Сформулируйте закон всемирного тяготения запишите формулу выражающую этот закон кратко

Обновлено: 18.05.2024

Одна из важнейших в природе сил — сила гравитации, или сила тяготения. Она действует на все тела во Вселенной.

Существует миф о том, что Ньютон открыл закон всемирного тяготения после того, как ему на голову упало яблоко. Так это или нет доподлинно неизвестно, но именно Ньютон изучал движение планет вокруг Солнца и открыл математическую формулу для расчета взаимодействия тел определенной массы. Эту формулу мы называем законом всемирного тяготения.

Сила взаимодействия двух тел прямо пропорциональна массе каждого из этих тел и обратно пропорциональной квадрату расстояния между центрами этих тел:

F = G m 1 m 2 R 2 , где G = 6,67 ⋅ 10 − 11 Н ⋅ м 2 кг 2 — гравитационная постоянная, R — расстояние между центрами тел.

3. тело неопределенной формы находится на поверхности шарообразного и однородного тела большого размера и массы (по сравнению с телом неопределенной формы).

Третий закон Ньютона мы используем для расчёта силы тяжести на поверхности Земли или вблизи неё. Поэтому за расстояние между телами берём радиус Земли: \(R=6370\) км.

земляяблоко.jpg

Значение ускорения Земли, обусловленное притяжением со стороны яблока настолько мало, что при расчёте задач его не учитывают.


Гравитация похожа на любовь — тела притягиваются с равными по модулю силами, которые уменьшаются с увеличением расстояния. Правда, силы еще и увеличиваются за счет увеличения массы, но сделаем вид, что все равно похоже.

О чем эта статья:

Гравитационное взаимодействие

Земля — это большой магнит. Причем на самом деле магнит, с настоящим магнитным полем. Но сейчас речь пойдет о другом явлении — явлении притяжения тел к Земле, от прыгающего с дерева котика до летящего мимо астероида. Называется это явление гравитацией.

Возьмем два тела — одно с большой массой, другое с маленькой. Натянем гигантское полотно ткани и положим на него тело с большей массой. После чего положим туда тело с массой поменьше. Мы будем наблюдать примерно такую картину:

Маленькое тело начнет притягиваться к тому, что больше, — это и есть гравитация. По сути, Земля — это большой шарик, а все остальные предметы — маленький (даже если это вовсе не шарики).

Гравитационное взаимодействие универсально. Оно справедливо для всех видов материи. Гравитация проявляется только в притяжении — отталкивание тел гравитация не предусматривает.

Из всех фундаментальных взаимодействий гравитационное — самое слабое. Хотя гравитация действует между всеми элементарными частицами, она настолько слаба, что ее принято не учитывать. Все дело в том, что гравитационное взаимодействие зависит от массы объекта, а у частиц она крайне мала. Эту зависимость впервые сформулировал Исаак Ньютон.

Закон всемирного тяготения

В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Формула силы тяготения согласно этому закону выглядит так:

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 · 10 −11 м 3 · кг −1 · с −2

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше примерно в шесть раз.

Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.

Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

Задачка раз

Две планеты с одинаковыми массами обращаются по круговым орбитам вокруг звезды. У первой из них радиус орбиты вдвое больше, чем у второй. Каково отношение сил притяжения первой и второй планеты к звезде?

Решение

По закону всемирного тяготения сила притяжения планеты к звезде обратно пропорциональна квадрату радиуса орбиты. Таким образом, в силу равенства масс отношение сил притяжения к звезде первой и второй планет обратно пропорционально отношению квадратов радиусов орбит:




По условию, у первой планеты радиус орбиты вдвое больше, чем у второй, то есть R1 = 2R2.




Ответ: отношение сил притяжения первой и второй планет к звезде равно 0,25.

Онлайн-уроки физики в Skysmart не менее увлекательны, чем наши статьи!

Задачка два

У поверхности Луны на космонавта действует сила тяготения 144 Н. Какая сила тяготения действует со стороны Луны на того же космонавта в космическом корабле, движущемся по круговой орбите вокруг Луны на расстоянии трех лунных радиусов от ее центра?

Решение

По закону всемирного тяготения сила притяжения космонавта со стороны Луны обратно пропорциональна квадрату расстояния между ним и центром Луны. У поверхности Луны это расстояние совпадает с радиусом спутника. На космическом корабле, по условию, оно в три раза больше. Таким образом, сила тяготения со стороны Луны, действующая на космонавта на космическом корабле, в 9 раз меньше, чем у поверхности Луны, то есть:

Ответ: на расстоянии трех лунных радиусов от центра сила притяжения космонавта будет равна 16 Н.

Ускорение свободного падения

Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.

Сила тяжести — сила, с которой Земля притягивает все тела.

Сила тяжести

F — сила тяжести [Н]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2 , но подробнее об этом чуть позже. 😉

На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.




Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.

Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.

На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.

Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к ней притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:

Приравниваем правые части:

Делим на массу тела левую и правую части:

Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.

Закон всемирного тяготения

g — ускорение свободного падения [м/с 2 ]

M — масса планеты [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 · 10 −11 м 3 · кг −1 · с −2

Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.

Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.

Но разве это не зависит еще и от массы предмета?

Нет, не зависит. На самом деле все тела падают одинаково вне зависимости от массы. Если мы возьмем перо и мяч, то перо, конечно, будет падать медленнее, но не из-за ускорения свободного падения. Просто из-за небольшой массы пера сопротивление воздуха оказывает на него большее воздействие, чем на мяч. А вот если бы мы поместили перо и мяч в вакуум, они бы упали одновременно.

Третий закон Ньютона

Третий закон Ньютона обобщает огромное количество опытов, которые показывают, что силы — результат взаимодействия тел.

Он звучит так: тела действуют друг на друга с силами, равными по модулю и противоположными по направлению.

Если попроще — сила действия равна силе противодействия.

Если вам вдруг придется объяснять физику во дворе, то можно сказать и так: на каждую силу найдется другая сила. 🙈

Третий закон Ньютона

F1 — сила, с которой первое тело действует на второе [Н]

F2 — сила, с которой второе тело действует на первое [Н]

Так вот, для силы тяготения третий закон Ньютона тоже справедлив. С какой силой Земля притягивает тело, с той же силой тело притягивает Землю.

Задачка для практики

Земля притягивает к себе подброшенный мяч с силой 5 Н. С какой силой этот мяч притягивает к себе Землю?

Решение

Согласно третьему закону Ньютона, сила, с которой Земля притягивает мяч, равна силе, с которой мяч притягивает Землю.

Ответ: мяч притягивает Землю с силой 5 Н.

Поначалу это кажется странным, потому что мы ассоциируем силу с перемещением: мол, если сила такая же, то на то же расстояние подвинется Земля. Формально это так, но у мяча масса намного меньше, чем у Земли. И Земля смещается на такое крошечное расстояние, притягиваясь к мячу, что мы его не видим, в отличие от падения мяча.

Если каждый брошенный мяч смещает Землю на какое-то расстояние, пусть даже крошечное, возникает вопрос — как она еще не слетела с орбиты из-за всех этих смещений. Но тут как в перетягивании каната: если его будут тянуть две равные по силе команды, канат никуда не сдвинется. Так же и с нашей планетой.

Небесная механика изучает движение небесных тел под действием тяготения, разрабатывает методы определения их траекторий на основании наблюдаемых положений на небе, позволяет рассчитать таблицы их координат на дальнейшее время (эфемериды), изучает взаимное влияние тел на их движение, рассматривает движение и устойчивость систем небесных и искусственных тел.

2. Сформулируйте закон всемирного тяготения. Каковы особенности в использовании данного закона для проведения расчётов?

Формула закона всемирного тяготения:

где $F$ — сила взаимодействия двух тел; $G$ — постоянная всемирного тяготения $(G=6.67·10^\,Н·м^2/кг^2);$ $m_1$ и $m_2$ — массы тел; $r$ — расстояние между телами.

Формулировка закона всемирного тяготения: два тела притягиваются друг к другу с силой, пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.

Закон всемирного тяготения справедлив в случае, когда размеры тел пренебрежимо малы по сравнению с расстоянием между ними. В случае протяжённых шарообразных тел со сферически-симметричным распределением масс в качестве расстояния $r$ в формуле закона всемирного тяготения следует принимать расстояние между центрами этих тел.

4. Как ньютон обобщил законы Кеплера?

Уточнение и обобщение Ньютоном первого закона Кеплера состоит в том, что под действием тяготения всякое тело движется по кононическому сечению (т.е. по одной их кривых — окружности, эллипсу, параболе или гиперболе). При движении по эллипсу притягивающее тело всегда находится в одном из двух фокусов этой кривой.

Формула третьего закона Кеплера, уточнённого Ньютоном:

где $M_☉$ — масса Солнца; $m_1$ и $m_2$ — массы планет; $T_1$ и $T_2$ — сидерические периоды планет; $a_1$ и $a_2$ — большие полуоси орбит планет.

5. Определите массу планеты Уран (в массах Земли), если известно, что спутник Урана Титания обращается вокруг него с периодом 8,7 сут. на среднем расстоянии 438 тыс. км. для Луны эти величины равны соответственно 27,3 сут. и 384 тыс. км.

Дано:

$a=438$ тыс. км,
$p=8.7$ сут,
$a_Л=384$ тыс. км,
$P_Л=27.3$ сут,
$M_З=1.$

Решение:

Пренебрегая массами Титания и Луны $(m_Т$ и $m_Л)$, получим, что

Ответ: $14.6$ массы Земли.

6. Определите среднюю плотность Солнца, если период обращения Земли вокруг Солнца принять равным 365 сут. При расчётах принять радиус земной орбиты равным 150 млн км, а радиус Солнца — 700 тыс. км.

Дано:

Найти:

Решение:

Из формулы для уточнённого III закона Кеплера находим, что:

Отсюда получаем массу Солнца:

Из определения понятия плотности:

Объём звезды (в первом приближении, абсолютно сферической), найдём по формуле:

Исходя из трактовки второго закона Ньютона, можно сделать вывод, что изменение движения происходит посредствам силы. Механика рассматривает силы различной физической природы. Многие из них определяются с помощью действия сил тяготения.

Закон всемирного тяготения. Формулы

В 1862 году был открыт закон всемирного тяготения И. Ньютоном. Он предположил, что силы, удерживающие Луну, той же природы, что и силы, заставляющие яблоко падать на Землю. Смысл гипотезы состоит в наличии действия сил притяжения, направленных по линии и соединяющих центры масс, как изображено на рисунке 1 . 10 . 1 . Шаровидное тело имеет центр массы, совпадающий с центром шара.

Рисунок 1 . 10 . 1 . Гравитационные силы притяжения между телами. F 1 → = - F 2 → .

Далее, Ньютон искал физическое объяснение законам движения планет, которые открыл И. Кеплер в начале XVII века, и давал количественное выражение для гравитационных сил.

При известных направлениях движений планет Ньютон пытался выяснить, какие силы действуют на них. Этот процесс получил название обратной задачи механики.

Основная задача механики – определение координат тела известной массы с его скоростью в любой момент времени при помощи известных сил, действующих на тело, и заданным условием (прямая задача). Обратная же выполняется с определением действующих сил на тело с известным его направлением. Такие задачи привели ученого к открытию определения закона всемирного тяготения.

Ускорение свободного падения

Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.

F = G m 1 m 2 r 2 .

Значение G определяет коэффициент пропорциональности всех тел в природе, называемое гравитационной постоянной и обозначаемое по формуле G = 6 , 67 · 10 - 11 Н · м 2 / к г 2 ( С И ) .

Большинство явлений в природе объясняются наличием действия силы всемирного тяготения. Движение планет, искусственных спутников Земли, траектории полета баллистических ракет, движение тел вблизи поверхности Земли – все объясняется законом тяготения и динамики.

Проявлении силы тяготения характеризуется наличием силы тяжести. Так называется сила притяжения тел к Земле и вблизи ее поверхности.

Когда М обозначается как масса Земли, R З – радиус, m – масса тела, то формула силы тяжести принимает вид:

F = G M R З 2 m = m g .

Где g – ускорение свободного падения, равняющееся g = G M R З 2 .

Сила тяжести направлена к центру Земли, как показано в примере Луна-Земля. При отсутствии действия других сил тело движется с ускорением свободного падения. Его среднее значение равняется 9 , 81 м / с 2 . При известном G и радиусе R 3 = 6 , 38 · 10 6 м производятся вычисления массы Земли М по формуле:

M = g R 3 2 G = 5 , 98 · 10 24 к г .

Если тело удаляется от поверхности Земли, тогда действие силы тяготения и ускорения свободного падения меняются обратно пропорционально квадрату расстояния r к центру. Рисунок 1 . 10 . 2 показывает, как изменяется сила тяготения, действующая на космонавта корабля, при удалении от Земли. Очевидно, что F притягивания его к Земле равняется 700 Н .

Рисунок 1 . 10 . 2 . Изменение силы тяготения, действующей на космонавта при удалении от Земли.

Земля-Луна подходит в качестве примера взаимодействия системы двух тел.

Расстояние до Луны – r Л = 3 , 84 · 10 6 м . Оно в 60 раз больше радиуса Земли R З . Значит, при наличии земного притяжения, ускорение свободного падения α Л орбиты Луны составит α Л = g R З r Л 2 = 9 , 81 м / с 2 60 2 = 0 , 0027 м / с 2 .

Оно направлено к центру Земли и получило название центростремительного. Расчет производится по формуле a Л = υ 2 r Л = 4 π 2 r Л T 2 = 0 , 0027 м / с 2 , где Т = 27 , 3 суток – период обращения Луны вокруг Земли. Результаты и расчеты, выполненные разными способами, говорят о том, что Ньютон был прав в своем предположении единой природы силы, удерживающей Луну на орбите, и силы тяжести.

Луна имеет собственное гравитационное поле, которое определяет ускорение свободного падения g Л на поверхности. Масса Луны в 81 раз меньше массы Земли, а радиус в 3 , 7 раза. Отсюда видно, что ускорение g Л следует определять из выражения:

g Л = G M Л R Л 2 = G M З 3 , 7 2 T 3 2 = 0 , 17 g = 1 , 66 м / с 2 .

Такая слабая гравитация характерна для космонавтов, находящихся на Луне. Поэтому можно совершать огромные прыжки и шаги. Прыжок вверх на метр на Земле соответствует семиметровому на Луне.

Искусственные спутники Земли

Движение искусственных спутников зафиксировано за пределами земной атмосферы, поэтому на них оказывают действие силы тяготения Земли. Траектория космического тела может изменяться в зависимости от начальной скорости. Движение искусственного спутника по околоземной орбите приближенно принимается в качестве расстояния до центра Земли, равняющемуся радиусу R З . Они летают на высотах 200 - 300 к м .

Отсюда следует, что центростремительное ускорение спутника, которое сообщается силами тяготения, равняется ускорению свободного падения g . Скорость спутника примет обозначение υ 1 . Ее называют первой космической скоростью.

Применив кинематическую формулу для центростремительного ускорения, получаем

a n = υ 1 2 R З = g , υ 1 = g R З = 7 , 91 · 10 3 м / с .

При такой скорости спутник смог облететь Землю за время, равное T 1 = 2 πR З υ 1 = 84 м и н 12 с .

Но период обращения спутника по круговой орбите вблизи Земли намного больше, чем указано выше, так как существует различие между радиусом реальной орбиты и радиусом Земли.

Спутник движется по принципу свободного падения, отдаленно похожее на траекторию снаряда или баллистической ракеты. Разница заключается в большой скорости спутника, причем радиус кривизны его траектории достигает длины радиуса Земли.

Спутники, которые движутся по круговым траекториям на больших расстояниях, имеют ослабленное земное притяжение, обратно пропорциональное квадрату радиуса r траектории. Тогда нахождение скорости спутника следует по условию:

υ 2 к = g R 3 2 r 2 , υ = g R 3 R З r = υ 1 R 3 r .

Поэтому, наличие спутников на высоких орбитах говорит о меньшей скорости их движения, чем с околоземной орбиты. Формула периода обращения равняется:

T = 2 πr υ = 2 πr υ 1 r R З = 2 πR з υ 1 r R 3 3 / 2 = T 1 2 π R З .

T 1 принимает значение периода обращения спутника по околоземной орбите. Т возрастает с размерами радиуса орбиты. Если r имеет значение 6 , 6 R 3 то Т спутника равняется 24 часам. При его запуске в плоскости экватора, будет наблюдаться, как висит над некоторой точкой земной поверхности. Применение таких спутников известно в системе космической радиосвязи. Орбиту, имеющую радиус r = 6 , 6 R З , называют геостационарной.

Читайте также: