Система мониторинга это кратко

Обновлено: 30.06.2024

Поговорим о том, какие уровни мониторинга бывают и что стоит измерять и анализировать в IT-проектах.

Зачем нужен мониторинг и что это такое

Случается, что серверы падают и программы ломаются. Это неизбежно. Случайный баг, скачок напряжения в сети, сбои в подаче электричества — всё это может вызывать поломки.

Кроме того, помимо очевидных проблем, могут быть и куда менее очевидные. Например, менеджеры по продукту приняли плохое решение, реализовали плохую фичу и из-за нового релиза упала выручка. Технически код хорошо работает, серверы в порядке — но бизнес несет убытки.

От обоих типов проблем спасает мониторинг — это постоянный сбор и анализ различных параметров поведения системы. С его помощью можно описать и измерить в числовом выражении каждый важный аспект проекта.

Начнем снизу: мониторинг оборудования

Что бы вы ни запускали — у вас всё равно будут серверы в дата-центре, а у них есть определенные параметры производительности. Эти показатели надо мониторить на каждом сервере, обслуживающем ваших клиентов:

  • нагрузка на процессор;
  • свободное место в оперативной памяти;
  • свободное место на жестком диске;
  • нагрузка на сеть;
  • нагрузка на жесткий диск — количество операций на запись и чтение;
  • количество задач, запущенных на исполнение.

Список параметров вполне очевиден. Мониторинг этих значений позволяет диагностировать большую пачку неприятных ситуаций, которые могут привести к полному или частичному коллапсу инфраструктуры.

Для анализа поведения серверов в самом простом виде можно использовать штатные средства контроля по типу htop. Более гибкое и масштабируемое решение — Zabbix — он уже умеет анализировать основные параметры целого кластера серверов и собирать их в одной панели. Такое решение требует настройки со стороны квалифицированного администратора.

Пользователи контейнерных систем могут использовать для мониторинга штатный Kubernetes Dashboard — инструмент поставляется вместе с Kubernetes практически по умолчанию.

Поднимаемся выше: мониторинг состояния приложений

Допустим, мониторинг серверов у нас есть и они выглядят адекватно. Памяти много, нагрузка на процессор — незначительная. Наверное, всё хорошо организовано, клиентов немного, всё работает как часы? Может быть. Или всё упало, программы не запущены, клиенты не могут попасть на сервер и выполнить запросы? Тоже может быть.

Какой из вариантов правильный — подскажут метрики приложений.

У любого приложения должны быть параметры, по которым разработчики и администраторы понимают, что программа работает и в ней что-то делается. У каждой программы эти параметры свои, но вот несколько примеров, которые позволят понять, какие метрики нужно придумать для приложения:

  • Количество запросов в единицу времени: час, секунду, день, минуту — зависит от обилия трафика в вашей программе.
  • Количество активных пользователей в системе в единицу времени.
  • Количество различных записей в СУБД — в целом и новых в единицу времени.
  • Количество ошибок, которые вы успешно отловили и зарегистрировали.

У вас в системе 100 активных пользователей, они генерируют 1 000 запросов в минуту и у них случается 1 ошибка в час? Допустим, что всё хорошо. У вас в системе 3 активных пользователя, они генерируют 10 000 запросов в минуту и ловят 5 000 ошибок? Наверное, стоит начать беспокоиться. Даже если метрики нагрузки на процессор и диски в порядке.

Для мониторинга на этом уровне подойдет специализированная СУБД — Prometheus, Graphite, InfluxDB. С установкой самой базы данных проблем не будет, а вот посчитать и пробросить нужные метрики в базу — для этого понадобятся усилия программистов.

Для удобства анализа ко всем этим базам лучше всего подключить Grafana — графический инструмент для отображения статистики и метрик.

На платформе VK Cloud Solutions (бывш. MCS) для приложений предоставляется встроенная система мониторинга состояния серверов и приложений, а для Kubernetes предусмотрен мониторинг на базе Prometheus и Grafana, позволяющий отслеживать доступность сервисов.

Есть еще специфические системы отлова ошибок в коде — они могут вовремя оповестить программистов о сбойной ситуации. Иногда этого вполне достаточно для базовой диагностики проблем. Хороший пример такой системы — Sentry.

Третий уровень: мониторинг бизнес-метрик

Конечная цель любой программы — решать чьи-то проблемы и получать за это деньги. Это значит, что для управленцев нужны метрики, которые расскажут:

Список метрик, которые нужны бизнесу, велик и зависит от конкретного проекта и индустрии. Лучше всего вам помогут разобраться с правильными параметрами менеджеры продукта.

Минимально здесь можно обойтись Google Analytics — базовые конверсии и переходы можно смотреть в готовых системах анализа пользовательского поведения. Более глубокое понимание ситуации потребует четкой и слаженной работы администраторов, программистов и ребят из отдела аналитики — они смогут правильно реализовать и посчитать тонкие поведенческие аспекты. Например, зависимость выручки от A/B-тестов на бэкенде.

2.19 система мониторинга: Совокупность процедур, процессов и ресурсов, необходимых для проведения мониторинга.

Смотри также родственные термины:

60 система мониторинга и администрирования (сетью железнодорожной электросвязи); СМА: Программно-технический комплекс управления и контроля сетевыми элементами и сетью, обеспечивающий функционирование сети с нормируемым качеством, эффективное использование всех ее ресурсов в интересах пользователей и других сетей, предупреждение отказов и сокращение времени восстановления при их возникновении, повышение производительности труда обслуживающего персонала.

Примечание - Основными функциями СМА являются: управление конфигурацией, управление устранением отказов, управление качеством, управление рабочими характеристиками, управление трафиком, управление защитой информации.

3.36. система мониторинга инженерных (несущих) конструкций, опасных природных процессов и явлений; СМИК: Подсистема СМИС, осуществляющая в режиме реального времени контроль изменения состояния оснований, строительных конструкций зданий и сооружений; сооружений инженерной защиты, зон схода селей, оползней, лавин в зоне строительства и эксплуатации объекта мониторинга с целью предупреждения чрезвычайных ситуаций.

3.36 система мониторинга инженерных (несущих) конструкций, опасных природных процессов и явлений; СМИК: Подсистема СМИС, осуществляющая в режиме реального времени контроль изменения состояния оснований, строительных конструкций зданий и сооружений; сооружений инженерной защиты, зон схода селей, оползней, лавин в зоне строительства и эксплуатации объекта мониторинга с целью предупреждения чрезвычайных ситуаций.

3.13 система мониторинга состояния гидротехнических сооружений : Совокупность измерительных приборов и других взаимодействующих технических устройств, обеспечивающих получение, передачу, сбор и обработку информации регулярных наблюдений диагностических показателей технического состояния сооружения.

2.26. Система мониторинга состояния оборудования: система (машина), продуктом которой является текущая информация о техническом состоянии оборудования и его опасности с необходимыми комментариями (прогноз остаточного ресурса, предписания на неотложные действия персонала и т.д.) и заданным риском.

2.26. Система мониторинга состояния оборудования: система (машина), продуктом которой является текущая информация о техническом состоянии оборудования и его опасности с необходимыми комментариями (прогноз остаточного ресурса, предписания на неотложные действия персонала и т.д.) и заданным риском.

3. Обозначения и сокращения

В настоящем стандарте применены следующие сокращения.

АЧХ - амплитудно-частотная характеристика

АХ - амплитудная характеристика

ДС - диагностическая станция

МНК - методы неразрушающего контроля

ПТЭ - правила технической эксплуатации электроустановок потребителей

СКЗ - среднее квадратическое значение

СМ - система мониторинга

СЭВТ - средства электронно-вычислительной техники

ТДИ - таходатчик индуктивный

ТПМ - требует принятия мер

ТПТ - трансформаторный преобразователь тока

SPR - размах виброперемещения

4.1 Принципы построения систем мониторинга

4.1.1. Системы мониторинга (СМ) должны обеспечивать получение информации о состоянии оборудования (объекта мониторинга) в необходимом количестве и качестве для обеспечения наблюдаемости его технического состояния. По результатам наблюдения СМ должны заблаговременно вырабатывать управляющие воздействия, которые обеспечивают необходимый запас устойчивости технологической системы, качество ее функционирования, создают необходимый запас ее техногенной, экологической и экономической безопасности.

4.1.2. Принцип достаточности регламентирует выбор минимального числа датчиков вторичных процессов, сопровождающих работу машин, оборудования и технологической системы в целом, обеспечивающих наблюдаемость технического состояния. При этом выходной сигнал датчиков может быть представлен в широком диапазоне амплитуд и частот с последующей обработкой его в компьютере (обнаружением, фильтрацией, линеаризацией, коррекцией амплитудно-фазовых характеристик и т.д.).

4.1.4. Принцип инвариантности регламентирует выбор и селекцию таких диагностических признаков, которые инвариантны к конструкции оборудования и форме связи с параметрами ее технического состояния, что обеспечивает применение стандартных процедур без эталонной диагностики и прогнозирования ресурса машин и, соответственно, быстрые темпы разработки и внедрения СМ, переводя их в разряд стандартных промышленных систем обеспечения безопасности оборудования и процессов.

4.1.5. Принцип самодиагностики всех измерительных и управляющих каналов СМ реализуется подачей специальных стимулирующих сигналов в цепь датчика и компьютерного анализа этого сигнала на выходе системы. Таким образом, проверяется функционирование всего тракта СМ от датчика до компьютерной программы и монитора. Реализация этого принципа обеспечивает легкий пуск систем в эксплуатацию, простоту обслуживания и ремонта отдельных каналов, высокую метрологическую и функциональную надежность системы, ее выживаемость и приспособляемость к постоянно меняющимся условиям реального производства.

4.1.6. Принцип структурной гибкости и программируемости обеспечивает реализацию оптимальной параллельно-последовательной структуры ИДС, исходя из критериев необходимого быстродействия при минимальной стоимости. Системы с параллельной сосредоточенной структурой (VME-VXI) имеют максимальное быстродействие при максимальной стоимости. Системы с последовательной распределенной структурой имеют минимальное быстродействие при минимальной стоимости. Системы с последовательно-параллельной структурой занимают промежуточное положение. Главным недостатком применения параллельных систем во взрывопожароопасных производствах является большой расход кабеля, стоимость которого соизмерима со стоимостью СМ. Выбор структуры системы (степени параллельности) требует оценки ее необходимого быстродействия. Последнее определяется скоростью деградации технического состояния диагностируемого объекта и, как показывает опыт, для насосно-компрессорного оборудования опасных производств нефтегазовой отрасли период опроса датчиков не должен превышать 5 мин.

4.1.7. Принцип коррекции неидеальностей измерительных трактов вычислительными методами на ЭВМ - нелинейности датчиков, амплитудно-фазовых характеристик согласующее преобразовательных трактов и т.д. обеспечивает высокую точность и стабильность метрологических характеристик СМ.

4.1.8. Принцип дружественности интерфейса при максимальной информационной емкости обеспечивает восприятие оператором состояния технологической системы в целом при одном взгляде на монитор и получение целеуказующего предписания на ближайшие неотложные действия. Осуществление этого принципа возможно только при наличии ЭВМ, дисплея с графическими экранами, комплексно отражающими состояние объекта и его свойств в автоматическом режиме и под управлением оператора, средств мультимедиа и встроенной экспертной системы, диагностирующей состояние машин и технологической системы в целом.

x002.jpg

Структурная схема системы мониторинга (СМ):

11. 1N - N агрегатов; 21 - 2m - m диагностируемых узлов в агрегате; 31 – 3n - каналы распространения сигналов от m узлов к п датчикам; 4 - система мониторинга (СМ); 5 - блок датчиков (БД); 6 - блок согласования (БС); 7 - тракт управления (ТУ); 8 - тракт распознавания (ТР); 9 - анализатор (АС); 10 - блок формирования диагностических признаков (БФДП); 11 - блок принятия решения (БПР); 12 - блок оповещения, отображения и регистрации (БОР); 13 - блок сетевых интерфейсов (БОЛ) (Intranet/Internet); 14 - информационные базы данных и знаний (конфигурации оборудования и СМ, архивы сигналов, событий, база знаний) (БДЗ); 15 - блок управления и синхронизации (БУС)

Важная сторона при организации диагностической сети - это организация автоматизированной системы диагностических исследований в рамках всего предприятия или компании, когда в исследовательской службе автоматически накапливаются данные о состоянии оборудования и диагностических признаках, что обеспечивает постоянное развитие и совершенствование подобных систем.

4.1.10. Принцип организации производственных исполнительных систем предприятия (MES-систем) реального времени обеспечивает автоматический ввод в систему планирования ресурсов предприятия информации о состоянии оборудования, поставленной СМ, планах его ремонта т.д., обеспечивая техническое обслуживание и ремонт оборудования (ТОРО) по фактическому техническому состоянию.

4.2. Структурная схема системы

4.2.1. Общая структурная схема системы мониторинга приведена на рисунке.

4.2.2. Объект мониторинга представляет собой совокупность агрегатов 1-1. 1-k. 1-N, каждый из которых содержит до m узлов 2, подлежащих диагностированию. В качестве таких уз лов определяют те, которые ограничивают надежность и ресурс агрегатов и опасных производств в целом.

4.2.3. Диагностические сигналы m = 1. ζm> от диагностируемых узлов 2 через каналы 3 распространения колебаний Nij поступают на точки внешней поверхности агрегата и далее в систему мониторинга 4, где воспринимаются ее датчика ми 5-i, 1=I=n с использованием методов неразрушающего контроля (МНК): акустического, акустико-эмиссионного, вибродиагностического, визуально-измерительного (параметрического), вихретокового, магнитного, оптического, теплового, радиоволнового, электрического и др.

4.2.4. Анализатор сигналов 9 и блок формирования диагностических признаков 10 осуществляют преобразование массива входных сигналов в массив диагностических признаков, связанных с состоянием объектов на основе алгоритмов цифровой обработки сигналов.

4.2.5. Блок принятия решения 11 на основании входного массива диагностических признаков и эксплуатационных данных, хранящихся в информационной базе данных и знаний 14, определяет состояние объектов и выдает требуемую диагностическую информацию, и/или указания по приведению объекта в допустимое состояние.

4.2.6. Блок оповещения, отображения и регистрации 12 доводит информацию о состоянии оборудования до персонала с использованием различных каналов; визуального (дисплей системы), звукового, осуществляет распечатку протоколов (принтер системы).

4.2.7. Посредством блока сетевых интерфейсов 13 информация о состоянии оборудования передается внешним заинтересованным службам по выделенным Ethernet каналам, последовательным каналам (RS232, 485), телефонным линиям с использованием модемов.

4.2.8. Информационная база данных и знаний 14 содержит:

- базы данных конфигурации диагностируемого оборудования, конфигурации системы, базы данных значений диагностических признаков, сигналов, трендов, журналов, и других необходимых для работы системы данных;

- базы знаний, необходимые для работы экспертной системы.

4.2.9. Блок управления и синхронизации 15 осуществляет общее управление всей системой по определенному алгоритму и/или набору адаптивных алгоритмов.

4.3. Классификация систем мониторинга (СМ)

Устанавливается классификация систем мониторинга по следующим факторам:

- числу и виду используемых МНК;

- по типу экспертной системы;

- по объему выявляемых неисправностей;

- по величине статической ошибки распознавания состояния оборудования;

- по величине динамической ошибки распознавания состояния оборудования;

- по величине риска пропуска внезапного отказа;

- по числу измерительных каналов системы;

- по способу опроса датчиков;

- по типу используемого анализатора сигналов;

- по типу индикатора состояния;

- по наличию и уровню диагностической сети;

- по типу управления.

4.3.1. Классификация по числу и виду используемых МНК

Устанавливаются следующие группы систем:

1. Комплексные системы.

2. Специализированные системы.

Специализированные системы используют один из МНК (например, согласно [13]). Комплексные системы используют набор различных МНК.

4.3.2. Классификация по типу экспертной системы

Устанавливаются следующие группы систем:

1. Системы поддержки принятия решений (ЭСППР).

2. Диагностические (ЭСД).

3. Системы индикации состояния (СИС).

Системы индикации состояния осуществляют только определение технического состояния объекта (годен/не годен), без указаний на вид неисправности.

Диагностические системы наряду с определением технического состояния должны определять одну или несколько причин (вид) неисправного состояния объекта.

Системы поддержки принятия решений включают свойства диагностических систем и должны выдавать целеуказующие предписания персоналу для предотвращения опасного состояния объекта и приведения его в нормальное состояние.

4.3.3. Классификация по объему выявляемых неисправностей

Устанавливаются следующие группы систем:

1. Широкого класса.

2. Узкого класса.

Системы узкого класса выявляют неисправности только одного узла агрегата, например подшипника.

Системы широкого класса должны выявлять неисправности раз личных узлов агрегата, а также неисправности в его работе по технологической схеме установки.

4.3.4. Классификация по величине статической ошибки распознавания состояния оборудования

Устанавливаются следующие группы систем:

1. Низкой статической ошибки.

2. Средней статической ошибки.

3. Высокой статической ошибки.

Системы низкой статической ошибки должны иметь ошибку 30%.

4.3.5. Классификация по величине динамической ошибки распознавания состояния оборудования

Устанавливаются следующие группы систем:

1. Низкой динамической ошибки.

2. Средней динамической ошибки.

3. Высокой динамической ошибки.

Системы низкой динамической ошибки должны иметь ошибку 30%.

4.3.6. Классификация по величине риска пропуска внезапного отказа

Устанавливаются следующие группы систем:

1. Низкого риска пропуска.

2. Среднего риска пропуска.

3. Высокого риска пропуска.

Системы низкого риска пропуска должны иметь величину риска пропуска внезапного отказа 30%.

4.3.7. Классификация по числу измерительных каналов системы

Устанавливаются следующие группы систем:

4.3.8. Классификация по способу опроса датчиков

Устанавливаются следующие группы систем:

1. Универсальные (параллельно-последовательные).

Последовательные системы осуществляют поочередное измерение сигналов и их обработку. Последовательные измерения могут проводиться как автоматически, так и человеком-оператором (переносные системы).

Универсальные (параллельно-последовательные) системы имеют смешанную структуру: устанавливаются группы каналов, внутри группы каналы измеряется последовательно и затем осуществляется параллельная обработка выходных сигналов групп и/или наоборот.

Параллельные системы осуществляют одновременное измерение сигналов и их последующую обработку.

4.3.9. Классификация по архитектуре

Устанавливаются следующие группы систем:

Вся аппаратура сосредоточенной системы (за исключением датчиков) размещается в одном месте, как правило, на удалении от объекта контроля.

Аппаратура распределенной системы может размещаться непосредственно на объекте контроля.

4.3.10. Классификация по типу используемого анализатора сигналов

Устанавливаются следующие группы систем:

В скалярных системах результатом работы анализатора сигналов являются скалярные числа (общий уровень вибрации, температура и т.д.).

Векторные системы в результате обработки информации наряду со скалярными должны выдавать одномерные и многомерные массивы, производить спектральную, корреляционную, и другую математическую обработку.

4.3.11. Классификация по типу индикатора состояния

Устанавливаются следующие группы систем:

Простые индикаторы состояния имеют только функцию отображения состояния объекта.

Многоуровневые индикаторы состояния наряду с отображением состояния объекта должны иметь функции отображения состояний и параметров различных его составных частей.

Комплексные индикаторы состояния включают функции много уровневых индикаторов и должны отображать даты пуска/ останова систем и агрегатов, их наработки на разные виды ремонта, прогноз остаточного ресурса, а также выводить информацию по следующим каналам: звуковой вывод, печать протоколов, передача данных по сети (публикация на Web сервере).

4.3.12. Классификация по наличию и уровню диагностической сети

Устанавливаются следующие группы систем:

1. Автоматическая диагностическая сеть.

2. Ручная диагностическая сеть, интегрированная с переносными системами.

3. Ручная диагностическая сеть.

4. Нет диагностической сети.

Ручная диагностическая сеть обеспечивает доступ к данным стационарных систем мониторинга и диагностики с компьютеров удаленных пользователей путем ручных операций по манипуляции с адресами, поиском нужных файлов, режимами их просмотра и регистрации.

Ручная диагностическая сеть, интегрированная с переносными (персональными) системами должна обеспечивать с помощью ручных операций доступ удаленных пользователей к данным как стационарных СМ, так и переносных систем диагностики.

Автоматическая диагностическая сеть должна обеспечивать автоматическое представление на компьютерах удаленных пользователей полной информации о состоянии оборудования при одном обращении к сети, полученной как автоматическими стационарны ми СМ, так и переносными (персональными) системами диагностики. При этом представление информации на дисплее пользователя должно совпадать с представлением информации на дисплеях стационарных и переносных систем. Передача информации производится посредством выделенных и коммутируемых телефонных каналов, проводных и оптических линий Ethernet, радиоканалов.

4.3.13. Классификация по типу управления

Устанавливаются следующие группы систем:

Ручные системы выполняют большинство функций мониторинга под управлением человека-оператора.

Автоматизированные системы должны выполнять основные функции мониторинга автоматически, а вспомогательные - под управлением человека-оператора.

Автоматические системы мониторинга должны выполнять все функции мониторинга автоматически. Человек в автоматических системах может использоваться как звено управления для выдачи управляющих воздействий на объект.

4.4. Определение класса системы

4.4.1. Класс системы определяют по выражению:

где К - комплексный показатель, определяющий класс системы;

ПRi - произведение значений номеров пунктов подразделов

4.13.1. - 4.3.13, соответствующих свойствам системы;

Int - целая часть числа.

Системы первого класса имеют К=1.

Системы второго класса имеют К=2.

Системы третьего класса имеют К=3.

4.4.2. Пример расчета класса систем для показателей классификации, представленных выше, приведен в табл. 1.

Мониторинг окружающей среды – это система регулярного наблюдения, оценки и прогноза состояния среды обитания. Он представляет собой комплекс мероприятий по определению состояния окружающей среды и отслеживанию динамики изменений в ее состоянии [63, 64]. Основные задачи мониторинга можно определить следующим образом (рис. 20) [63, 64]:

− систематические наблюдения за состоянием среды и источниками, воздействующими на окружающую среду;

− оценка фактического состояния природной среды;


− прогноз состояния окружающей среды на будущее.

Рис. 20. Схема системы мониторинга

Системы мониторинга традиционно разбивают на подсистемы по компонентам окружающей среды и территориальному охвату. Комплексный мониторинг провод повсеместно в целях объединения ряда программ различных типов мониторинга для всесторонней оценки некоторых проблем загрязнения окружающей среды [63, 64]:

- глобальных, воздействующих на большую часть земной поверхности; примером может служить эффект выделения углекислого газа и хлорфторуглеродов;

- региональных, воздействующих на соседние группы стран, например, трансграничный перенос загрязняющих веществ по воздуху и рекам, загрязнение морей, вырождение тропических лесов;

- локальных, относящихся к сравнительно небольшой территории, хотя, возможно, встречающихся во многих местах; в качестве примера можно привести загрязнение воздуха в городских условиях и питьевой воды, исчезновение почвенного слоя.

- базовых (фоновых), относящихся к природным явлениям, происходящих без наложения на них региональных антропогенных явлений.

В соответствии с этим система мониторинга может охватывать как локальные районы, так и земной шар в целом (глобальный или фоновый мониторинг). Основной особенностью глобального мониторинга является возможность на основании его данных оценить состояния биосферы в глобальном масштабе [63, 64].

Национальным мониторингом обычно называют систему мониторинга в рамках одного государства; такая система отличается от глобального мониторинга не только масштабами, но и тем, что основной задачей национального мониторинга является получение информации и оценка состояния окружающей среды в национальных интересах. Так, повышение уровня загрязнения атмосферы в отдельных городах или промышленных районах может и не иметь существенного значения для оценки состояния биосферы в глобальном масштабе, но представляется важным для принятия мер в данном районе на национальном уровне. Системы мониторинга, используемые в интересах нескольких государств, называют многонациональным или международным мониторингом. Часто такие системы используются при рассмотрении вопросов переноса загрязнений между государствами [63, 64].

Импактный, или локальный мониторинг осуществляется в районах высокого уровня антропогенного воздействия в локальном масштабе [2, 66].

Системы мониторинга также могут быть классифицированы по объектам наблюдения и по методам ведения наблюдений. Основные из существующих видов и характеристика систем мониторинга представлены в таблице [63, 64].

Виды мониторинга и их характеристика

Класс Вид Назначение
По масштабам обобщения информации Глобальный Слежение за общемировыми процессами и явлениями в биосфере Земли, включая все экологические компоненты. Предупреждение о возни­кающих экстремальных ситуациях
Национальный Слежение за процессами и явлениями в пределах страны, включая все экологические компоненты. Сбор и анализ информации, прогнозирование состояния окружающей среды и предупреждение о возможных экстремальных ситуациях
Региональный Слежение за процессами и явлениями в пределах какого-то региона, где эти процессы и явления могут отличаться по природному характеру от базового фона, характерного для биосферы
Локальный Слежение за антропогенными воздействиями на локальном уровне
По методам ведения Биологический Мониторинг с помощью биоиндикаторов
Авиационный Осуществляется с самолетов, вертолетов и др. летательных аппаратов в пределах тропосферы
Космический Мониторинг с помощью космических средств наблюдения
Дистанционный Совокупность авиационного и космического мониторинга. Иногда в это понятие включают слежение за средой с помощью приборов, установленных в труднодоступных местах Земли, показания которых передаются с помощью дальней передачи информации (по радио, через спутники, по компьютерным сетям)
По объектам наблюдения Мониторинг окружающей среды и ее объектов: атмосферы, гидросферы, литосферы Слежение за состоянием окружающей среды и предупреждение о создающихся критических ситуациях, вредных или опасных для здоровья людей и других живых организмов
Биологический Слежение за биологическими объектами, наличием видов, их состоянием, появлением случайных ингредиентов и т.д.

Глобальный мониторинг. В 1971 г. Международный совет научных союзов впервые сформулировал принципы построения глобальной системы мониторинга состояния биосферы и определил показатели, за которыми следует установить постоянные наблюдения и контроль. В 1972 г. Стокгольмская конференция ООН по окружающей среде одобрила эти основные принципы, а в рамках Программы ЮНЕП (Программа ООН по проблемам окружающей среды) в 1973-1974 гг. были разработаны основные положения создания Глобальной системы мониторинга окружающей среды (ГСМОС). При создании ГСМОС было рекомендовано опираться на существующие национальные системы [63, 64].




На совещании в Найроби (1974 г.) определены следующие задачи ГСМОС [63, 64]:

- организация расширенной системы предупреждения об угрозе здоровью человека;

- оценка глобального загрязнения атмосферы и его влияния на климат;

- оценка количества и распределения загрязнителей биосферы, особенно пищевых цепей;

- оценка критических проблем, возникающих в связи с сельским хозяйством;

- оценка реакции наземных экосистем на загрязнение окружающей среды;

- оценка загрязнения океана и его влияния на морские экосистемы;

- создание и усовершенствование системы предупреждения о стихийных бедствиях в международном масштабе.

При этом были определены конечные цели ГСМОС:

- установление уровней выбросов загрязнителей в определенной среде, их распределения в пространстве и времени;

- знание скоростей и величин потоков выбрасываемых загрязнителей и вредных продуктов, их превращений;

- обеспечение сравнения методик пробоотбора и анализов, принятых в различных странах, обмен опытом организации мониторинга;

- обеспечение информацией о загрязнителях в глобальном и региональном масштабе для принятия решений по управлению при борьбе с загрязнениями.

Приняты следующие перечни приоритетных загрязнителей, подлежащих определению [63, 64]:

- в воздухе − взвешенные частицы, оксиды серы, азота и углерода, озон, сульфаты, свинец, кадмий, ртуть, мышьяк, бензапирен, ДДТ и другие пестициды;

- атмосферных осадках − свинец, кадмий, ртуть, мышьяк, сульфаты, бензапирен, ДДТ и другие пестициды, главные катионы и анионы (катионы калия, натрия, магния и кальция, сульфат-, хлорид-, нитрат- и гидрокарбонат-анионы) кроме того, подлежит определению pH осадков;

- пресных водах, в донных отложениях и почве − свинец, кадмий, ртуть, мышьяк, бензапирен, ДДТ и другие пестициды, биогенные элементы (фосфор, азот, кремний);

- биоте − свинец, кадмий, ртуть и мышьяк, бензапирен, ДДТ и другие пестициды [61].

Региональный мониторинг. На территории крупных городов больших государств, например, таких, как Российская Федерация, США, Канада и т.п. организуется региональный мониторинг. Он не только является частью государственного мониторинга, но и решает задачи, специфические для данной территории. Основная задача регионального мониторинга — это получение более полной и детальной информации о состоянии окружающей среды региона и воздействии на нее техногенного фактора, что не представляется возможным сделать в рамках глобального и государственного мониторинга, так как в их программах нельзя учесть особенности каждого региона [63, 64].

Локальный мониторинг. При организации и проведении локального мониторинга необходимо определить приоритетные загрязнители, за которыми уже ведутся наблюдения в рамках глобального, государственного и регионального мониторинга, а также загрязнители от имеющихся источников загрязнения или от создаваемых производств. По результатам локального мониторинга соответствующие компетентные органы могут установить для предприятия временные ПДВ или ПДС. В особых случаях может ставиться вопрос о полной приостановке деятельности предприятия, его перепрофилировании или переносе в другую местность [63, 64].

Мониторинг окружающей среды – это система регулярного наблюдения, оценки и прогноза состояния среды обитания. Он представляет собой комплекс мероприятий по определению состояния окружающей среды и отслеживанию динамики изменений в ее состоянии [63, 64]. Основные задачи мониторинга можно определить следующим образом (рис. 20) [63, 64]:

− систематические наблюдения за состоянием среды и источниками, воздействующими на окружающую среду;

− оценка фактического состояния природной среды;


− прогноз состояния окружающей среды на будущее.

Рис. 20. Схема системы мониторинга

Системы мониторинга традиционно разбивают на подсистемы по компонентам окружающей среды и территориальному охвату. Комплексный мониторинг провод повсеместно в целях объединения ряда программ различных типов мониторинга для всесторонней оценки некоторых проблем загрязнения окружающей среды [63, 64]:

- глобальных, воздействующих на большую часть земной поверхности; примером может служить эффект выделения углекислого газа и хлорфторуглеродов;

- региональных, воздействующих на соседние группы стран, например, трансграничный перенос загрязняющих веществ по воздуху и рекам, загрязнение морей, вырождение тропических лесов;

- локальных, относящихся к сравнительно небольшой территории, хотя, возможно, встречающихся во многих местах; в качестве примера можно привести загрязнение воздуха в городских условиях и питьевой воды, исчезновение почвенного слоя.

- базовых (фоновых), относящихся к природным явлениям, происходящих без наложения на них региональных антропогенных явлений.

В соответствии с этим система мониторинга может охватывать как локальные районы, так и земной шар в целом (глобальный или фоновый мониторинг). Основной особенностью глобального мониторинга является возможность на основании его данных оценить состояния биосферы в глобальном масштабе [63, 64].

Национальным мониторингом обычно называют систему мониторинга в рамках одного государства; такая система отличается от глобального мониторинга не только масштабами, но и тем, что основной задачей национального мониторинга является получение информации и оценка состояния окружающей среды в национальных интересах. Так, повышение уровня загрязнения атмосферы в отдельных городах или промышленных районах может и не иметь существенного значения для оценки состояния биосферы в глобальном масштабе, но представляется важным для принятия мер в данном районе на национальном уровне. Системы мониторинга, используемые в интересах нескольких государств, называют многонациональным или международным мониторингом. Часто такие системы используются при рассмотрении вопросов переноса загрязнений между государствами [63, 64].

Импактный, или локальный мониторинг осуществляется в районах высокого уровня антропогенного воздействия в локальном масштабе [2, 66].

Системы мониторинга также могут быть классифицированы по объектам наблюдения и по методам ведения наблюдений. Основные из существующих видов и характеристика систем мониторинга представлены в таблице [63, 64].

Виды мониторинга и их характеристика

Класс Вид Назначение
По масштабам обобщения информации Глобальный Слежение за общемировыми процессами и явлениями в биосфере Земли, включая все экологические компоненты. Предупреждение о возни­кающих экстремальных ситуациях
Национальный Слежение за процессами и явлениями в пределах страны, включая все экологические компоненты. Сбор и анализ информации, прогнозирование состояния окружающей среды и предупреждение о возможных экстремальных ситуациях
Региональный Слежение за процессами и явлениями в пределах какого-то региона, где эти процессы и явления могут отличаться по природному характеру от базового фона, характерного для биосферы
Локальный Слежение за антропогенными воздействиями на локальном уровне
По методам ведения Биологический Мониторинг с помощью биоиндикаторов
Авиационный Осуществляется с самолетов, вертолетов и др. летательных аппаратов в пределах тропосферы
Космический Мониторинг с помощью космических средств наблюдения
Дистанционный Совокупность авиационного и космического мониторинга. Иногда в это понятие включают слежение за средой с помощью приборов, установленных в труднодоступных местах Земли, показания которых передаются с помощью дальней передачи информации (по радио, через спутники, по компьютерным сетям)
По объектам наблюдения Мониторинг окружающей среды и ее объектов: атмосферы, гидросферы, литосферы Слежение за состоянием окружающей среды и предупреждение о создающихся критических ситуациях, вредных или опасных для здоровья людей и других живых организмов
Биологический Слежение за биологическими объектами, наличием видов, их состоянием, появлением случайных ингредиентов и т.д.

Глобальный мониторинг. В 1971 г. Международный совет научных союзов впервые сформулировал принципы построения глобальной системы мониторинга состояния биосферы и определил показатели, за которыми следует установить постоянные наблюдения и контроль. В 1972 г. Стокгольмская конференция ООН по окружающей среде одобрила эти основные принципы, а в рамках Программы ЮНЕП (Программа ООН по проблемам окружающей среды) в 1973-1974 гг. были разработаны основные положения создания Глобальной системы мониторинга окружающей среды (ГСМОС). При создании ГСМОС было рекомендовано опираться на существующие национальные системы [63, 64].

На совещании в Найроби (1974 г.) определены следующие задачи ГСМОС [63, 64]:

- организация расширенной системы предупреждения об угрозе здоровью человека;

- оценка глобального загрязнения атмосферы и его влияния на климат;

- оценка количества и распределения загрязнителей биосферы, особенно пищевых цепей;

- оценка критических проблем, возникающих в связи с сельским хозяйством;

- оценка реакции наземных экосистем на загрязнение окружающей среды;

- оценка загрязнения океана и его влияния на морские экосистемы;

- создание и усовершенствование системы предупреждения о стихийных бедствиях в международном масштабе.

При этом были определены конечные цели ГСМОС:

- установление уровней выбросов загрязнителей в определенной среде, их распределения в пространстве и времени;

- знание скоростей и величин потоков выбрасываемых загрязнителей и вредных продуктов, их превращений;

- обеспечение сравнения методик пробоотбора и анализов, принятых в различных странах, обмен опытом организации мониторинга;

- обеспечение информацией о загрязнителях в глобальном и региональном масштабе для принятия решений по управлению при борьбе с загрязнениями.

Приняты следующие перечни приоритетных загрязнителей, подлежащих определению [63, 64]:

- в воздухе − взвешенные частицы, оксиды серы, азота и углерода, озон, сульфаты, свинец, кадмий, ртуть, мышьяк, бензапирен, ДДТ и другие пестициды;

- атмосферных осадках − свинец, кадмий, ртуть, мышьяк, сульфаты, бензапирен, ДДТ и другие пестициды, главные катионы и анионы (катионы калия, натрия, магния и кальция, сульфат-, хлорид-, нитрат- и гидрокарбонат-анионы) кроме того, подлежит определению pH осадков;

- пресных водах, в донных отложениях и почве − свинец, кадмий, ртуть, мышьяк, бензапирен, ДДТ и другие пестициды, биогенные элементы (фосфор, азот, кремний);

- биоте − свинец, кадмий, ртуть и мышьяк, бензапирен, ДДТ и другие пестициды [61].

Региональный мониторинг. На территории крупных городов больших государств, например, таких, как Российская Федерация, США, Канада и т.п. организуется региональный мониторинг. Он не только является частью государственного мониторинга, но и решает задачи, специфические для данной территории. Основная задача регионального мониторинга — это получение более полной и детальной информации о состоянии окружающей среды региона и воздействии на нее техногенного фактора, что не представляется возможным сделать в рамках глобального и государственного мониторинга, так как в их программах нельзя учесть особенности каждого региона [63, 64].

Локальный мониторинг. При организации и проведении локального мониторинга необходимо определить приоритетные загрязнители, за которыми уже ведутся наблюдения в рамках глобального, государственного и регионального мониторинга, а также загрязнители от имеющихся источников загрязнения или от создаваемых производств. По результатам локального мониторинга соответствующие компетентные органы могут установить для предприятия временные ПДВ или ПДС. В особых случаях может ставиться вопрос о полной приостановке деятельности предприятия, его перепрофилировании или переносе в другую местность [63, 64].

Cистема мониторинга - это совокупность связанных компонентов для дистанционного получения и обработки данных от механизированных производственных подвижных или стационарных объектов (строительные машины, вертолеты, корабли, рыболовецкие суда, самолеты, линии электропередач, нефте- и гаопроводы) для облегчения контроля бизнес процессов и эффективности принятия управленческих решений.


Система мониторинга состоит из следующих компонентов:

1. Абонентский терминал:

2. Каналы передачи данных Inmarsat IsatM2M, Iridium и GPRS.

3. Программная платформа, приложение пользователя.

Cистема мониторинга обеспечивает оперативное реагирование и эффективное у правление бизнес процессом на достоверной информации.

Система позволяет получить следующее:

Получать информацию в режиме реального времени о местоположении и состоянии транспортных средств, отображение движения транспортных средств на электронных картах.

Хранить всю накопленную информацию о перемещении и техническом состоянии техники в базе данных программного продукта.

Использовать статистическую информацию для прогнозирования потребности техники в ремонте и обслуживании.

Используя и обрабатывая полученную информацию, менеджмент получает инструментарий для следующего:

Увеличение меж сервисных интервалов обслуживания автотранспорта и обеспечить своевременное выполнение сервисного обслуживания.

Эффективная организация труда. Внедрение системы позволяет отказаться от привлечения дополнительных сотрудников, разгрузить имеющихся при существенном повышении качества их труда и оперативности подготавливаемых данных.

Определение виновности в поломке техники на основании статистической информации, зафиксированной в базе данных программного продукта.

Экологический мониторинг нужно отличать от экологического контроля. В соответствии с тем же законом экологический контроль – это система мер, направленная на предотвращение, выявление и пресечение нарушения законодательства в области охраны ОС, обеспечение соблюдения субъектами хозяйственной и иной деятельности требования, и том числе нормативов и нормативных документов в области охраны ОС.

Многие зарубежные исследователи предлагали осуществлять систему непрерывных наблюдений одного или нескольких компонентов ОС с заданной целью и по специально разработанной программе. Другая точка зрения, высказана Ю.А.Израэлем. Он предлагал понимать под мониторингом только такую комплексную систему наблюдений, оценки и прогноза, которая позволяет выделить частные изменения состояния биосферы, происходящие только под влиянием антропогенной деятельности (т.е. мониторинг антропогенных изменений).

Альтернативная концепция была предложена в 1975 г . И.П.Герасимовым. Он придавал мониторингу также и функции управления. Но это было нецелесообразно, так как функциями управления обычно занимаются органы государственной и местной власти. В связи с этим практическое воплощение нашла концепция Ю.А.Израэля.

Во всех концепциях в качестве объектов мониторинга рассматриваются экосистемы, находящиеся под действием антропогенных факторов. Экосистемы, не испытывающие антропогенных воздействий, также представляют интерес. Они являются точкой отсчета или эталоном для сравнения с экосистемами, измененными под воздействием человеческой деятельности.

Важнейшей частью мониторинга ОС является мониторинг антропогенных загрязнений. Ему уделяется основное внимание.

Главная цель мониторинга – наблюдение за состоянием окружающей природной среды и уровнем ее загрязнения, а также информационное обеспечение управления природоохранной деятельностью и экологической безопасностью. Необходимо также своевременно оценить последствия антропогенного воздействия. Мониторинг – это не только слежение и оценка факторов, но и экспериментальное моделирование, прогноз и рекомендации по управлению состоянием ОС. Таким образом, цель мониторинга в кратком виде состоит в следующем:

- наблюдение за состоянием ОС;

- формирование прогноза о состоянии ОС;

- выдача информации в соответствующие службы и органы.

- организация систематических наблюдений за изменением биосферы;

- оценка наблюдаемых изменений, выявление антропогенных эффектов;

- прогноз и определение тенденций в изменении биосферы.

В соответствии с предложенной Ю.А.Израэлем системой, структура мониторинга состоит из четырех блоков: наблюдения, оценки фактического состояния, прогноза состояния и оценки прогнозируемого состояния (рис. 1.1).

Рис. 1. Блок-схема системы мониторинга

Данные о состоянии природной среды, полученные в результате наблюдения или прогноза, должны оцениваться в зависимости от того, в какой области человеческой деятельности они используются. Оценка подразумевает определение ущерба от воздействия и выбор оптимальных условий для деятельности человека, определение существующих экологических резервов.

При таких оценках рассчитывают возможные значения допустимых нагрузок на ОС.

Результаты оценки существующего и прогнозируемого состояний биосферы дают возможность уточнить требования к подсистеме наблюдений. Это составляет научное обоснование мониторинга, обоснование состава, структуры сети и методов наблюдений.

Сама система мониторинга не включает деятельность по управлению (регулированию) качеством среды.

2. Классификация систем мониторинга

Существуют различные подходы к классификации мониторинга. Например, по территориальному принципу, по факторам и источникам воздействия, по природным средам, за которыми ведется наблюдение и др.

Таблица 1.Классификация систем (подсистем) мониторинга

Существующие или разрабатываемые системы (подсистемы) мониторинга

Глобальный мониторинг (базовый, региональный, импактный уровни)

2.Реакция основных составляющих биосферы

Экологический мониторинг (включая вышеназванные)

Мониторинг загрязнений и изменений в атмосфере, гидросфере, почве, загрязнений биоты

4.Факторы и источники воздействия

Ингредиентный мониторинг (радиоактивных продуктов, шумов)

Мониторинг источников загрязнения

5.Острота и глобальность проблемы

Мониторинг по физическим, химическим, биологическим показателям

Спутниковый (дистанционный) мониторинг

Классификация систем мониторинга по территориальному принципу содержит следующие виды мониторинга ОС:

1.Глобальный, проводимый на всем земном шаре или в пределах одного-двух материков.

2.Национальный, проводимый на территории одного государства.

3.Региональный, проводимый на большом участке территории одного государства или сопредельных участках нескольких государств.

4.Локальный, проводимый на сравнительно небольшой территории города, водного объекта, района крупного предприятия.

Особое место занимает фоновый мониторинг, цель которого состоит в получении эталона состояния ОС и ее изменения в условиях возможного антропогенного воздействия. Данные фонового мониторинга необходимы для анализа результатов всех видов мониторинга. Сам фоновый мониторинг проводится в рамках глобального или национального мониторинга перед разработкой проекта или строительством крупного объекта.

3. Разработка программы мониторинга

Эффективность экологического мониторинга решающим образом зависит от правильной его организации. Общая последовательность разработки и осуществления схемы мониторинга представлена на рис. 2.

Перед тем, как предпринимать какие-либо действия, следует формулировать цели и конкретные задачи работы. При этом необходимо, чтобы поставленные вами цели были конкретными, достижимыми и поддавались проверке, — это существенно для контроля выполнения программы мониторинга и внесения в нее корректив.

Основная цель всякой программы мониторинга — информационная. Это получение новой информации, устранение той или иной неопределенности или, напротив, выявление недостатка информации. Поэтому естественным образом цель программы общественного мониторинга может быть направлена на:

1. Получение информации, связанной с конкретной проблемой;

2. Представление информации для различных типов аудитории (заинтересованной общественности, администрации и сотрудников предприятия, государственных органов) и ее распространение;

3. Принятие мер, непосредственно направленных на улучшение ситуации или стимулирование принятия соответствующих решений.

Под задачами мы понимаем конкретные действия или этапы на пути достижения цели. В рамках грамотно составленной программы не может быть задач, выходящих за пределы цели, не имеющих к ней отношения и т.п.

Поэтому на основе поставленной цели следует определить приоритеты — объекты мониторинга и определяемые параметры . Объекты могут быть как антропогенными, так и природными. Например, если цель программы связана с совершенствованием экологической результативности предприятия, то выбор объектов может осуществляться с учетом особенностей технологических процессов, сложившейся схемы работы с сырьем и материалами, принятых управленческих решений.

Если же цель состоит в уточнении картины и причин загрязнения реки, то выбор объекта может выглядеть как определение предприятия или конкретного места выпуска сточных вод, на котором будут сконцентрированы усилия по мониторингу.

Если проблему представляет состояние окружающей среды в загрязненном городском районе, определение приоритетов может начаться с выбора природной среды для мониторинга — атмосферы, воды, почвы, снежного покрова. Выбор объекта в некоторых случаях однозначно вытекает из поставленной проблемы, а иногда представляет собой содержательную и нетривиальную задачу. Поэтому целесообразно для правильной формулировки программы привлекать квалифицированных специалистов.

Сначала на основе поставленных целей выбираются объекты мониторинга, а затем определяемые параметры, они должны быть приоритетными. Однако возможен и обратный порядок, например, когда заранее известно, что проблема связана с определенным веществом (например, с ртутным загрязнением).

Существующие классы приоритетов установлены экспертным путем и приняты в системе ГСМОС (Государственная система мониторинга окружающей среды).

Читайте также: