателей, можете к эксперименту подключить других людей, чтобы рук было больше.

Что за безумие — спросите вы?

Но ведь, по сути, смартфон — это батарейка (аккумулятор), миллиарды выключателей (транзисторы внутри процессора) и несколько миллионов лампочек (пикселей на экране). Ток вытекает из батарейки, попадает внутрь процессора, растекается по его транзисторам, а затем каким-то чудом загораются нужные пиксели на экране или звучит любимая композиция в динамиках. Кажется, будто в процессоре и происходит вся магия!

Но магии не существует. О том, что происходит на самом деле и пойдет речь в этой статье.

Черно-белый мир

Когда мы говорим о смартфоне, нужно понять одну очень простую вещь — на фундаментальном уровне для него не существует никаких абстрактных понятий, не существует ни звука, ни цвета, ни температуры, ничего. Его процессор не умеет мыслить, ничего не осознает, не показывает вам картинки, не делает подборку песен под ваши предпочтения, не управляет противником в какой-то игре.

Соответственно, в памяти (не важно, оперативной или постоянной) хранится только одна единственная информация — бесконечно длинный список из двух повторяющихся цифр — единичек и нулей.

Фотография — это миллионы последовательных единичек и нулей, книга — это набор единичек и нулей, видеоплеер — это снова единички и нолики.

Что немаловажно, единички и нолики — это уже абстрактные понятия, на самом деле, внутри смартфона нет никаких цифр, а есть просто два состояния — присутствует напряжение/отсутствует напряжение.

К примеру, если мы хотим сохранить 12-Мп снимок, нам нужно как-то перевести его в единички и нолики. Для одной такой фотографии потребуются миллионы единичек и нулей, которые нужно будет затем сохранить в отдельные ячейки памяти. А ячейка — это микроскопическая ловушка, в которую попадают электроны и застревают там навсегда (или пока мы не удалим наш снимок):

как единички и нули сохраняются в памяти смартфона

Раньше каждая ячейка памяти могла хранить только один нолик или единичку (проверялось просто само наличие электронов в ловушке), теперь же каждая ячейка способна хранить несколько единичек и нулей, так как система может считывать заряд более точно.

Подведем небольшой итог

То есть, процессор обращается к какой-то ячейке памяти, считывается заряд (кол-во электронов в ловушке) и затем этот сигнал (ток) посылается на конкретный транзистор. Взяли единичку из памяти и сделали так, чтобы определенный транзистор был открыт. А если в памяти была не единица, а ноль (то есть, другое количество электронов), тогда процессор закрывает определенный транзистор.

А сейчас давайте разберемся, как именно всё разнообразие информации (видео, аудио, фото, текст) превращается в нули и единицы, которые затем можно легко вернуть в первоначальный вид — фильм, снимки, музыку или книгу.

Единички и нолики

Смартфон делает 3 базовые вещи:

  • Собирает входящую информацию с различных датчиков (сенсорный экран, камера, микрофон, датчик давления или температуры и пр.).
  • Обрабатывает эту информацию, посылая ток по миллиардам транзисторов, закрывая и открывая их в строго определенном порядке.
  • Выдает результат. Это может быть изображение на экране, музыка, речь собеседника во время телефонного разговора или мигающий индикатор низкого заряда батареи.

Вся собираемая информация переводится в единички и нолики (бинарный код), которые затем распределяются по ячейкам памяти в виде определенного количества электронов. Процессор обращается к памяти и получает значение каждой ячейки, на основе которого открывает/закрывает конкретные транзисторы.

Переводим текст в бинарный вид

Решение проблемы оказалось элементарным! Давайте просто скажем, что каждой букве или символу соответствует какой-то номер и создадим таблицу кодов. Например, заглавные буквы A, B, C, D будут идти под номерами 65, 66, 67, 68 и так далее. Маленькие буквы будут начинаться с номера 97. Теперь нам осталось пронумеровать все остальные символы, включая те, которые будут сообщать смартфону, что нужно начинать текст с абзаца.

И такая таблица была составлена:

пример таблицы ascii кодов

В итоге перешли на табличку Unicode, которая уже включала более 65 тысяч чисел и соответствующие им знаки, буквы и смайлики.

Дело осталось за малым! Теперь нужно эти коды символов перевести из десятичной системы счисления, где есть цифры от 0 до 9, в двоичную, где существует только 0 и 1. Почему в двоичную? Да потому, что такая система исчисления идеально подходит к микросхемам: 0 — нет тока, 1 — есть ток или 0 — транзистор закрыт (не пропускает через себя ток), а 1 — открыт, то есть, пропускает ток.

Забавная математика или почему 1+1 не равно 2

Когда мы видим большое число, например, 2134, то прекрасно понимаем, что здесь есть две тысячи (1000), одна сотня (100), три десятка (10) и четыре единицы (1).

Получается интересная картина. Наше большое число — это ряд простых маленьких чисел от 0 до 9, каждое из которых находится на своей определенной позиции. Если считать ее справа, то четверка находится на первой позиции, тройка — на второй, единица — на третьей и двойка — на четвертой. Каждая последующая позиция отличается от предыдущей на порядок (в 10 раз).

как устроены десятичные числа

В двоичной системе всё ровно так же, только каждая позиция отличается от предыдущей в 2 раза. То есть, первая позиция — это единицы, вторая — двойки, третья — четверки и так далее:

позиция цифр в двоичной системе

Таким образом, если мы хотим записать десятичное число 9 в двоичной системе, нам нужно взять одну восьмерку и одну единичку (записать цифры на первой и четвертой позициях), в итоге получится число 1001 в двоичной системе:

переводим число 9 из десятичной в двоичную систему

Теперь возвращаемся к нашей кодовой таблице символов. Если букве А соответствует число 65 в десятичной системе, то в двоичной оно будет выглядеть как 100001:

переводим число 65 из десятичной в двоичную систему

Вы, наверное, обратили внимание, что квадратиков (позиций) только 7. Это значит, что наше число состоит из 7 бит (семи нулей или единиц). Можно числа составлять из 8, 16 и так далее бит, соответственно, мы сможем закодировать в двоичной системе счисления очень большие числа. Для 8 бит это будет 256, а уже для 16 бит — 65536.

Подытожим

Теперь осталось каждую цифру (1 или 0) сохранить в отдельной ячейке памяти. Если это 1 — захватываем в ловушку каждой ячейки из аккумулятора столько-то электронов, если 0 — другое количество. В итоге у нас получилось около 900 тысяч единиц и нулей. Если бы каждая ячейка хранила только один бит (0 или 1), нам бы потребовалось 900 тысяч ячеек памяти только на одну книжку. Но так как ячейки современной памяти могут хранить 3 бита, тогда для книжки нам потребуется 300 тысяч ячеек.

А как быть с фотографией или фильмом? Как мы можем картинки перевести в единички и нолики?

Переводим фото и видео в единицы и нули

Любая картинка на экране смартфона состоит из маленьких цветных точек — пикселей. Если увеличить изображение, мы увидим множество квадратиков, как на этом фрагменте:

увеличенный фрагмент фотографии

Если мы возьмем 12-мегапиксельную фотографию, она состоит из 4032 точек по горизонтали и 3024 точек по вертикали. Получается, один снимок содержит 12 млн 192 тыс. 768 точек (4032*3024). Звучит уже пугающе. А если мы берем современные камерофоны, которые умеют снимать с разрешением 108 Мп, то один такой снимок содержит более 108 миллионов точек.

Но что делать с этими точками дальше? Как их перевести в набор нулей и единиц? Чтобы ответить на этот вопрос, рассмотрим очень простой пример.

У нас есть картинка 4 на 4 точки (всего 16 пикселей), которую мы хотим сохранить на смартфоне:

картинка 4x4 пикселя

Вначале давайте все пиксели разместим в одну строчку, чтобы избавиться от бесполезного квадрата:

все пиксели в ряд

Стоп! Но как же тогда смартфон восстановит форму картинки и разместит все пиксели снова на свои места? На самом деле, помимо пикселей, каждый снимок содержит так называемые метаданные. Это информация о ширине и высоте картинки, ее размере в байтах, глубине цвета и пр. То есть, считав первые 4 пикселя с памяти, смартфон перейдет на следующую строку, так как знает, что ширина файла должна быть 4 пикселя, соответственно, следующий пиксель — это уже второй ряд.

Если точка должна быть небесно-голубого цвета, это значит, что красного цвета там будет совсем чуть-чуть (32 из 255), зеленого намного больше — 182 из 255, а синего еще больше — 223 из 255.

Если нужно отобразить черный цвет, мы не будем использовать ни красный (0 из 255), ни синий (0 из 255), ни зеленый цвета (0 из 255). А если захотим, чтобы была белая точка, нужно все 3 составляющих цвета включить на максимум — 255, потому что белый цвет — это и есть смесь основных цветов:

из каких цветов состоят цвета пикселей

Так как мы выбрали использовать 255 градаций каждого цвета, становится очевидным решение основной проблемы. Чтобы закодировать число 255 в бинарный код, нам нужно использовать 8 бит (255 — это 11111111). Получается, чтобы сохранить информацию об одной лишь точке, нам нужно использовать 24 бита (по 8 бит для описания каждого из 3 основных цветов).

Если первую красную точку можно было бы сохранить в десятичной системе, как набор чисел 213, 43 и 43, то в двоичной системе это будет набор из чисел 11010101, 00101011 и 00101011. Естественно, никаких запятых нам не нужно, так как в описании (метаданных) файла мы указывали глубину цвета (сколько бит использовать для кодирования каждого из 3 цветов), поэтому можем смело сохранять первый пиксель нашей фотографии в таком виде:

110101010010101100101011

Для 12 мегапиксельного снимка осталось добавить еще 292 млн 626 тыс. 408 нулей и единичек (это 12 192 767 пикселей умножить на 24 бита). То есть, для хранения одной лишь фотографии мы используем около 97 тыс. крохотных устройств — ловушек для электронов (они же — ячейки памяти). Не забывайте, что одна ячейка способна хранить 3 бита.

Что интересно, на экране смартфона пиксели отображаются не так:

ряд цветных пикселей

Ведь одна крохотная лампочка способна светиться лишь красным цветом, другая лампочка — только зеленым, а третья — только синим. Поэтому каждый условный пиксель на экране — это 3 отдельные лампочки. А значит, смартфону не нужно даже смешивать 3 цвета, которые он закодировал, в одну точку. И пять пикселей, показанных выше, на смартфоне отображаются следующим образом:

как отображаются пиксели на экране смартфона

Но так как эти субпиксели (лампочки) очень крохотные и находятся на очень маленьком расстоянии друг от друга, наш глаз не способен различить три цвета и мозг смешивает их в один.

А как же быть с видео!?

Представьте, если одна фотография занимает почти 100 тысяч ячеек памяти, то где же взять места для полуторачасового фильма, каждая секунда которого — это 24 фотографии!?

Да, мы уже понимаем, что фильм хранится точно так же, как и фото — в виде единичек и нулей. Однако сохранять 130 тысяч фотографий (90 минут видео по 24 кадра в секунду) в разрешении FullHD (2 млн пикселей на каждый кадр) или 4K (8 млн пикселей на каждый кадр) — это непозволительная роскошь, даже по меркам современных смартфонов с памятью на 128 или 256 Гб.

Что же делать? Нужно применять хитрость — алгоритмы сжатия. Вообще, сжатие применяется практически для всех видов данных, начиная от книг и фотографий, и заканчивая видео и музыкой. Поэтому в реальности все данные занимают намного меньше памяти.

Что касается видео, система не просто сохраняет информацию о цвете каждого пикселя, а использует так называемое внутри- и межкадровое кодирование. К примеру, вы снимаете видео, на котором рассказываете о чем-то.

Прежде, чем сохранить нули и единицы, система анализирует каждый кадр и замечает, к примеру, что ваш нос не очень-то отличается от кадра к кадру. Хм, может его вовсе удалить? Но, согласитесь, без носа ваше лицо выглядело бы немного странно.

О том, как смартфон превращает звук в нули и единицы, мы рассказывали в другой статье, поэтому не буду здесь повторяться.

Подводим итог первой части

Содержание

В отличие от традиционных сотовых телефонов, смартфоны позволяют отдельным пользователям как вы и я устанавливать, конфигурировать и запускать различные приложения. Смартфон предлагает способность формировать устройство к вашему особому способу использования вещей. Программное обеспечение в олдстайл-телефонах предлагает только ограниченные возможности, вынуждая пользователя приспособиться к тому, как они созданы. На стандартном телефоне имеется встроенное приложение календаря и в некоторых случаях человек может застрять на одном приложении. Но если бы телефон был смартфоном, тогда пользователю открываются совершенно новые возможности — например, установить сторонний календарь, который вам нравится, но не доставалось ранее возможности им пользоваться.

Вот список некоторых возможностей, которыми сможет ежедневно пользоваться человек, обладающим смартфоном:

  • Управление персональной информацией, включая заметки, календарь и списки дел
  • Передача медиаконтента посредством беспроводных интерфейсов Wi-Fi, Bluetooth, NFC
  • Связь с ноутбуком и персональными компьютерами
  • Синхронизация данных с приложениями
  • Многофункциональные приложения: статистика работы процессорных ядер, подробный прогноз погоды, чтение актуальных новостей, переводчики, электронная почта, мессенджеры, видеоигры наконец
  • Сканирование документов, QR-кодов и штрих-кодов
  • Замена кошелька. Смартфон может хранить информацию о кредитных картах
  • Оплата счетов и услуг. Такие приложения, как WebMoney, PayPal или CardStar помогут вам
  • Создание сети Wi-Fi, которую смогут использовать одновременно несколько устройств. Это означает, что вы можете получить доступ ко всемирной паутине с планшета iPad или ноутбука без использования маршрутизатора или другого периферийного устройства

Хотя сотовые телефоны и имеют общие черты с портативными компьютерами, пейджерами и другими устройствами, они имеют ряд особенностей, которые делают их развитие должным образом уникальным.

Сегодня каждый человек имеет смартфон, ну или по крайней мере мечтает о нём. На самом же деле, по оценкам насчиталось порядка 1.4 миллиарда используемых смартфонов в мире по состоянию на декабрь 2013 года. Люди постоянно используют их во многих сферах жизнедеятельности: звонки, фотографии, серфинг в Интернете и множество других вещей, включая покупки автомобилей — капитан Кирк будет ревновать.

По своей сути, смартфоны и все сотовые телефоны в этом отношении являются мини-радио, так как передают и принимают радиосигналы. Сотовые сети делятся на конкретные области, называемые клетками. Каждая ячейка имеет антенну, которая принимает сигналы сотового телефона. Антенна передает сигналы так же, как радиостанции, и ваш телефон подхватывает эти сигналы так же, как это делает радио.

Как это работает: смартфоны

Смартфоны используют сетевую технологию для отправки и получения данных (телефонные звонки, просмотр веб-страниц, передача файлов). Разработчики классифицируют эту технологию в поколениях. Вы помните первое поколение? Она включала в себя аналоговые технологии мобильного телефона. Однако, как сотовые технологии прогрессировали, протоколы стали более совершенными. В 2014 году сотовые телефоны находятся в мире четвёртого поколения сетей или 4G. В настоящее время многие производители оснащают смартфоны поддержкой сетей четвёртого поколения, но есть и такие компании, как Samsung, например, которые разрабатывают пятое поколение, то есть 5G, которая, если недавние испытания верны, позволит вам скачать весь фильм менее чем за секунду.

Аппаратное и программное обеспечения

Как это работает: смартфоны

Большинство смартфонов работает благодаря процессорам (как работает процессор читайте в статье "Как это работает: микропроцессор". Наряду с процессорами смартфоны имеют компьютерные чипы, которые обеспечивают им функциональность. Телефоны с камерами имеют датчики изображения с высоким разрешением, как и цифровые камеры. Другие микросхемы поддерживают более сложные функции, такие как работа в Интернете, обмен мультимедийными файлами или воспроизведение музыки, не значительно сажая при этом аккумулятор устройства. Некоторые производители разрабатывают чипы, объединяющие сразу несколько функций, чтобы помочь снизить общую стоимость.

Вы можете визуализировать программное обеспечение для смартфонов как стек программного обеспечения. Стек состоит из следующих крайне необходимых вещей:

Операционные системы

Как это работает: смартфоны

Наиболее важным программным обеспечением в любом смартфоне является его операционная система (ОС). Операционная система управляет аппаратными и программными ресурсами смартфонов. Некоторые платформы охватывают вес спектр программного стека. Другие же могут включать более низкие уровни (как правило, ядро и слои промежуточного программного обеспечения) и полагаются на дополнительные программные платформы, чтобы служить основой пользовательского интерфейса. Далее я расскажу о самых популярных операционных системах. Сразу отмечу: я не стану писать о том, что все и так без меня прекрасно знают, но парочку предложений таки напишу.

Android. Предназначена в первую очередь для сенсорных мобильных устройств. Разработана компанией Google, изначально была создана компанией Android Inc. Большинство людей считают операционную систему Android революционной технологией, потому что она имеет открытый исходный код и позволяет писать людям программные коды и приложения, что означает зелёный робот постоянно развивается. Операционная система Android может работать сразу с несколькими приложениями — это многозадачность. В настоящее время магазин приложений, используемый в Android и называемый Google Play, насчитывает более миллиона различных приложений.

iOS. Компания Apple, как снова же многие считают, всегда была революционной и создавала соответствующие продукты — простые и логичные. Рекламируемая производителем как самая передовая мобильная операционная система, iOS поддерживает большое количество функций. По состоянию на момент публикации данной статьи, iOS 7 способна автоматически обновлять приложения и обзавелась подобным главному конкуренту в лице зелёного робота центром управления, который даёт пользователям доступ к наиболее часто используемым функциям. Плоский, минималистичный и яркий дизайн новой версии операционной системы от Apple многие обругали, но свыклись.

Гибкие интерфейсы

Как это работает: смартфоны

Основная ассоциация со смартфонами — многофункциональность. Смартфоны, как правило, способны делать одновременно несколько задач — с помощью многозадачности, да. Пользователь может смотреть фильм, позвонить другу, а затем вернуться к просмотру — всё это без закрытия каждого из используемых приложений. Или он или она может пролистывать цифровой календарь и список дел, не прерывая голосовой вызов. Все данные, хранящиеся на устройстве, можно синхронизировать с внешними приложениями или манипулировать ими с помощью сторонних приложений во многих отношениях. Вот несколько интерфейсов, которые поддерживают сегодняшние смартфоны.

Bluetooth

Синхронизация данных

Телефон, который отслеживает вашу личную информацию: встречи, списки дел, адреса и номера телефонов, должен быть в состоянии общаться со всеми устройствами, которые вы используете, чтобы отслеживать всё вышеперечисленное. Существуют сотни возможных платформ и приложений, которые могут использовать всё это постоянно. Если вы хотите сохранить все эти данные, они должны синхронизироваться на вашем устройстве.

Open Mobile Alliance (OMA) является совместной организацией с одной миссией. Они сформировали рабочую группу синхронизации данных, которая продолжает свою работу, начатую в рамках инициативы SyncML. SyncML — проект на открытых стандартах, направленный на ликвидацию неприятностей и заботясь о том, чтобы пользовательская информация и данные синхронизировались между собой и наоборот. Проект разработан таким образом, чтобы любой вид данных мог быть синхронизирован с любым применением аппаратных средств через любую сеть, при условии, что они все запрограммированы по стандартам OMA. Это включает в себя синхронизацию веб, Bluetooth, а также почтовых протоколов и TCP/IP сетей.

Java

Смартфон, который совместим с языком программирования Java позволяет пользователю загружать и запускать приложения Java и MIDlets. Мидлетс-приложения используют подмножество Java и специально запрограммированы для работы на беспроводных устройствах. Мидлетс включают в себя дополнения, игры, приложения и утилиты.

С тех пор миллионы разработчиков Java во всём мире и инструменты разработки Java находятся в свободном и открытом доступе, благодаря чему пользователи смартфонов могут устанавливать тысячи сторонних приложений на свои устройства. Из-за того, как архитектура большинства мобильных операционных систем устроена, эти приложения могут получать доступ и использовать все данные, хранящиеся на мобильном устройстве пользователя.

Будущее смартфонов

Как это работает: смартфоны

Пожалуй, самым сложным фактором для будущего является обеспечение безопасности. Смартфоны могут быть уязвимы к нарушениям безопасности. Например, атака под названием Evil Twin (Злой Близнец), в процессе которой хакер устанавливает сервисный идентификатор сервиса, создавая легитимную точку доступа или сеть и одновременно блокируя трафик на реальном сервере. Когда пользователь подключается к серверу хакера, информация может быть попросту перехвачена и безопасность данных будет находится под угрозой. С другой же стороны, некоторые критики утверждают, что производители антивирусного программного обеспечения значительно преувеличивают риски, вред и объём телефонных вирусов, чтобы помочь таким образом самим же себе в продаже фирменных продуктов.

Невероятное разнообразие в смартфоне аппаратных, программных и сетевых протоколов ингибируют практические, широкие меры безопасности. Большинство соображений безопасности или сосредотачивается на особых операционных системах или больше имеет отношение к пользовательскому поведению, чем сетевая безопасность. На сегодня всё, дамы и господа. Надеюсь, вам было дичайше интересно и вы узнали много нового.

Читайте также: