Роль отечественных ученых в развитии генетики кратко

Обновлено: 30.06.2024

В 20 – 30 е гг. XX в. наша генетика была на втором месте после США.

Николай Иванович Вавилов: Закон гомологических рядов в наследственной изменчивости (1922). Центры происхождения культурных растений (1927). Его фамилия была на обложке журнала Heredity.

Николай Константинович Кольцов – матричный принцип воспроизведения хромосом (1928); гигантские хромосомы дрозофилы; евгеника.

Юрий Александрович Филипченко - приват – доцент СПб. университета; 18 сентября 1913 г. им прочитана первая лекция первого курса генетики в России; один из основателей русской евгеники.

Александр Сергеевич Серебровский - делимость гена (1929).

Сергей Сергеевич Четвериков– экспериментальная генетика природных популяций на примере дрозофилы (1926).

Георгий Дмитриевич Карпеченко (1899 – 1942) – впервые в мире получил межродовые гибриды (рафанобрассика, или редечно – капустный гибрид).

Г. А. Надсон, Г. С. Филиппов – впервые индуцировали мутации у Mucor с помощью рентгеновских лучей (1925).

Борис Львович Астауров – генетика тутового шелкопряда, гиногенез, андрогенез.

Иосиф Александрович Рапопорт – химический мутагенез, супермутагены.

Николай Владимирович Тимофеев – Ресовский ("Зубр") – радиационная и популяционная генетика. Непростая судьба.

Лысенковщина

Ухудшение ситуации в советской генетике в конце 20 х гг. Группа неоламаркистов отстаивали теорию наследования приобретенных признаков. Поддержка их философами – марксистами и правительством.

1929 г. – самоубийство Пауля Камерера (австрийский неоламаркист, приглашенный в СССР на руководящую должность), арест С. С. Четверикова, его ссылка на Урал.

1939 г. – комиссия под руководством Т. Д. Лысенко в Институте экспериментальной биологии в Москве, которым руководил Н. К. Кольцов. Сняли с должности, умер в возрасте 68 лет от инфаркта. Аресты ряда других генетиков.

1940 г. – арест Н. И. Вавилова. Теперь Т. Д. Лысенко – директор Института генетики в Ленинграде. Его помощник - бывший адвокат И. И. Презент.

1936 г., 1939 г. - публичные дискуссии о генетике, их прервала война.

1948 год – августовская сессия ВАСХНИЛ, доклад Лысенко, разгром генетики. Черные списки сторонников генетики, их увольнение с работы. Вынужденная смена профессий.

Причины лысенковщины:

1. Положения генетики не обещали перспектив в воспитании человека нового типа, человека коммунистического будущего. Груз наследственности, криминальный тип личности, невозможность перевоспитания преступников, беспризорников и т. д.

2. Необходимость быстрого подъема сельского хозяйства, разрушенного в результате Великой Отечественной войны; Лысенко же обещал чудо в растениеводстве и животноводстве.

3. Субъективный фактор: И. В. Сталин и Н. С. Хрущев, вероятно, были стихийными ламаркистами. Велика также роль самого Т. Д. Лысенко, который был по-своему выдающейся личностью (тонкий психолог, гениальный интриган и т. д.).

4. В СССР была колоссальная централизация власти, имелась возможность административного управления любой сферой деятельности и жизни, в том числе и наукой.

5. Теории Лысенко никогда не проверялись в грамотном эксперименте, в лаборатории. Проверка же практикой, т. е. на полях колхозов, не была строго научной, не ставились контрольные эксперименты; имела место подделка результатов и очковтирательство.

6. Косвенная международная поддержка Лысенко (невмешательство) со стороны сочувствующих социализму ученых: Г. Меллера, Ж. Моно, Дж. Холдейна и др.

Перелом в 1957 г.: М. Е. Лобашов стал читать курс генетики в ЛГУ, в Новосибирске был создан Институт цитологии и генетики СО АН СССР (первый директор Н. П. Дубинин), И. В. Курчатов организовал радиобиологический отдел в секретном Институте атомной энергии (впоследствии лаборатория выросла в Институт молекулярной генетики РАН).

У истоков отечественной генетики стояли выдающиеся ученые, которые пришли в новую науку из традиционных биологических дисциплин – зоологии, ботаники, гидробиологии, эмбриологии. Одним из таких пионеров в генетике был Юрий Александрович Филипченко (1882-1930).

Под руководством Филипченко в 1920 г. была организована Лаборатория генетики и экспериментальной зоологии в Петергофском естественнонаучном институте (ПЕНИ) при Петроградском университете.

Он считается основоположником ленинградской генетической школы, которая дала толчок для формирования новых школ (Г.Д. Карпеченко, М.Е. Лобашева).

Важной работой Бюро по евгенике стало изучение наследования одаренности, или, говоря современным языком, социодемографическое обследование научного сообщества Петрограда начала 1920-х гг.

Сергей Сергеевич Четвериков (1880-1959) – выдающийся русский биолог, генетик-эволюционист, сделавший первые шаги в направлении синтеза менделеевской генетики и эволюционной теории Ч. Дарвина.

Четвериков выдвинул предположение о насыщении видов в природе возникающими мутациями и подчеркнул значение генетических процессов (мутация, свободное скрещивание, естественный отбор) и изоляции в видообразовании и эволюции.

В работах 20-х гг. С. С. Четвериков обосновывает основные посылки популяционной генетики:

1) Мутационный процесс в природных условиях протекает точно так же, как и в условиях лаборатории. Поэтому мы вправе распространять по крайней мере некоторые выводы, полученные в лаборатории, на природные ситуации. Один из таких выводов – непрерывное во времени возникновение новых мутаций у всех видов живых организмов, другой – рецессивность большинства вновь появляющихся мутаций по отношению к аллелям дикого типа, распространенным в природных популяциях,

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

2) Характернейшей чертой природных популяций является преобладание в них панмиксии, что делает возможным приложение Закон Харди – Вайнберга.

Вавилов Николай Иванович (1887-1943) – советский генетик, растениевод, создатель современных научных основ селекции, учения о мировых центрах происхождения культурных растений, их географическом распространении.

С 1920 г. по 1940 г. руководил многочисленными ботанико-агрономическими экспедициями. Во время путешествия по Северной, Центральной и Южной Америке (1930г.,1932-33гг.) Н.И. Вавилов посетил Мексику, Гватемалу, Гондурас, Эквадор, Перу, Чили, Боливию, Бразилию и Аргентину, где провел ценные историко-агрономические исследования. Экспедиции под его руководством открыли новые виды дикого и культурного картофеля, взятые в основу практической селекции.

Открытые им закономерности географического распределения видового и сортового состава в первичных очагах и расселения растений из этих очагов облегчают поиски необходимого растительного материала для селекции.

Материалы и коллекции экспедиций позволили впервые в СССР (1923г.) произвести в разных зонах страны опытные географические посевы культурных растений с целью изучить их изменчивость и дать им эволюционную и селекционную оценку. Таким образом, была заложена основа для организации в СССР государственного сортоиспытания полевых культур.

Под руководством и при участии Вавилова в СССР создана хранящаяся в ВИРе мировая коллекция культурных растений, насчитывающая более 300 тыс. образцов. Многие сорта различных сельскохозяйственных культур, распространенные в СССР, представляют собой результат селекционной работы с соответствующими образцами из коллекции ВИРа.

По инициативе Вавилова в стране стали выращивать новые ценные культуры: джут, тунговое дерево, многолетние эфирномасличные, лекарственные, дубильные, кормовые и другие растения. В 1919 г. обосновал учение об иммунитете растений к инфекционным заболеваниям, показав селекционерам возможности выведения иммунных сортов, среди которых особое значение имеют сорта, одновременно иммунные к нескольким заболеваниям и устойчивые против вредителей.

В 1920 г. сформулировал закон гомологических рядов наследственной изменчивости у близких видов, родов и даже семейств. Этот закон показывает одну из важнейших закономерностей эволюции, состоящую в том, что у близких видов и родов возникают сходные наследственные изменения. Пользуясь этим законом, по ряду морфологических признаков и свойств одного вида или рода можно предвидеть существование соответствующих форм у другого вида или рода. Закон облегчает селекционерам поиски новых исходных форм для скрещивания и отбора.

Вавилов дал определение линнеевскому виду как обособленной сложной подвижной морфофизиологической системе, связанной в своем генезисе с определенной средой и ареалом (1930г.).

Вавилов обосновал эколого-географические принципы селекции и принципы создания исходного материала для селекции.

По инициативе Вавилова был организован ряд новых научно-исследовательских учреждений. Так, в системе ВАСХНИЛ были созданы; Институт зернового хозяйства Юго-востока Европейской части СССР; Институт продовольства, овощеводства и субтропических культур; институты кормов, кукурузы, картофеля, хлопководства, льна, конопли, масличных культур, сои, виноградарства и чайного дела. Вавилов создал школу растениеводов, генетиков и селекционеров.

Ему принадлежат сочинения: Центры происхождения культурных растений, "Труды по прикладной ботанике и селекции", 1925, том 16, в.2; Научные основы селекции пшеницы, М.-Л., 1935; Селекция как наука, М.-Л., 1934; Ботанико-географические основы селекции, М.-Л., 1935; Закон гомологических рядов в наследственной изменчивости, 2 изд., М.-Л., 1935 и др.

(Бахтеев Ф.Х, 1958)

Кольцов Николай Константинович (1872-1940) – выдающийся русский биолог, автор идеи матричного синтеза.

Серебровский Александр Сергеевич (1892-1948) – выдающийся отечественный генетик. Основные работы в области генетики животных, теории гена, генетики популяций.

А.С. Серебровский является основателем кафедры генетики на биологическом факультете МГУ, которым заведовал с 1930 года и до конца своей жизни.

В 1931 году он организовал во Всесоюзном институте животноводства сектор генетики и селекции.

На рубеже 1920-1930-х годов выдвинул ряд важных теоретических положений: сформулировал гипотезу о делимости гена (и возможности измерения его размеров в единицах кроссинговера), ввел понятие генофонда популяции и заложил основы геногеографии.

Предложил принципиально новый метод борьбы с насекомыми-вредителями, основанный на массовом выпуске самцов вредных видов с генетическими аномалиями (1940). (Коновалов и др., 2007)

Дубинин Николай Петрович (1907-1998) – один из основателей отечественной генетики.

Н.П. Дубинин был основателем Института цитологии и генетики Сибирского отделения АН СССР.

Областью научных интересов Н.П. Дубинина была общая и эволюционная генетика, а также применение генетики в сельском хозяйстве. Вместе с А. С. Серебровским показал дробимость гена, а также явление комплементарности гена.

Опубликовал ряд важных научных работ по структуре и функциям хромосом, показал наличие в популяциях генетического груза летальных и сублетальных мутаций.

Работал также в области космической генетики и над проблемами радиационной генетики.

Автор классического учебника по генетике для студентов биологических специальностей высших учебных заведений. (Дубинин, 1986)

Лобашев Михаил Ефимович (1907-1971) – советский генетик и физиолог.

Ему принадлежат труды по физиологии процессов мутации и рекомбинации, генетике поведения.

Под руководством М.Е. Лобашева кафедра генетики ЛГУ первая в стране после 1948 г. стала давать студентам систематическое образование в области генетики.

Антон Романович Жебрак (1901-1965) – советский генетик и селекционер.

Основные научные работы в области генетики пшениц и гречихи. А.Р. Жебраку удалось получить несколько полиплоидных межвидовых гибридов пшениц. Автор 70 научных работ, в том числе 3 монографий. (Сущеня Л. М. и др.,2001)

Генетика — наука, изучающая закономерности и материальные основы наследственности и изменчивости организмов, а также механизмы эволюции живого.

Основные закономерности передачи наследственных признаков были установлены на растительных и животных организмах, они оказались приложимы и к человеку. В своем развитии генетика прошла ряд этапов.

Первый этап ознаменовался открытием Г. Менделем (1865) дискретности (делимости) наследственных факторов и разработкой гибридологического метода, изучения наследственности, т. е. правил скрещивания организмов и учета признаков у их потомства.

Дискретность наследственности состоит в том, что отдельные свойства и при знаки организма развиваются под контролем наследственных факторов (генов), которые при слиянии гамет и образовании зиготы не смешиваются, не растворяются, а при формировании новых гамет наследуются независимо друг от друга.

Значение открытий Г. Менделя оценили после того, как его законы были вновь переоткрыты в 1900 г. тремя биологами независимо друг от друга: де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии. Результаты гибридизации, полученные в первое-I десятилетие XX в. на различных растениях и животных, полностью подтвердили менделевские законы наследования признаков и показали их универсальный характер по отношению ко всем организмам, размножающимся половым путем. Закономерности наследования признаков в этот период изучались на уровне целостного организма (горох, кукуруза, мак, фасоль, кролик, мышь и др.).
Менделевские законы наследственности заложили основу теории гена — величайшего открытия естествознания XX в., а генетика превратилась в быстро развивающуюся отрасль биологии.

В 1901 —1903 гг. де Фриз выдвинул мутационную теорию изменчивости, которая сыграла большую роль в дальнейшем развитии генетики.
Важное значение имели работы датского ботаника В. Иоганнсена, который изучал закономерности наследования на чистых линиях фасоли.

Он сформулировал также понятие “популяциям (группа организмов одного вида, обитающих и размножающихся на ограниченной территории), предложил называть менделевские “наследственные факторы” словом ген, дал определения понятий “генотип” и “фенотип”.

Второй этап характеризуется переходом к изучению явлений наследственности на клеточном уровне (питоге-нетика). Т. Бовери (1902—1907), У. Сэттон и Э. Вильсон (1902—1907) установили взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления (митоз) и созревания половых клеток (мейоз).

Развитие учения о клетке привело к уточнению строения, формы и количества хромосом и помогло установить, что гены, контролирующие те или иные признаки, не что иное, как участки хромосом. Это послужило важной предпосылкой утверждения хромосомной теории наследственности.

Решающее значение в ее обосновании имели исследования, проведенные на мушках дрозофилах американским генетиком Т. Г. Морганом и его сотрудниками (1910—1911).

Ими установлено, что гены расположены в хромосомах в линейном порядке, образуя группы сцепления. Число групп сцепления генов соответствует числу пар гомологичных хромосом, и гены одной группы сцепления могут перекомбинироваться в процессе мейоза благодаря явлению кроссинго-вера, что лежит в основе одной из форм наследственной комбинативной изменчивости организмов. Морган установил также закономерности наследования признаков, сцепленных с полом.

Третий этап в развитии генетики отражает достижения молекулярной биологии и связан с использованием методов и принципов точных наук — физики, химии, математики, биофизики и др.—в изучении явлений жизни на уровне молекул. Объектами генетических исследований стали грибы, бактерии, вирусы.

На этом этапе были изучены взаимоотношения между генами и ферментами и сформулирована теория “один ген — один фермент” (Дж. Бидл и Э. Татум, 1940): каждый ген контролирует синтез одного фермента; фермент в свою очередь контролирует одну реакцию из целого ряда биохимических превращений, лежащих в основе проявления внешнего или внутреннего признака организма.

Эта теория сыграла важную роль в выяснении физической природы гена как элемента наследственной информации.

В 1953 г. Ф. Крик и Дж. Уотсон, опираясь на результаты опытов генетиков и биохимиков и на данные рентгеноструктурного анализа, создали структурную модель ДНК в форме двойной спирали. Предложенная ими модель ДНК хорошо согласуется с биологической функцией этого соединения: способностью к самоудвоению генетического материала и устойчивому сохранению его в поколениях — от клетки к клетке.

Эти свойства молекул ДНК объяснили и молекулярный механизм изменчивости: любые отклонения от исходной структуры гена, ошибки самоудвоения генетического материала ДНК, однажды возникнув, в дальнейшем точно и устойчиво воспроизводятся в дочерних нитях ДНК.

В последующее десятилетие эти положения были экспериментально подтверждены: уточнилось понятие гена, был расшифрован генетический код и механизм его действия в процессе синтеза белка в клетке. Кроме того, были найдены методы искусственного получения мутаций и с их помощью созданы ценные сорта растений и штаммы микроорганизмов — продуцентов антибиотиков, аминокислот.

В последнее десятилетие возникло новое направление в молекулярной генетике —генная инженерия — система приемов, позволяющих биологу конструировать искусственные генетические системы.

Генная инженерия основывается на универсальности генетического кода: триплеты нуклеотидов ДНК программируют включение аминокислот в белковые молекулы всех организмов — человека, животных, растений, бактерий, вирусов.

Благодаря этому можно синтезировать новый ген или выделить его из одной бактерии и ввести его в генетический аппарат другой бактерии, лишенной такого гена.

Таким образом, третий, современный этап развития генетики открыл огромные перспективы направленного вмешательства в явления наследственности и селекции растительных и животных организмов, выявил важную роль генетики в медицине, в частности, в изучении закономерностей наследственных болезней и физических аномалий человека.

Вавилов Николай Иванович (1887–1943) – выдающийся отечественный биолог; автор современной теории селекции; разработал учение о центрах происхождения культурных растений; сформулировал закон гомологических рядов (закон, согласно которому целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство.); разработал учение о виде как системе.

Дубинин Николай Петрович (р. 1907) – один из основателей отечественной генетики; доказал делимость гена; независимо от западных исследователей установил, что важную роль в эволюции играют вероятностные, генетико-автоматические процессы.

Карпеченко Георгий Дмитриевич (1899–1942) – отечественный цитогенетик, создатель редечно-капустного гибрида.

Кольцов Николай Константинович (1872–1940) – отечественный биолог; предсказал свойства носителей генетической информации; разрабатывал теорию гена; разрабатывал учение о социальной генетике (евгенике).

Лобашев Михаил Ефимович (1907–1971) – отечественный генетик. В 1956 г. проф. М.Е.Лобашев начинает читать курс классической генетики на возглавляемой им кафедре генетики в Ленинградском университете.

Надсон Георгий Адамович (1867–1940) – отечественный микробиолог; один из первооткрывателей индуцированного мутагенеза (Мутации , возникшие в результате действия химических или физических факторов).

Ромашов Дмитрий Дмитриевич (1899–1963) – отечественный генетик, Московская школа генетики

Серебровский Александр Сергеевич (1892–1948) – выдающийся отечественный генетик, ученик Н.К. Кольцова, учитель Н.П. Дубинина. Разработал линейную теорию гена, создал учение о генофонде и геногеографии, показал существование в малых изолированных популяциях стохастических процессов, играющих ключевую роль в селективно-нейтральной эволюции.

Филипченко Юрий Александрович (1882–1930) – выдающийся отечественный генетик. В 1919 г. создал кафедру генетики в Петроградском университете.

Основой современной теории отбора и подбора служат закономерности, вскрытые общей и популяционной Г., методы оценки генетических параметров популяций. Установив, что отбор эффективен лишь в том случае, когда он опирается на наследственное разнообразие особей в популяции, и что фенотип далеко не всегда соответствует генотипу, Г. обосновала необходимость оценки наследственных качеств и разнообразия селекционируемых организмов и вооружила селекцию соответствующими методами и практическими приёмами. Так, оценка наследственности качеств производителей по хозяйственно важным признакам их потомков, издавна практикуемая лучшими животноводами, получила на основе Г. научное обоснование как необходимый приём селекционно-племенной работы, особенно ценный в связи с распространением метода искусственного осеменения. В основе методов индивидуального отбора у растений также лежат генетические представления о чистых линиях, о гомо- и гетерозиготности и о нетождественности фенотипа и генотипа. Генетические закономерности независимого наследования и свободного комбинирования признаков в потомстве послужили теоретической основой гибридизации и скрещивания, которые наряду с отбором входят в число основных методов селекции. На основе гибридизации и отбора советскими селекционерами П. П. Лукьяненко, В. С. Пустовойтом, В. Н. Мамонтовой, В. Я. Юрьевым, В. П. Кузьминым, А. Л. Мазлумовым, М. И. Хаджиновым, П. И. Лисицыным и др. созданы замечательные сорта зерновых, технических и др. культур. Важнейшее значение для повышения эффективности селекции растений имеют закон гомологических рядов Н. И. Вавилова, его учение о генцентрах происхождения культурных растений, а также его теории отдалённых эколого-географических скрещиваний и иммунитета.

Биология - очень объемная наука, которая охватывает все стороны жизни каждого живого существа, начиная от строения его микроструктур внутри тела и заканчивая связью с внешней средой и космосом. Именно поэтому разделов у этой дисциплины очень много. Однако одним из самых молодых, но перспективных и имеющих сегодня особенно важное значение является генетика. Она зародилась позже остальных, но сумела стать самой актуальной, важной и объемной наукой, имеющей собственные цели, задачи и объект изучения. Рассмотрим, какова история развития генетики и что представляет собой эта ветвь биологии.

история развитии генетики

Генетика: предмет и объект изучения

Свое название наука получила только в 1906 году по предложению англичанина Бэтсона. Определение ей можно дать следующее: это дисциплина, изучающая механизмы наследственности, ее изменчивости у разных видов живых существ. Следовательно, основной целью генетики является выяснение строения структур, ответственных за передачу наследственных признаков, и исследование самой сути этого процесса.

Объектами изучения являются:

  • растения;
  • животные;
  • бактерии;
  • грибы;
  • человек.

Таким образом, она охватывает вниманием все царства живой природы, не забыв ни одного из представителей. Однако на сегодняшний день максимально поставлены на поток исследования именно одноклеточных простейших существ, все эксперименты по генетике проводятся на них, а также на бактериях.

Чтобы прийти к имеющимся теперь результатам, история развития генетики прошла длинный и тернистый путь. В разные периоды времени она подвергалась то интенсивному развитию, то полному забвению. Однако в итоге все же получила достойное место среди всей семьи биологических дисциплин.

история развития генетики кратко

История развития генетики кратко

Чтобы охарактеризовать основные вехи становления рассматриваемой ветви биологии, следует обратиться в не столь далекое прошлое. Ведь свое начало генетика берет из XIX века. А официальной датой ее зарождения как полностью обособленной дисциплины считается 1900 год.

Кстати, если говорить совсем уже об истоках, то следует заметить попытки селекции растений, скрещивания животных еще очень давно. Ведь этим занимались земледельцы и скотоводы еще в XV веке. Просто происходило это не с научной точки зрения.

Таблица "История развития генетики" поможет освоить ее главные исторические моменты становления.

Гибридологические исследования в области растений (исследование поколений на примере вида гороха)

Грегори Мендель (1866 год)

В приведенной выше таблице история развития генетики кратко отображена. Далее рассмотрим более подробно главные открытия разных периодов.

Основные открытия XIX века

Главными трудами этого периода стали работы трех ученых из разных стран:

  • в Голландии Г. де Фриз - изучение особенностей наследования признаков у гибридов разных поколений;
  • в Германии К. Корренс - сделал то же самое на примере кукурузы;
  • в Австрии К. Чермак - повторил опыты Менделя на посевном горохе.

Все эти открытия базировались на написанных 35 годами ранее работах Грегори Менделя, который проводил многолетние исследования и все результаты фиксировал в научных трудах. Однако эти данные не вызвали интереса у его современников.

В этот же период история развития генетики включает в себя ряд открытий по изучению половых клеток человека и животных. Доказано, что некоторые признаки, которые передаются по наследству, закрепляются без изменений. Другие же являются индивидуальными для каждого организма и выступают результатом приспособления к условиям окружающей среды. Работы проводились Страсбургером, Чистяковым, Флеммингом и многими другими.

история развития генетики гибридологический метод

Развитие науки в XX веке

Так как официальной датой рождения считается 1900 год, то неудивительно, что именно в XX веке вершилась история развития генетики. Гибридологический метод исследования, созданный к этому времени, позволяет медленно, но верно получать потрясающие результаты.

Создание новейших достижений техники дает возможность заглянуть в микроструктуры - это еще более продвигает генетику вперед в развитии. Так, были установлены:

  • структуры ДНК и РНК;
  • механизмы их синтеза и репликации;
  • молекула белка;
  • особенности наследования и закрепления;
  • локализация отдельных признаков в хромосомах;
  • мутации и их проявления;
  • появился доступ к управлению генетическим аппаратом клетки.

Наверное, одним из самых важных в этот период открытий стала расшифровка ДНК. Это было сделано Уотсоном и Криком в 1953 году. В 1941-м было доказано, что признаки кодируются в белковых молекулах. С 1944 по 1970 г. сделаны максимальные открытия в области строения, репликации и значения ДНК и РНК.

история развития медицинской генетики

Современная генетика

История развития генетики как науки на современном этапе проявляется в интенсификации разных ее направлений. Ведь сегодня существуют:

    ;
  • молекулярная генетика;
  • медицинская;
  • популяционная;
  • радиационная и прочие.

Вторую половину XX и начало XXI века для рассматриваемой дисциплины принято считать геномной эрой. Ведь современные ученые вмешиваются уже непосредственно в весь генетический аппарат организма, учатся изменять его в нужную сторону, управлять происходящими там процессами, снижать патологические проявления, купировать их в корне.

история развития генетики как науки

История развития генетики в России

В нашей стране рассматриваемая наука начала свое интенсивное становление лишь во второй половине XX века. Все дело в том, что долгое время наблюдался период застоя. Это времена правления Сталина и Хрущева. Именно в эту историческую эпоху случился раскол в ученых кругах. Т. Д. Лысенко, имевший власть, заявил о том, что все исследования в области генетики недействительны. А сама она не является наукой вообще. Заручившись поддержкой Сталина, он всех известных генетиков того времени отправил на смерть. Среди них:

  • Вавилов;
  • Серебровский;
  • Кольцов;
  • Четвериков и другие.

Многие вынуждены были подстраиваться под требования Лысенко, чтобы избежать смерти и продолжать исследования. Некоторые эмигрировали в США и другие страны.

Только после ухода с поста Хрущева генетика в России получила свободу в развитии и интенсивный рост.

история развития генетики в россии

Отечественные ученые-генетики

Самыми значительными открытиями, которыми может гордиться рассматриваемая наука, стали и те, что осуществились нашими соотечественниками. История развития генетики именно в России связана с такими именами, как:

  • Николай Иванович Вавилов (учение об иммунитете растений, закон гомологических рядов и прочее);
  • Николай Константинович Кольцов (химический мутагенез);
  • Н. В. Тимофеев-Ресовский (основоположник радиационной генетики);
  • В. В. Сахаров (природа мутаций);
  • М. Е. Лобашев (автор методических пособий по генетике);
  • А. С. Серебровский;
  • К. А. Тимирязев;
  • Н. П. Дубинин и многие другие.

Этот список можно продолжать еще долго, ведь во все времена русские умы были великими во всех отраслях и научных областях знаний.

Направления в науке: медицинская генетика

История развития медицинской генетики берет свое начало гораздо раньше, чем общая наука. Ведь еще в XV-XVIII веках были доказаны явления передачи по наследству таких заболеваний, как:

  • полидактилия;
  • гемофилия;
  • прогрессирующая хорея;
  • эпилепсия и прочие.

Была установлена отрицательная роль инцеста в сохранении здоровья и нормального развития потомства. Сегодня этот раздел генетики является очень важной областью медицины. Ведь именно он позволяет контролировать проявления и купировать многие генетические мутации еще на стадии эмбрионального развития плода.

таблица история развития генетики

Генетика человека

История развития генетики человека берет свое начало намного позже общей генетики. Ведь заглянуть внутрь хромосомного аппарата людей стало возможным лишь при использовании самых современных технических устройств и методов исследования.

Человек стал объектом генетики в первую очередь с точки зрения медицины. Однако основные механизмы наследования и передачи признаков, закрепления и проявления их у потомства для людей ничем не отличаются от таковых у животных. Поэтому не обязательно объектом исследования использовать именно человека.

Читайте также: