Сформулируйте правило размерности в физике кратко

Обновлено: 05.07.2024

1. Метрология и ее значение в научно-техническом прогрессе.

2. Физические величины и единицы их измерений. Физические величины. Понятие о системе физических величин.

3.Принципы построения Международной системы единиц.

4. Преимущества Международной системы единиц

1. Метрология и ее значение в научно-техническом прогрессе

Измерения являются одним из важнейших путей познания природы, дают количественную характеристику окружающего нас мира, помогают раскрыть действующие в природе закономерности. Они дают возможность обеспечить взаимозаменяемость узлов и деталей, совершенствовать технологию, безопасность труда и других видов человеческой деятельности, улучшать качество продукции.

Круг величин, подлежащих измерению, определяется разнообразием явлений, с которыми приходится сталкиваться человеку. Сравнение опытным путем измеряемой величины с другой, подобной ей и принятой за единицу, составляет общую основу любых измерений.

Метрология - наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Принятые значения величин подставляют в расчетную формулу в последовательности, соответствующей символической записи формулы, строго соблюдая правило размерности . Точность вычислений и окончательные размеры принимают такими, какие установлены техническими условиями. [10]

Правило размерностей позволяет производить проверку правильности решения задачи. [11]

Поэтому все члены, входящие в уравнение, выражающее какой-либо физический процесс, должны иметь одинаковую размерность. Это положение и представляет собой правило размерностей . [12]

Прием первый - проверка ответа по размерности. Речь здесь идет о том, что полученный результат должен удовлетворять правилам размерности , о которой мы говорили в предыдущей главе. Если результатом вычисления является, например, скорость, то и ответ должен иметь размерность скорости. [13]

В уравнение ( 33) входят все параметры и коэффициенты уравнений моделирования. Подстановка вместо буквенных обозначений размерностей показывает, что уравнение ( 33) удовлетворяет правилу размерностей . [14]

Поэтому все слагаемые, входящие в уравнение, описывающее физический процесс, должны иметь одинаковую размерность. Это положение представляет собой правило размерностей . [15]

Размерность физической величины, выражение, показывающее, во сколько раз изменится единица физической величины при изменении единиц величин, принятых в данной системе за основные.

Р. представляет собой одночлен, составленный из произведения обобщённых символов основных единиц в различных (целых или дробных, положительных или отрицательных) степенях, которые называются показателями Р.

Так, например, Р. скорости LT —1 , где Т представляет собой Р. времени, а L — Р. длины. Эти символы обозначают единицы времени и длины независимо от их конкретного размера (секунда, минута, час, метр, сантиметр и т.д.). В ряде случаев Р. позволяет устанавливать связи между соответствующими величинами

Размерность измеряемой величины является качественной ее характеристикой и обозначается символом dim, происходящим от слова dimension.

Размерностьосновныхфизических величин обозначается соответствующими заглавными буквами. Например, для длины, массы и времени dim l = L; dim m = M; dim t = T.

При определении размерностипроизводных величин руководствуются следующими правилами

1. Размерности левой и правой частей уравнений не могут не совпадать, так как сравниваться между собой могут только одинаковые свойства. Объединяя левые и правые части уравнений, можно прийти к выводу, что алгебраически суммироваться могут только величины, имеющие одинаковые размерности.

2. Алгебра размерностей мультипликативная, т. е. состоит из одного единственного действия - умножения.

2.1. Размерность произведения нескольких величин равна произведе­нию их размерностей. Так, если зависимость между значениями величин Q, А,В,С имеет вид Q = А × В × С, то

dim Q = dim A × dim B × dim C.

2.2. Размерность частного при делении одной величины на другую равна отношению их размерностей, т. е. если Q = А/В, то

dim Q = dim A/dim B.

2.3. Размерность любой величины, возведенной в некоторую степень, равна ее размерности в той же степени. Так, если Q = А n , то

Например, если скорость определять по формуле V = l / t, то dim V = dim l/dim t = L/Т = LТ -1 . Если сила по второму закону Ньютона F = m×а, где а = V/ t - ускорение тела, то dim F = dim m × dim а = МL/Т 2 = MТ -2 .

Таким образом, всегда можно выразить размерность производной физической величины через размерности основных физических величин с помощью степенного одночлена:

dim Q = L a M b T g …,

где L, М, Т, . . . - размерности соответствующих основных физических величин; a, b, g, … - показатели размерности. Каждый из показателей размерности может быть положительным или отрицательным, целым или дробным числом, нулем. Если все показатели размерности равны нулю, то такая величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость), и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей или напряжений). В гуманитарных науках, искусстве, спорте, квалиметрии, где номенклатура основных величин не определена, теория размерностей не находит пока эффективного применения.

Размерность физической величины, выражение, показывающее, во сколько раз изменится единица физической величины при изменении единиц величин, принятых в данной системе за основные.

Р. представляет собой одночлен, составленный из произведения обобщённых символов основных единиц в различных (целых или дробных, положительных или отрицательных) степенях, которые называются показателями Р.

Так, например, Р. скорости LT —1 , где Т представляет собой Р. времени, а L — Р. длины. Эти символы обозначают единицы времени и длины независимо от их конкретного размера (секунда, минута, час, метр, сантиметр и т.д.). В ряде случаев Р. позволяет устанавливать связи между соответствующими величинами

Размерность измеряемой величины является качественной ее характеристикой и обозначается символом dim, происходящим от слова dimension.

Размерностьосновныхфизических величин обозначается соответствующими заглавными буквами. Например, для длины, массы и времени dim l = L; dim m = M; dim t = T.

При определении размерностипроизводных величин руководствуются следующими правилами

1. Размерности левой и правой частей уравнений не могут не совпадать, так как сравниваться между собой могут только одинаковые свойства. Объединяя левые и правые части уравнений, можно прийти к выводу, что алгебраически суммироваться могут только величины, имеющие одинаковые размерности.




2. Алгебра размерностей мультипликативная, т. е. состоит из одного единственного действия - умножения.

2.1. Размерность произведения нескольких величин равна произведе­нию их размерностей. Так, если зависимость между значениями величин Q, А,В,С имеет вид Q = А × В × С, то

dim Q = dim A × dim B × dim C.

2.2. Размерность частного при делении одной величины на другую равна отношению их размерностей, т. е. если Q = А/В, то

dim Q = dim A/dim B.

2.3. Размерность любой величины, возведенной в некоторую степень, равна ее размерности в той же степени. Так, если Q = А n , то

Например, если скорость определять по формуле V = l / t, то dim V = dim l/dim t = L/Т = LТ -1 . Если сила по второму закону Ньютона F = m×а, где а = V/ t - ускорение тела, то dim F = dim m × dim а = МL/Т 2 = MТ -2 .

Таким образом, всегда можно выразить размерность производной физической величины через размерности основных физических величин с помощью степенного одночлена:

dim Q = L a M b T g …,

где L, М, Т, . . . - размерности соответствующих основных физических величин; a, b, g, … - показатели размерности. Каждый из показателей размерности может быть положительным или отрицательным, целым или дробным числом, нулем. Если все показатели размерности равны нулю, то такая величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость), и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей или напряжений). В гуманитарных науках, искусстве, спорте, квалиметрии, где номенклатура основных величин не определена, теория размерностей не находит пока эффективного применения.

Описание той или иной проблемы, обсуждение теоретических и экспериментальных вопросов начинается с качественного описания и оценки того эффекта, который дает данная работа.

При описании какой-то проблемы нужно, прежде всего, оценить порядок величины ожидаемого эффекта, простые предельные случаи и характер функциональной связи величин, описывающих данное явление. Эти вопросы называются качественным описанием физической ситуации.

Одним из наиболее эффективных методов такого анализа является метод размерностей.

  • быстрая оценка масштабов исследуемых явлений;
  • получение качественных и функциональных зависимостей;
  • восстановление забытых формул на экзаменах;
  • выполнение некоторых заданий ЕГЭ;
  • осуществление проверки правильности решения задач.

Анализ размерностей применяется в физике еще со времен Ньютона. Именно Ньютон сформулировал тесно связанный с методом размерностей принцип подобия (аналогии).

• Учащиеся впервые встречаются с методом размерностей при изучении теплового излучения в курсе физики 11 класса:

Спектральной характеристикой теплового излучения тела является спектральная плотность энергетической светимости rvэнергия электромагнитного излучения, испускаемого за единицу времени с единицы площади поверхности тела в единичном интервале частот.

Единица спектральной плотности энергетической светимости – джоуль на квадратный метр (1 Дж/м 2 ). Энергия теплового излучения черного тела зависит от температуры и длины волны. Единственной комбинацией этих величин с размерностью Дж/м 2 является kT/ 2 ( = c/v). Точный расчет, проделанный Рэлеем и Джинсом в 1900 г., в рамках классической волновой теории дал следующий результат:

где k – постоянная Больцмана.

Как показал опыт, данное выражение согласуется с экспериментальными данными лишь в области достаточно малых частот. Для больших частот особенно в ультрафиолетовой области спектра формула Рэлея-Джинса неверна: она резко расходится с экспериментом. Методы классической физики оказались недостаточными для объяснения характеристик излучения абсолютно черного тела. Поэтому расхождение результатов классической волновой теории с экспериментом в конце XIX в. получило название “ультрафиолетовой катастрофы”.

• Покажем применение метода размерностей на простом и хорошо понятном примере.


Тепловое излучение абсолютно черного тела: ультрафиолетовая катастрофа – расхождение классической теории теплового излучения с опытом.

Представим себе, что тело массой m перемещается прямолинейно под действием постоянной силы F. Если начальная скорость тела равна нулю, а скорость в конце пройденного участка пути длиной s равна v, то можно записать теорему о кинетической энергии: . Между величинами F, m, v и s существует функциональная связь.

Предположим, что теорема о кинетической энергии забыта, а понимаем, что функциональная зависимость между v, F, m, и s существует и имеет степенной характер.

Здесь x, y, z – некоторые числа. Определим их. Знак ~ означает, что левая часть формулы пропорциональна правой, то есть , где k – числовой коэффициент, не имеет единиц измерения и с помощью метода размерностей не определяется.

Левая и правая части соотношения (1) имеют одинаковые размерности. Размерности величин v, F, m и s таковы: [v] = м/c = мc -1 , [F] = H = кгмс -2 , [m] = кг, [s] = м. (Символ [A] обозначает размерность величины A.) Запишем равенство размерностей в левой и правой частях соотношения (1):

м c -1 = кг x м x c -2x кг y м Z = кг x+y м x+z c -2x .

В левой части равенства вообще нет килограммов, поэтому и справа их быть не должно.

Справа метры входят в степени x+z, а слева - в степени 1, поэтому

Аналогично, из сравнения показателей степени при секундах следует

Из полученных уравнений находим числа x, y, z:

x = 1/2, y = -1/2, z = 1/2.

Окончательная формула имеет вид

Возведя в квадрат левую и правую части этого соотношения, получаем, что


Последняя формула есть математическая запись теоремы о кинетической энергии, правда без числового коэффициента.

Принцип подобия, сформулированный Ньютоном, заключается в том, что отношение v 2 /s прямо пропорционально отношению F/m. Например, два тела с разными массами m1 и m2; будем действовать на них разными силами F1 и F2 , но таким образом, что отношения F1 / m1 и F2 / m2 будут одинаковыми. Под действием этих сил тела начнут двигаться. Если начальные скорости равны нулю, то скорости, приобретаемые телами на отрезке пути длины s, будут равны. Это и есть закон подобия, к которому мы пришли с помощью идеи о равенстве размерностей правой и левой частей формулы, описывающей степенную связь значения конечной скорости со значениями силы, массы и длины пути.

Метод размерностей был введен при построении основ классической механики, однако его эффективное применение для решения физических задач, началось в конце прошлого – в начале нашего века. Большая заслуга в пропаганде этого метода и решения с его помощью интересных и важных задач принадлежит выдающемуся физику лорду Рэлею. В 1915 году Рэлей писал: “ Я часто удивляюсь тому незначительному вниманию, которое уделяется великому принципу подобия, даже со стороны весьма крупных ученых. Нередко случается, что результаты кропотливых исследований преподносятся как вновь открытые “законы”, которые, тем не менее, можно было получить априорно в течение нескольких минут”.

В наши дни физиков уже нельзя упрекнуть в пренебрежительном отношении или в недостаточном внимании к принципу подобия и к методу размерностей. Рассмотрим одну из классических задач Рэлея.

• Задача Рэлея о колебаниях шарика на струне.

Пусть между точками A и B натянута струна. Сила натяжения струны F. На середине этой струны в точке C находится тяжелый шарик. Длина отрезка AC (и соответственно CB) равна 1. Масса М шарика намного больше массы самой струны. Струну оттягивают и отпускают. Довольно ясно, что шарик будет совершать колебания. Если амплитуда эти x колебаний много меньше длины струны, то процесс будет гармоническим.


Определим частоту колебаний шарика на струне. Пусть величины , F, M и 1 связанны степенной зависимостью:


F X M Y 1 Z (2)

Показатели степени x, y, z – числа, которые нам нужно определить.

Выпишем размерности интересующих нас величин в системе СИ:


[] = c -1 , [F] = кгм с -2 , [M] = кг, [1] = м.

Если формула (2) выражает реальную физическую закономерность, то размерности правой и левой частей этой формулы должны совпадать, то есть должно выполняться равенство

с -1 = кг x м x c -2x кг y м z = кг x + y м x + z c -2x

В левую часть этого равенства вообще не входят метры и килограммы, а секунды входят в степени – 1. Это означает, что для x, y и z выполняются уравнения:

Решая эту систему, находим:


~F 1/2 M -1/2 1 -1/2


Точная формула для частоты отличается от найденной всего в раз ( 2 = 2F/(M1)).


Таким образом, получена не только качественная, но и количественная оценка зависимости для от величин F, M и 1. По порядку величины найденная степенная комбинация дает правильное значение частоты. Оценка всегда интересует по порядку величины. В простых задачах часто коэффициенты, неопределяемые методом размерностей, можно считать числами порядка единицы. Это не есть строгое правило.

• При изучении волн рассматриваю качественное прогнозирование скорости звука методом анализа размерностей. Скорость звука ищем как скорость распространения волны сжатия и разрежения в газе. У учащихся не возникает сомнений в зависимости скорости звука в газе от плотности газа и его давления p.

Ответ ищем в виде:

где С – безразмерный множитель, числовое значение которого из анализа размерности найти нельзя. Переходя в (1) к равенству размерностей.

м/c = (кг/м 3 ) x Па y ,

м/с = (кг/м 3 ) x (кг м/(с 2 м 2 )) y ,

м 1 с -1 = кг x м -3x кг y м y c -2y м -2y ,

м 1 с -1 = кг x+y м -3x + y-2y c -2y ,

м 1 с -1 = кг x+y м -3x-y c -2y .

Равенство размерностей в левой и правой части равенства дает:

x + y = 0, -3x-y = 1, -2y= -1,

x= -y, -3+x = 1, -2x = 1,

Таким образом, скорость звука в газе

Формулу (2) при С=1 впервые получил И. Ньютон. Но количественные выводы этой формулы были весьма сложны.

Экспериментальное определение скорости звука в воздухе было выполнено в коллективной работе членов Парижской Академии наук в 1738 г., в которой измерялось время прохождения звуком пушечного выстрела расстояния 30 км.

Повторяя данный материал в 11-м классе, внимание учащихся обращается на то, что результат (2) можно получить для модели изотермического процесса распространения звука с использованием уравнения Менделеева - Клапейрона и понятия плотности:

– скорость распространения звука.

• Познакомив учащихся с методом размерностей, даю им этим методом вывести основное уравнение МКТ для идеального газа.

Учащиеся понимают, что давление идеального газа зависит от массы отдельных молекул идеального газа, числа молекул в единице объема – n (концентрации молекул газа) и скорости движения молекул – .

Зная размерности величин, входящих в данное уравнение имеем:

Сравнивая размерности левой и правой части данного равенства, имеем:

Поэтому основное уравнение МКТ имеет такой вид:

- отсюда следует

Ранее было сказано, что С – безразмерный множитель, числовое значение которого из метода размерности определить нельзя.

• Рассмотрим другое применение метода размерности. Если в ответах к заданиям встречаются одни и те же физические величины в различных выражениях, расположенные произвольно, то ответ можно выбрать путем проверки единиц измерений. Приведем подобные примеры.

1. Электрон с зарядом влетел в магнитное поле со скоростью перпендикулярно линиям индукции магнитного поля и стал двигаться по окружности радиуса R. Какое выражение соответствует модулю вектора магнитной индукции магнитного поля?

А) - не подходит; (формулы автором не представлены. )

2. Спутник планеты массой М движется по круговой орбите радиуса R. Какова скорость движения спутника?

Спутник движется по окружности —>, а .

Проверим единицы измерения в В):

• В отдельных случаях единицы измерения в ответах соответствуют единицам измерения искомой величины, однако, ответ в задании верный лишь один. Тогда следует обратиться к иным способам отыскивания этой величины.

Рассмотрим тестовое решение нижеизложенной задачи.

3. Шарик массой , подвешенный на нити, длинной , вращается по окружности радиусом , в горизонтальной плоскости с угловой скоростью . Какова сила натяжения нити?


Рисунок 2. Cхема движения маятника


Б) ;

Анализ условия: ответ Г – быть не может, т.к. , а не сила. По единицам измерения ответы А и Б возможны, однако, направлены не по силе натяжения нити:

Из заштрихованного треугольника видно, что

Это мы воспользовались методом размерности.

Метод размерностей кроме осуществления традиционной проверки правильности решения задач, выполнения некоторых заданий ЕГЭ, помогает находить функциональные зависимости между различными физическими величинами, но только для тех ситуаций, когда эти зависимости степенные. Таких зависимостей в природе много, и метод размерностей - хороший помощник при решении подобных задач.

Все результаты, которые могут быть получены с помощью метода анализа размерностей, основаны на двух теоремах.

Общий вид размерности физических величин устанавливается зависимостью (1.1).

Во всяком физическом законе типа

размерности обеих частей равенства должны быть одинаковы.

В таком виде эта теорема получила название правила размерностей. В равенство типа A=B могут входить также в качестве множителей либо постоянные коэффициенты, либо безразмерные комбинации физических величин.

Пример 2.1. Необходимо найти вид зависимости для объема шара.

Теория размерностей без привлечения дополнительных данных не может привести ни к каким физическим зависимостям, поскольку в ее основы не заложено никаких физических законов. Для того, чтобы получить с помощью этой теории конкретные выводы, необходимо установить, между какими физическими величинами существуют количественные связи. На этот вопрос теория размерности не может дать никакого ответа. Это можно сделать только либо опытным путем, либо с помощью каких-то физических законов. Приведенные ниже примеры и задачи служат иллюстрацией сказанного. Вначале для лучшего понимания метода анализа размерностей приводятся простые примеры из механики.

Пример 2.2. Тело начинает движение из состояния покоя и движется с постоянным ускорением a. Найти вид зависимости для пути, проходимого телом.


Путь, проходимый телом, прежде всего, конечно, является функцией времени. Кроме того, он будет зависеть от ускорения, которое задано. Если включить в число параметров массу тела m, то необходимо учесть соотношение F = ma и таким образом включить в рассмотрение также и силу, действующую на данное тело. Возможно допустить воздействие на тело любых сил (сил сопротивления разной природы, движущих сил – внешних и внутренних и т.д.), но при заданной массе m их отношение и будет выражать ускорение.

Таким образом, при заданном ускорении формулировка задачи не выводит ее из класса кинематических задач; окончательный вид функциональной зависимости для пути

S = f (a,t)

и функция f (a,t) должна иметь размерность длины, т.е.

[S (a,t)] = [S] = L.

Согласно первой теореме функция f(a,t) является степенной относительно своих аргументов, т.е. имеет вид

= ,


где C,- некоторые постоянные. Таким образом, искомая функция имеет вид


S=Ca,

причем итакие, что выполняется условие

L=[at]. (2.1)

Обычно следующим шагом является выражение всех входящих в правую часть (2.1) величин через основные; в данном случае это необходимо сделать для ускорения a:[a]=L/t 2 =Lt –2 . Тогда из (2.1) следует

L=(Lt –2 )t.

Раскроем в последнем равенстве скобки

L=Ltt

и заметим, что в правой части последнего равенства присутствует время t, а в левой части его нет. Поэтому в левой части представляем сомножитель t 0 (он равен единице) который ничего не меняет:

L 1 t 0 =Lt.

Совершенно ясно, что если какая-либо величина находится одновременно в правой и левой части равенства типа (2.1), то показатель степени ее в левой части равен показателю степени в правой части. Например, при применении этого правила к последнему равенству будем иметь:

для показателей степеней у L


1=

для показателей степеней у t


0=.

Величины инаходим из системы уравнений


=1


=0.

Читайте также: