Релейные системы управления кратко

Обновлено: 02.07.2024

Реле – это переключатель. Причем не совсем обычный. Когда в подъезде лампочка загорается от звука шагов, это не волшебство, это работает реле. В этой статье расскажем о назначении реле и принципе его работы.

Существует очень много типов и классификаций реле. Но мы поговорим не только о них, но и о том, что такое реле и как оно работает. Поехали!

Что такое реле

Определение реле таково:

Реле – это электромагнитное коммутационное устройство, предназначенное для установки и разрыва соединений в электрических цепях. Реле срабатывает при скачкообразном изменении входной величины.

Говоря проще, когда входная величина меняется (ток, напряжение), реле замыкает или размыкает цепь. При этом в зависимости от типа реле входная величина не обязательно имеет электрическую природу.

Как работает реле?

Во-первых, вспомним Джозефа Генри, с именем которого связано понятие индуктивности. Провод, по которому течет ток, является магнитом. Если мы намотаем провод витками на сердечник, то получится катушка индуктивности.

Как катушка индуктивности ведет себя в цепи переменного тока? Если катушку включить в цепь, то фаза тока в цепи будет отставать от напряжения. Другими словами, при максимальном значении напряжения ток будет минимален и наоборот.

Это связано с тем, что когда катушка включена в цепь, в ней возникает ЭДС самоиндукции, которая препятствует росту основного тока через катушку.

Теперь вернемся к реле. Простейшее электромагнитное реле состоит из электромагнита (катушки), якоря и соединяющих элементов. При подаче электрического тока на катушку она притягивает якорь с контактом, который замыкает цепь.

Чтобы представить все это, посмотрим на рисунок:


Здесь 1 - катушка, 2 - якорь, 3 - коммутационные контакты.

Реле имеет две цепи: управляющую и управляемую. Управляющая цепь – это цепь, через которую ток подается на катушку. Управляемая – цепь, которую и замыкает якорь при срабатывании реле.

Таким образом, реле позволяет контролировать большие токи в управляемой цепи при помощи слаботочной управляющей цепи.

На каждом реле есть обозначения контактов управляемой и управляющей цепи. Также на корпусе изделия указаны значения тока и напряжения, на которые рассчитано реле.


Электромагнитное реле, рассмотренное выше, не работает мгновенно. После подачи тока на катушку должно пройти какое-то время, и лишь потом реле сработает. Это связано с таким явлением, как гистерезис. Гистерезис переводится с латинского как отставание или запаздывание.

Мы уже говорили про ЭДС самоиндукции, возникающую в катушке. Когда реле включается в цепь, в катушке начинает течь ток, но сила тока нарастает постепенно. Нарастание тока в катушке можно представить в виде петли гистерезиса. Когда нужное значение силы тока достигнуто, реле срабатывает.

По этой причине реле не используются в самой быстродействующей аппаратуре, где время срабатывания должно быть сведено практически к нулю.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Типы реле

В зависимости от входной величины, на которую реагирует реле, бывают:

  • реле тока;
  • реле напряжения;
  • реле частоты;
  • реле мощности.

Также в зависимости от принципа действия различают:

  • электромагнитные реле;
  • магнитоэлектрические реле;
  • тепловые реле;
  • индукционные реле;
  • полупроводниковые реле.

Применение реле

В основном реле применяются для защиты силовой аппаратуры от перенапряжений, в электронике автомобилей. Реле также присутствуют во многих бытовых приборах. В чайнике используется тепловое реле. В каждом холодильнике есть пусковое реле.

Джозеф Генри изобрел реле в 1835 году. Первые реле нашли свое предназначение в телеграфии.

Например, логично предположить, что реле тока служит для контроля силы тока в цепи.

Так, при перегрузках на электродвигателе включается реле тока, которое своими контактами включает реле времени. По прошествии допустимого времени работы двигателя в режиме перегрузки реле времени разрывает цепь.


Конечно, сначала все это может показаться сложным и запутанным. Однако если начать разбираться и приложить немного усилий, вы в скором времени сами сможете не только рассказать про устройство и принцип действия реле, но и успешно заняться его подключением. А в будущем, возможно, стать специалистом по релейной защите.

Когда есть студенческий сервис, специалисты которого готовы оказать помощь в любое время, больше не нужно бояться трудных предметов и строгих преподавателей.

Напоследок видео, в котором подробно, наглядно и просто рассказывается о том, как работает реле:

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Электромагнитные реле управления, как работает реле, устройство, виды и характеристики

Реле - электрический аппарат, предназначенный для коммутации электрических цепей (скачкообразного изменения выходных величин) при заданных изменениях электрических или не электрических входных величин.

Релейные элементы (реле) находят широкое применение в схемах управления и автоматики, так как с их помощью можно:

  • управлять большими мощностями на выходе при малых по мощности входных сигналах;
  • выполнять логические операции;
  • создавать многофункциональные релейные устройства;
  • осуществлять коммутацию электрических цепей;
  • фиксировать отклонения контролируемого параметра от заданного уровня;
  • выполнять функции запоминающего элемента и т. д.

Электромагнитные реле на промышленном предприятии

Первое реле было изобретено американцем Дж. Генри в 1831 г. и базировалась на электромагнитном принципе действия, следует отметить что первое реле было не коммутационным, а первое коммутационное реле изобретено американцем С. Бризом Морзе в 1837 г. которое в последствии он использовал в телеграфном аппарате.

Слово реле возникло от английского relay, что означало смену уставших почтовых лошадей на станциях или передачу эстафеты (relay) уставшим спортсменом.

На использовании электромагнитных реле построены все схемы автоматики с релейно-контактным управлением. До начал массового использования программируемых логических контроллеров реле были самыми важными элементами автоматики.

А вы это занете?

Реле классифицируются по различным признакам:

  • по виду входных физических величин, на которые они реагируют;
  • по функциям,
  • которые они выполняют в системах управления;
  • по конструкции и т. д.

По виду физических величин различают электрические, механические, тепловые, оптические, магнитные, акустические и т.д. реле. При этом следует отметить, что реле может реагировать не только на значение конкретной величины, но и на разность значений (дифференциальные реле), на изменение знака величины (поляризованные реле) или на скорость изменения входной величины.

Реле обычно состоит из трех основных функциональных элементов: воспринимающего, промежуточного и исполнительного.

Устройство электромагнитного реле

Воспринимающий (первичный) элемент воспринимает контролируемую величину и преобразует её в другую физическую величину.

Промежуточный элемент сравнивает значение этой величины с заданным значением и при его превышении передает первичное воздействие на исполнительный элемент.

Исполнительный элемент осуществляет передачу воздействия от реле в управляемые цепи. Все эти элементы могут быть явно выраженными или объединёнными друг с другом.

Воспринимающий элемент в зависимости от назначения реле и рода физической величины, на которую он реагирует, может иметь различные исполнения, как по принципу действия, так и по устройству.

Например, в реле максимального тока или реле напряжения воспринимающий элемент выполнен в виде электромагнита, в реле давления – в виде мембраны или сильфона, в реле уровня – в вице поплавка и т.д.

По устройству исполнительного элемента реле подразделяются на контактные и бесконтактные.

Контактные реле воздействуют на управляемую цепь с помощью электрических контактов, замкнутое или разомкнутое состояние которых позволяет обеспечить или полное замыкание или полный механический разрыв выходной цепи.

Бесконтактные реле воздействуют на управляемую цепь путём резкого (скачкообразного) изменения параметров выходных электрических цепей (сопротивления, индуктивности, емкости) или изменения уровня напряжения (тока).

Основные характеристики реле определяются зависимостями между параметрами выходной и входной величины.

Различают следующие основные характеристики реле.

1. Величина срабатывания Хср реле – значение параметра входной величины, при которой реле включается. При Х Хср величина У скачком изменяется от Уmin до Уmax и реле включается. Величина срабатывания, на которую отрегулировано реле, называется уставкой.

2. Мощность срабатывания Рср реле – минимальная мощность, которую необходимо подвести к воспринимающему органу для перевода его из состояния покоя в рабочее состояние.

3. Управляемая мощность Рупр – мощность, которой управляют коммутирующие органы реле в процессе переключении. По мощности управления различают реле цепей малой мощности (до 25 Вт), реле цепей средней мощности (до 100 Вт) и реле цепей повышенной мощности (свыше 100 Вт), которые относятся к силовым реле и называются контакторами.

4. Время срабатывания tср реле – промежуток времени от подачи на вход реле сигнала Хср до начала воздействия на управляемую цепь. По времени срабатывания различают нормальные, быстродействующие, замедленные реле и реле времени. Обычно для нормальных реле tср = 50…150 мс, для быстродействующих реле tср -1 с.

Конструкция электромагнитного реле

Принцип действия и устройство электромагнитных реле

Электромагнитные реле, благодаря простому принципу действия и высокой надежности, получили самое широкое применение в системах автоматики и в схемах защиты электроустановок. Электромагнитные реле делятся на реле постоянного и переменного тока.

Реле постоянного тока делятся на нейтральные и поляризованные. Нейтральные реле одинаково реагируют на постоянный ток обоих направлений, протекающий по его обмотке, а поляризованные реле реагируют на полярность управляющего сигнала.

Работа электромагнитных реле основана на использовании электромагнитных сил, возникающих в металлическом сердечнике при прохождении тока по виткам его катушки. Детали реле монтируются на основании и закрываются крышкой.

Над сердечником электромагнита установлен подвижный якорь (пластина) с одним или несколькими контактами. Напротив них находятся соответствующие парные неподвижные контакты.

В исходном положении якорь удерживается пружиной. При подаче напряжения электромагнит притягивает якорь, преодолевая её усилие, и замыкает или размыкает контакты в зависимости от конструкции реле. После отключения напряжения пружина возвращает якорь в исходное положение.

В некоторые модели, могут быть встроены электронные элементы. Это резистор, подключенный к обмотке катушки для более чёткого срабатывания реле, или (и) конденсатор, параллельный контактам для снижения искрения и помех.

Управляемая цепь электрически никак не связана с управляющей, более того в управляемой цепи величина тока может быть намного больше чем в управляющей. То есть реле по сути выполняют роль усилителя тока, напряжения и мощности в электрической цепи.

Когда через катушку электромагнитного реле начинает течь управляющий ток, якорь подтягивается к сердечнику с катушкой и замыкает подвижные контакты. Это запускает управляемое устройство в работу. В то же время для притяжения якоря достаточно гораздо меньшего управляющего тока, чем ток, протекающий по цепи управляющего устройства.

Реле переменного тока срабатывают при подаче на их обмотки тока определенной частоты, то есть основным источником энергии является сеть переменного тока.

Конструкция реле переменного тока напоминает конструкцию реле постоянного тока, только сердечник и якорь изготавливаются из листов электротехнической стали, чтобы уменьшить потери на гистерезис и вихревые токи.

Достоинства и недостатки электромагнитных реле

  • способность коммутации нагрузок мощностью до 4 кВт при объеме реле менее 10 см3;
  • устойчивость к импульсным перенапряжениям и разрушающим помехам, появляющимся при разрядах молний и в результате коммутационных процессов в высоковольтной электротехнике;
  • исключительная электрическая изоляция между управляющей цепью (катушкой) и контактной группой — последний стандарт 5 кВ является недоступной мечтой для подавляющего большинства полупроводниковых ключей;
  • малое падение напряжения на замкнутых контактах, и, как следствие, малое выделение тепла: при коммутации тока 10 А малогабаритное реле суммарно рассеивает на катушке и контактах менее 0,5 Вт, в то время как симисторное реле отдает в атмосферу более 15 Вт, что, во-первых, требует интенсивного охлаждения, а во-вторых, усугубляет парниковый эффект на планете;
  • экстремально низкая цена электромагнитных реле по сравнению с полупроводниковыми ключами

Отмечая достоинства электромеханики, отметим и недостатки реле: малая скорость работы, ограниченный (хотя и очень большой) электрический и механический ресурс, создание радиопомех при замыкании и размыкании контактов и, наконец, последнее и самое неприятное свойство — проблемы при коммутации индуктивных нагрузок и высоковольтных нагрузок на постоянном токе.

Типовая практика применения мощных электромагнитных реле — это коммутация нагрузок на переменном токе 220 В или на постоянном токе от 5 до 24 В при токах коммутации до 10–16 А.

Обычными нагрузками для контактных групп мощных реле являются нагреватели, маломощные электродвигатели (например, вентиляторы и сервоприводы), лампы накаливания, электромагниты и прочие активные, индуктивные и емкостные потребители электрической мощности в диапазоне от 1 Вт до 2–3 кВт.

Поляризованные электромагнитные реле

Разновидностью электромагнитных реле являются поляризованные электромагнитные реле. Их принципиальное отличие от нейтральных реле состоит в способности реагировать на полярность управляющего сигнала.

Твердотельные реле

В настоящее время все чаще функции реле выполняют полупроводниковые схемы - твердотельные реле (SSR - Solid-State-Relay).

Поскольку это полупроводниковый переключающий элемент, он не содержит (в отличие от электромагнитного реле) каких-либо движущихся частей, которые могут изнашиваться при частом переключении. Другими преимуществами являются бесшумность работы и меньшие размеры при той же мощности переключения. И последнее, но не менее важное: скорость переключения выше, чем у электромагнитных реле.

С другой стороны, недостатком твердотельных реле является более высокое падение напряжения на переключающем элементе и, как правило, необходимость охлаждения такого реле с помощью дополнительного пассивного радиатора. Другим недостатком, связанным с меньшим расширением SSR на практике, является более высокая цена по сравнению с электромагнитными реле.

В отличие от полупроводников в твердотельном реле, электромагнитное реле позволяет гальванически (электрически) разделить цепь управления и цепь управления (смотрите - Что такое гальваническая развязка).

Твердотельные реле часто используется в автоматическом управлении электрическим нагревом, когда нагреватель включается и выключается через короткие переменные интервалы (широко-импульсная модуляция, ШИМ) для регулирвания температуры нагревателей.

Электромагнитные реле в шкафу управления

Самые распространенные серии электромагнитных реле управления

Реле промежуточное серии РПЛ . Реле предназначены для применения в качестве комплектующих изделий в стационарных установках, в основном в схемах управления электроприводами при напряжении до 440В постоянного тока и до 660 В переменного тока частотой 50 и 60 Гц.

Реле пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки ограничителем ОПН или при тиристорном управлении. При необходимости на промежуточное реле может быть установлена одна из приставок ПКЛ и ПВЛ. Номинальный ток контактов – 16А

Реле промежуточное серии РПУ-2М. Реле промежуточные РПУ-2М предназначены для работы в электрических цепях управления и промышленной автоматики переменного тока напряжением до 415В, частоты 50Гц и постоянного тока напряжением до 220В.

Реле серии РПУ-0, РПУ-2, РПУ-4. Реле изготавливаются с втягивающими катушками постоянного тока на напряжения 12, 24, 48, 60, 110, 220 В и токи 0,4 - 10 А и втягивающими катушками переменного тока - на напряжения 12, 24, 36, 110, 127, 220, 230, 240, 380 и токаи 1 - 10 А. Реле РПУ-3 с втягивающими катушками постоянного тока - на напряжения 24, 48, 60, 110 и 220 В.

Реле промежуточное серии РП-21 предназначены для применения в цепях управления электроприводами переменного тока напряжением до 380В и в цепях постоянного тока напряжением до 220В. Реле РП-21 комплектуются розетками под пайку, под дин. рейку или под винт.

Основные характеристики реле РП-21:

  • Диапазон напряжений питания, В: постоянного тока - 6, 12, 24, 27, 48, 60, 110, переменного тока частоты 50 Гц - 12, 24, 36, 40, 110, 127, 220, 230, 240, переменного тока частоты 60 Гц - 12, 24, 36, 48, 110, 220, 230, 240.
  • Номинальное напряжение цепи контактов, В: реле постоянного тока - 12. 220, реле переменного тока - 12. 380 Номинальный ток - 6,0 А.
  • Количество контактов замык. / размык. / перекл. - 0. 4 / 0. 2 / 0. 4.
  • Механическая износостойкость - не менее 20 млн. циклов.

Большое распространение в системах автоматики станков, механизмов и машин получили электромагнитные реле постоянного тока серии РЭС-6 в качестве промежуточного реле напряждением 80 - 300 В, коммутируемый ток 0,1 - 3 А

В качестве промежуточных применяются также электромагнитные реле серий РП-250, РП-321, РП-341, РП-42 и ряд других, которые могут использоваться и как реле напряжения.

Как выбрать электромагнитное реле

Рабочие напряжения и токи в обмотке реле должны находится в пределах допустимых значений. Уменьшение рабочего тока в обмотке приводит к снижению надежности контактирования, а увеличение к перегреву обмотки, снижению надежности реле при максимально-допустимой положительной температуре.

Нежелательна даже кратковременная подача на обмотку реле повышенного рабочего напряжения, так как при этом возникают механические перенапряжения в деталях магнитопровода и контактных групп, а электрическое перенапряжение обмотки при размыкании ее цепи может вызвать пробой изоляции.

При выборе режима работы контактов реле необходимо учитывать значение и род коммутируемого тока, характер нагрузки, общее количество и частоту коммутации.

При коммутации активных и индуктивных нагрузок наиболее тяжелым для контактов является процесс размыкания цепи, так как при этом из-за образования дугового разряда происходит основной износ контактов.

Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. По факту, это автоматический выключатель, который соединяет или разъединяет электроцепи при достижении установленных значений или под внешним воздействием. Реле применяются в промышленности для автоматизации технологических процессов, в бытовой технике, которая есть в каждом доме, например в холодильниках и стиральных машинках, для защиты сети от слишком высоких или слишком низких параметров тока. Выбор нужного устройства упрощает классификация реле по различным признакам.

Содержание статьи

Общее описание конструкции

  • Воспринимающий. Это первичный элемент, который воспринимает контролируемую величину и преобразует ее в другую физическую величину.
  • Промежуточный. Сравнивает полученное значение с заданным параметром. Если это значение выше или ниже заданного параметра, то на исполнительный элемент передается первичное воздействие.
  • Исполнительный. Этот элемент передает воздействие в цепи, управляемые реле. В результате такого воздействия может произойти: размыкание или соединение управляемой цепи, переключение параметров тока.

Исполнение и принцип действия первичного элемента зависят от того, какое назначение имеет реле и на какую физическую величину (сила тока, напряжение, свет, тепло и т.п.) оно настроено.

Основные характеристики реле

Независимо от вида и принципа действия реле, выделяют несколько параметров, на которые обращают внимание при выборе этого прибора:

  • Время срабатывания – промежуток времени между поступлением управляющего сигнала и воздействием на управляемые цепи.
  • Коммутируемая мощность – допустимая мощность электроцепи или электроустановки, которой будет управлять реле.
  • Уставка – обычно это регулируемый параметр, который определяет величину поступающего параметра (тока, напряжения, частоты, давления, температуры), при которой происходит срабатывание реле.

Виды реле: контактные и бесконтактные

По устройству исполнительного компонента реле делят на контактные и бесконтактные.

Контактные

Воздействуют на управляемую цепь с помощью электрических контактов. Их размыкание или замыкание полностью разъединяет или замыкает электроцепь. Для изготовления контактов используются: медь, серебро, вольфрам. Количество контактов – до 10 штук. Четырех- и пятиконтактные реле используются в электрических схемах автомобилей для включения и переключения цепей.

Бесконтактные

Такие реле воздействуют на управляемую цепь способом изменения электрических параметров выходных электроцепей – емкости, сопротивления, индуктивности, величины тока или напряжения.

Классификация реле по способу включения

Первичные

Эти устройства включаются непосредственно в цепь элемента, для защиты которого они предназначены. Их преимущества – не требуются измерительные трансформаторы, источники оперативного тока, контрольные кабели.

Вторичные

Подключаются в цепь с использованием вторичных трансформаторов. Это наиболее распространенный вид реле. Их преимущества – изоляция от высокого напряжения, возможность расположить устройство в месте, удобном для обслуживания. Вторичные реле выпускаются стандартными. Они рассчитаны на ток 5 (1) А и напряжение 100 В и могут устанавливаться в любые электроцепи, независимо от их тока и напряжения.

Виды реле по назначению

По назначению эти устройства бывают трех типов – управления, защиты, сигнализации.

Реле управления

Эти реле являются первичными. Монтируются непосредственно в электроцепь. Их роль – включение и выключение отдельных элементов схемы. Могут использоваться самостоятельно или в качестве комплектующих низковольтных комплектных устройств – ящиков, панелей, шкафов.

Реле защиты

Выполняют функции включения, отключения и защиты устройств, имеющих термические контакты – электродвигателей, вентиляторов. При превышении температуры термические контакты размыкаются. Оборудование может восстановить работу только после остывания термоконтактов до установленной температуры.

Сигнализации

Такие реле устанавливают в охранных системах автотранспорта, предприятий, придомовых территорий. Служат для формирования сигнала при достижении установленной величины параметра, который находится под контролем (ток, напряжение, частота, давление, температура, акустические параметры и другие).

Разновидности электромеханических реле

Наиболее распространенный вид электрических реле – электромеханические. К ним относятся: электромагнитные, индукционные, электротепловые устройства.

Электромагнитные

Один из видов электрических реле электромагнитное. В конструкции этого устройства имеются: обмотка со стальным сердечником, группа подвижных контактов, замыкающих и размыкающих управляемую электроцепь. Рассмотрим принцип их действия:

  • На катушку сердечника подается управляющий ток.
  • В сердечнике под воздействием электрического тока создается магнитное поле, притягивающее контактную группу.
  • В зависимости от типа реле, контакты замыкают или размыкают электрическую цепь.

Разновидность электромагнитных реле – поляризованные, которые отличаются от нейтральных способностью реагировать на полярность управляющего сигнала. Размыкание или замыкание контактов зависит от полярности подключения электромагнита. Обладают более высокой чувствительностью, по сравнению с нейтральными реле. Такие устройства могут использоваться только в цепях постоянного тока.

Электротепловые (термические)

Тепловые реле представляют собой комплекс биметаллических пластин, для изготовления которых используются металлы с разным коэффициентом расширения при нагреве. Такие реле могут использоваться в качестве защитных устройств: при превышении температуры, установленной регулятором, контакты разъединяются, и поступление тока на потребителя прекращается.

Обычно тепловые реле используются в бытовых одно- и трехфазных сетях при подключении электрических двигателей. При увеличении нагрузки на двигатель выше установленной величины происходит нагрев биметаллического реле, которое при достижении определенной температуры размыкает электрическую цепь. Двигатель прекращает работу. После остывания биметаллических пластин цепь замыкается и двигатель возобновляет работу. Термические устройства могут оснащаться колесиком, с помощью которого регулируется температура отключения двигателя, и кнопкой принудительного запуска.

Существует разновидность термических реле, в которых биметаллические пластины заменены легкоплавящимся сплавом. Они срабатывают практически мгновенно – при достижении определенной температуры металл расплавляется и цепь размыкается. Принцип действия таких устройств похож на принцип действия предохранителей. После срабатывания такое реле, установленное непосредственно на оборудовании в качестве последней защиты от перегорания, подлежит замене.

Индукционные

Другие виды электрических реле

Твердотельные

Эти электронные устройства компактны и долговечны, благодаря отсутствию трущихся механических частей. Работу механики здесь выполняют полупроводниковые элементы – биполярные и МОП-транзисторы, тиристоры, симисторы. По сравнению с твердотельными, они имеют следующие преимущества:

  • Низкий уровень шума при работе.
  • Очень высокая наработка на отказ, которая в 100 раз и более превышает ресурс электромагнитных устройств.
  • Быстродействие, составляющее доли миллисекунд, у электромагнитных 50 мс – 1с.
  • Электропотребление ниже на 95 %.

Однако твердотельные реле имеют не только достоинства, но и недостатки. Одним из них является слабая устойчивость к импульсным перенапряжениям, которые электромагнитным реле практически не страшны. При использовании твердотельных реле необходимо предусмотреть схемотехническое решение, которое ограничивает эти импульсы. Есть и еще минусы – нагрев при работе, наличие токов утечки, приводящих к наличию напряжения на фазном проводе даже при отключенном реле.

Твердотельные реле применяют в системах регулирования температуры, в которых в качестве нагревателей используются ТЭНы, в промышленной автоматике, телеметрии, механизмах оборудования, используемого в металлургической и химической индустрии, в медоборудовании, военной электронике.

Герконовые

Реле этого типа представляют собой герконовую катушку. Это баллон, заполненный инертным газом, или внутри которого создан вакуум. Внутри баллона располагают соединительные элементы из пермаллоя – прецизионного сплава (сплава с точно заданным химическим составом), включающего железо и никель. Эти соединительные элементы имеют вид проволоки с контактами. Их покрывают серебряным или золотым напылением. Геркон размещают в середине электрического магнита или в пределах действия его поля. При подаче тока на обмотку электромагнита образуется магнитный поток, который запирает контакты. Герконовые реле могут выполнять функции: замыкающие, переключающие, размыкающие. Преимущества этих устройств – компактные габариты, доступная цена, отсутствие трущихся частей, что продлевает срок службы. Тот факт, что контактная группа располагается в инертном газе или вакууме и надежно защищена от влаги, повышает надежность реле.

При использовании герконовых реле следует избегать:

  • близкого присутствия источника ультразвука, который будет негативно влиять на работоспособность;
  • воздействия постороннего магнитного поля;
  • механических повреждений.

Колба изготавливается обычно из стекла, поэтому ее нужно всячески оберегать от механических воздействий. При разбитой колбе контактная группа срабатывать не будет. Герконовые реле можно использовать только в системах, в которых параметры электропитания находятся в пределах, установленных в технической документации. При подаче слишком высоких токов произойдет размыкание контактов. Нарушения в работе герконовых реле наблюдаются и в случаях подачи тока слишком низкой частоты.

Фотоэлектронные (фотореле)

Основой фотоэлектронного реле является полупроводниковый элемент – фоторезистор, сопротивление которого изменяется в зависимости от изменения освещенности. Фотореле – прибор, широко применяемый коммунальными службами. Он надежен в работе и обеспечивает существенную экономию электроэнергии и безопасность на улицах. При повышении освещенности все осветительное оборудование отключается, а при наступлении темноты – включается. Большинство таких приборов оснащено регулятором порога срабатывания и механическим выключателем.

Виды реле по типу поступающего параметра

Реле тока

Реле тока реагируют на резкие перепады тока и при необходимости отключают отдельную нагрузку или всю систему электроснабжения. Величина максимального тока, при которой необходимо отключить потребителей, устанавливается регулятором.

Реле напряжения

Реле напряжения реагируют на величину напряжения и включаются через трансформаторы напряжения. Используются для контроля фаз напряжения в электросетях и защиты электроприборов. Основой такого реле является контроллер быстрого реагирования, отслеживающий отклонения напряжения за установленные пределы. Общепринятый стандарт срабатывания таких реле – ниже 170 В и выше 250 В.

Реле частоты

Реле мощности

Устройство, ограничивающее мощность, действует аналогично ограничителю тока нагрузки. При превышении установленного порога мощности происходит отключение потребителя. Реле ограничения мощности часто оснащаются функцией автоматического повторного включения. То есть, после снижения нагрузки работа оборудования возобновляется автоматически.

Реле давления

Реле давления – важнейший прибор, используемый в насосном оборудовании для контроля перепадов давления воды, масла, нефти, воздуха. Различают два основных типа таких приборов – электромеханические и электронные.

Электромеханические реле имеют в конструкции особый элемент, реагирующий на изменение давления в системе, – гибкую мембрану, которая изгибается под напором жидкости (воздуха) в системе. Она соединяется с двумя пружинами, одна из которых настраивается на минимально допустимый напор, а вторая – на разницу между верхней и нижней границами давления в системе. При снижении давления в системе ниже минимального порога реле включает насосное оборудование, при превышении верхнего порога – отключает. Это простые и надежные устройства, но не очень удобные в эксплуатации. Оператору приходится регулярно проверять настройки и при необходимости их корректировать.

Электронные устройства имеют более сложную конструкцию. Пределы можно устанавливать очень точно и при эксплуатации контролировать их не требуется. Электронные приборы чувствительны к гидроударам, поэтому их оснащают небольшими гидробаками (объем – примерно 400 мл). Электронное реле давления устанавливается между насосным оборудованием и первой точкой водоразбора.

Реле акустические

Акустические реле реагируют на изменение акустических величин – частоты звуковой волны, ее давления или акустических характеристик материалов – коэффициентов поглощения и отражения. Принцип действия может быть механическим или электрическим. В акустических приборах механического действия предусмотрена мембрана, которая прогибается под давлением звуковых волн, и при достижении определенной величины давления происходит замыкание контакта. В состав электрических акустических приборов входят: воспринимающий орган (микрофон, фильтр), усилитель, выходное электрическое реле.

Газовые реле

Эти приборы применяются для обеспечения газовой защиты. Они представляют собой металлический корпус, врезанный в маслопровод. Реле в нормальном состоянии заполнено маслом, а его контакты находятся в разомкнутом состоянии. При повышении содержания газов они заполняют верхнюю часть реле с одновременным вытеснением масла. Поплавок, имеющийся в конструкции, с понижением уровня масла опускается, поворачивается вокруг своей оси и вызывает замыкание контактов в сигнальной цепи. Сформированный сигнал предупреждает о высокой загазованности среды.

Промежуточные реле

Часто функции промежуточных выполняют электромагнитные реле, в которых в зависимости от конструкции и области применения имеются контакты следующих типов:

  • Нормально разомкнутые (замыкающие). При отсутствии электропитания находятся в разомкнутом состоянии. При подаче напряжения происходит их замыкание.
  • Нормально замкнутые (размыкающие). В нормальном состоянии такие контакты находятся в замкнутом состоянии, а при поступлении электропитания контакты размыкаются.
  • Перекидные. В таких реле при отсутствии напряжения имеется средний контакт, замкнутый с одним из неподвижных контактов. При подаче тока средний контакт разрывает связь с первым неподвижным контактом и замыкается со вторым неподвижным контактом.

Обозначение реле на схеме

Обозначение реле на принципиальной схеме

Обозначение реле на принципиальной схеме

На электрических схемах реле обозначается прямоугольником, от наибольших сторон которого показаны выводы питания. Функциональное назначение реле указывается на схеме буквами:

Реле – коммутационное устройство (КУ), соединяющее или разъединяющее цепь электронной или электрической схемы при изменении входных величин тока. Прежде чем мы перейдем к детальному рассмотрению того, что такое реле, как устроено, по какому принципу работает и где применяется, пожалуй, нужно узнать, когда это устройство впервые появилось и кто его изобретатель.

Вот таких типоразмеров может быть это устройство

История создания

Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830—1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.

Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.

Что такое реле

Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.

Первое реле Морзе

Первое реле Морзе

Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.

Устройство и принцип работы реле

Реле представляет собой катушку, состоящую из немагнитного основания, на которое намотан провод из меди с тканевой или синтетической изоляцией, но чаще всего с диэлектрическим лаковым покрытием. Внутри катушки установленной на нетокопроводящее основание, размещается металлический сердечник. Также в устройстве имеются пружины, якорь, соединительные элементы и пары контактов.

При подаче тока на обмотку электромагнита (соленоида) сердечник притягивает якорь, который соединяется с контактом и электрическая или электронная цепь замыкается. При снижении силы тока до определенного значения, якорь, под действием пружины, возвращается на исходную позицию, вследствие чего происходит размыкание цепи.

Более плавная и точная работа достигается благодаря использованию резисторов, а защиту от скачков напряжения и искрения обеспечивает установка конденсаторов.

У большинства электромагнитных реле имеется не одна, а несколько пар контактов, что позволяет управлять несколькими цепями одновременно.

Простейшая схема устройства электромагнитного соленоида

Простейшая схема устройства электромагнитного соленоида

Если в двух словах, то этот вид коммутационного устройства работает по принципу электромагнитной индукции. Благодаря довольно простому принципу действия реле имеют высокую надежность в эксплуатации.

Читайте также: