Реле направления мощности принцип работы кратко

Обновлено: 04.07.2024

В настоящее время наибольшее распространение получили реле направления мощности выполненные на индукционном принципе; на принципе сравнения абсолютных значений двух электрических величин; на принципе сравнения фаз мгновенных значений двух электрических величин. В реле работающему по индукционному принципу вращающий момент реле пропорционален синусу угла φ между магнитными потоками Ф1 и Ф2, т.е.

потоки Ф1 и Ф2 создаются обмоткой тока и обмоткой напряжения, таким образом можно получить реле действующее в зависимости от угла между током и напряжением, подводимых к обмоткам реле. В общем случае

отсюда следует, что реле срабатывает при условии –(90 0 +α)≤φр≤(90 0 -α), где угол α – есть угол зависящий от конструкции реле и изменяется от 0 до 90 0 для реле смешанного типа. Для изменения этого угла последовательно с обмоткой напряжения реле, включается добавочное активное или емкостное сопротивление (при α=0 – косинусное реле, при α=90 0 – синусное реле); φр – угол между и Ip - подводимых к обмоткам реле, угол φр мах.r.=- α – называется углом максимальной чувствительности, т.к. при этом Мвр. будет максимальным.

Реле направления мощности, включаются, как правило, на фазный ток и фазное или междуфазное напряжение. Сочетание фаз тока и напряжения, на которые включены реле называется схемой его включения, и должно быть таким, чтобы реле правильно определило знак мощности кз, при всех видах повреждений; и чтобы к нему подводилась наибольшая мощность Sр.

Мощность Sр, как это следует из (2.20), может иметь недостаточную для действия реле величину при К.З. близких к месту установки реле, за счет снижения напряжения Uр или при неблагоприятном значении угла φр, при котором sin (α- φр)равен или близок к 0. Отсюда следует: а) реле должно включаться на такое напряжение, которое при близких КЗ не снижается до нуля; б) напряжение и ток подводимые к реле, должны подбираться так, чтобы угол сдвига между ними φр в условиях КЗ не достигал значений, при которых мощность на зажимах реле приближается к нулю. Следует отметить, что первое требование выполнимо только при 2-х фазных и 1-х фазных КЗ, т.к. в случае 3-х фазного КЗ все напряжения фазные междуфазные могут снижаться до нуля, т.е. возникает участок линии, при КЗ в пределах которого реле направления мощности не работает – мертвая зона. Для соблюдения 2-го требования в современных схемах направленных защит применяется включение реле направления мощности по 90 - градусной и иногда 30 - градусной схемам. Схемы именуются по углам φр между током Ip , подведенным к реле в симметричном 3-х фазном режиме, при условии что токи в фазах совпадают с одноименными фазными напряжениями. Векторная диаграмма при 90 0 схеме показана на рис. 2.12. Исследования показали что 90 – градусная схема оказывается наиболее выгодной для реле направления мощности с углом α от 30 до 60 0 , оптимальные условия при α=45 0 ; 30 – градусная схема может использоваться для реле косинусного типа.

В настоящее время наибольшее распространение получили реле направления мощности выполненные на индукционном принципе; на принципе сравнения абсолютных значений двух электрических величин; на принципе сравнения фаз мгновенных значений двух электрических величин. В реле работающему по индукционному принципу вращающий момент реле пропорционален синусу угла φ между магнитными потоками Ф1 и Ф2, т.е.

потоки Ф1 и Ф2 создаются обмоткой тока и обмоткой напряжения, таким образом можно получить реле действующее в зависимости от угла между током и напряжением, подводимых к обмоткам реле. В общем случае

отсюда следует, что реле срабатывает при условии –(90 0 +α)≤φр≤(90 0 -α), где угол α – есть угол зависящий от конструкции реле и изменяется от 0 до 90 0 для реле смешанного типа. Для изменения этого угла последовательно с обмоткой напряжения реле, включается добавочное активное или емкостное сопротивление (при α=0 – косинусное реле, при α=90 0 – синусное реле); φр – угол между и Ip - подводимых к обмоткам реле, угол φр мах.r.=- α – называется углом максимальной чувствительности, т.к. при этом Мвр. будет максимальным.




Реле направления мощности, включаются, как правило, на фазный ток и фазное или междуфазное напряжение. Сочетание фаз тока и напряжения, на которые включены реле называется схемой его включения, и должно быть таким, чтобы реле правильно определило знак мощности кз, при всех видах повреждений; и чтобы к нему подводилась наибольшая мощность Sр.

Мощность Sр, как это следует из (2.20), может иметь недостаточную для действия реле величину при К.З. близких к месту установки реле, за счет снижения напряжения Uр или при неблагоприятном значении угла φр, при котором sin (α- φр)равен или близок к 0. Отсюда следует: а) реле должно включаться на такое напряжение, которое при близких КЗ не снижается до нуля; б) напряжение и ток подводимые к реле, должны подбираться так, чтобы угол сдвига между ними φр в условиях КЗ не достигал значений, при которых мощность на зажимах реле приближается к нулю. Следует отметить, что первое требование выполнимо только при 2-х фазных и 1-х фазных КЗ, т.к. в случае 3-х фазного КЗ все напряжения фазные междуфазные могут снижаться до нуля, т.е. возникает участок линии, при КЗ в пределах которого реле направления мощности не работает – мертвая зона. Для соблюдения 2-го требования в современных схемах направленных защит применяется включение реле направления мощности по 90 - градусной и иногда 30 - градусной схемам. Схемы именуются по углам φр между током Ip , подведенным к реле в симметричном 3-х фазном режиме, при условии что токи в фазах совпадают с одноименными фазными напряжениями. Векторная диаграмма при 90 0 схеме показана на рис. 2.12. Исследования показали что 90 – градусная схема оказывается наиболее выгодной для реле направления мощности с углом α от 30 до 60 0 , оптимальные условия при α=45 0 ; 30 – градусная схема может использоваться для реле косинусного типа.

Цель работы:изучить принцип действия реле направления мощности, его основные параметры и характеристики.

Теоретическая часть

Реле направления мощности. Назначение, конструкция, принцип действия.

Реле направления мощности применяются в различных устройствах релейной защиты для определения знака мощности при коротких замыканиях. Внешний вид реле направления мощности приведен на рисунке 1.1.

Реле имеет две обмотки. Одна из них подключается к трансформатору тока и обтекается вторичным током Iр, а вторая- к трансформатору напряжения и обтекается током, пропорциональным напряжению Uр на зажимах обмотки.

Каждый из токов создает магнитный поток. Поскольку один из магнитных потоков пропорционален току Iр, а второй напряжению Uр, то вращающий момент возникающий на подвижной части реле оказывается пропорциональным величине мощности на зажимах реле, а его направление (знак) зависит от направления этой мощности.


Рисунок 1.1-Внешний вид реле направления мощности марки

Рисунок 1.2-Реле направления мощности

В схемах релейной защиты используется главным образом однофазные индукционные реле направления мощности с цилиндрическим ротором типов РБМ-170 и РБМ-270.

Рисунок 1.3-Токовая обмотка реле направления мощности

Токовая обмотка расположенная на полюсах и создает через них проходящий магнитный поток Фт. Обмотка напряжения расположенная на ярме и состоит из четырех секций, который соединены между собой так, что магнитный поток Фн создаваемый ими проходил через другую пару полюсов. При таком выполнении обмоток магнитный потоки Фт и Фн оказываются сдвинутыми в пространстве относительно друг друга на угол 90 0 . Магнитные потоки Фт и Фн создают токи в стенках алюминиевого сердечника пропорциональные им на угол y токи I и I. В результате взаимодействия магнитного потока Фт с током I и Фн с током I на цилиндр действуют силы:

Суммарная сила создает на цилиндре вращающий момент Мвр, под действием которого цилиндр поворачивается и с помощью подвижных контактов замыкает неподвижные. Общее выражение для вращающего момента индукционного реле имеет вид:

Из выражения (1.2) следует, что когда магнитные потоки совпадают по фазе, т.е. y=0, siny=0, то Мвр=0, и наоборот когда y=90 0 , siny=1, то Мвр=max.

Рисунок 1.4-Векторная диаграмма

На векторной диаграмме :

φр- угол сдвига между Uр и Iр определяемый параметрами сети и схемой включения реле;

Iн – вектор тока в обмотке напряжения реле;

γн - угол между Uр и Iн (внутренний угол реле) определяемый соотношением активного и реактивного сопротивлений цепи напряжения, которая включает в себя как обмотку, так и дополнительно включаемые внешние сопротивления и конденсаторы.

Заменяя в выражении (1.2) магнитные потоки Фт и Фн на соответствующие им ток Iр и напряжение Uр и угол y равным ему углом γнр получим общее выражение для вращающего момента на подвижной части индукционного реле с цилиндрическим ротором:

Но в этом выражении:

Следовательно, вращающий момент рассматриваемого реле пропорционален мощности: Мвр=кSр, т.е. реле реагирует на мощность.

Социальное обеспечение и социальная защита в РФ: Понятие социального обеспечения тесно увязывается с понятием .

Реле мощности предназначены для использования в составе схем РЗ в качестве чувствительного органа, реагирующего на знак направления мощности, к месту где возникло КЗ на защищаемом участке сети.

Электротехническая промышленность изготовляет реле направления мощности двух типов:

  • индукционные с цилиндрическим ротором (РБМ-170, РБМ-270);
  • микроэлектронные (РМ-1, РМ-12).

Индукционные реле изготовляют с использованием 2-х обмоток, одна из которых Ip подключается к ТТ, а вторая Uр к зажимам ТН.

При прохождении во вторичной цепи токов каждый из токов формирует собственные магнитные потоки Фн, Фт.

Под воздействием магнитных потоков в подвижной части реле наводятся вихревые токи. При взаимодействии вихревых токов с потоками на обмотке реле возникает вращающийся электромагнитный момент Мвр, зависящий от величины вторичного тока, напряжения и величины угла между ними — φр. Соответственно, этот момент пропорционален значению мощности, подведенной к клеммам реле.

Интересное видео о работе реле мощности смотрите ниже:

Знак электромагнитного момента на зажимах реле равен (α — φр).

Конструктивно данное реле состоит из магнитопровода (сердечника) с выступающими полюсами. Между полюсами сердечника установлен стальной сердечник, имеющий цилиндрическую форму, и ротор из алюминиевого сплава, который может оборачиваться. На роторе закреплен контактный мостик. При направлении потока мощности КЗ от шин в линию мостик замыкает контакты.

Для возврата контактов конструкцией предусмотрена специальная противодействующая пружина.

Реле мощности: принцип действия, типы, конструкция

Типы индукционных реле мощности

Изменяя величину угла α, можно получать три типа реле:

  1. При α = 0 — электромагнитный момент реле пропорционален величине реактивной мощности. Такие реле принято называть синусными либо реактивными. Максимальный вращающий момент Мвр такие реле имеют при φр = 90, а при φр = 0 – он равен 0.
  2. При α = 90 ° — момент реле пропорционален активной мощности. Следовательно, такие реле принято называть активными или косинусными.
  3. При α = (0…90) ° — реле с промежуточным значением угла, оно реагирует на некоторое соотношение активной и реактивной мощностей. Называют такие устройства реле смешанного типа. То есть последнее реле реагирует как на величину мощности, так и ее направление, а, следовательно, является направленным.

Реле мощности: принцип действия, типы, конструкция

Принцип работы микроэлектронных статических реле основан на замерах промежутков времени, при которых ток, напряжение имеют одинаковое направление.

Продолжительность совпадения знаков фиксируется в течение каждого полупериода и сравнивается с уставкой. Такие реле превосходят индукционные по многим рабочим и эксплуатационным параметрам, и поэтому широко используются в разнообразных системах релейной защиты.

Электромагнитные реле управления, как работает реле, устройство, виды и характеристики

Реле - электрический аппарат, предназначенный для коммутации электрических цепей (скачкообразного изменения выходных величин) при заданных изменениях электрических или не электрических входных величин.

Релейные элементы (реле) находят широкое применение в схемах управления и автоматики, так как с их помощью можно:

  • управлять большими мощностями на выходе при малых по мощности входных сигналах;
  • выполнять логические операции;
  • создавать многофункциональные релейные устройства;
  • осуществлять коммутацию электрических цепей;
  • фиксировать отклонения контролируемого параметра от заданного уровня;
  • выполнять функции запоминающего элемента и т. д.

Электромагнитные реле на промышленном предприятии

Первое реле было изобретено американцем Дж. Генри в 1831 г. и базировалась на электромагнитном принципе действия, следует отметить что первое реле было не коммутационным, а первое коммутационное реле изобретено американцем С. Бризом Морзе в 1837 г. которое в последствии он использовал в телеграфном аппарате.

Слово реле возникло от английского relay, что означало смену уставших почтовых лошадей на станциях или передачу эстафеты (relay) уставшим спортсменом.

На использовании электромагнитных реле построены все схемы автоматики с релейно-контактным управлением. До начал массового использования программируемых логических контроллеров реле были самыми важными элементами автоматики.

А вы это занете?

Реле классифицируются по различным признакам:

  • по виду входных физических величин, на которые они реагируют;
  • по функциям,
  • которые они выполняют в системах управления;
  • по конструкции и т. д.

По виду физических величин различают электрические, механические, тепловые, оптические, магнитные, акустические и т.д. реле. При этом следует отметить, что реле может реагировать не только на значение конкретной величины, но и на разность значений (дифференциальные реле), на изменение знака величины (поляризованные реле) или на скорость изменения входной величины.

Реле обычно состоит из трех основных функциональных элементов: воспринимающего, промежуточного и исполнительного.

Устройство электромагнитного реле

Воспринимающий (первичный) элемент воспринимает контролируемую величину и преобразует её в другую физическую величину.

Промежуточный элемент сравнивает значение этой величины с заданным значением и при его превышении передает первичное воздействие на исполнительный элемент.

Исполнительный элемент осуществляет передачу воздействия от реле в управляемые цепи. Все эти элементы могут быть явно выраженными или объединёнными друг с другом.

Воспринимающий элемент в зависимости от назначения реле и рода физической величины, на которую он реагирует, может иметь различные исполнения, как по принципу действия, так и по устройству.

Например, в реле максимального тока или реле напряжения воспринимающий элемент выполнен в виде электромагнита, в реле давления – в виде мембраны или сильфона, в реле уровня – в вице поплавка и т.д.

По устройству исполнительного элемента реле подразделяются на контактные и бесконтактные.

Контактные реле воздействуют на управляемую цепь с помощью электрических контактов, замкнутое или разомкнутое состояние которых позволяет обеспечить или полное замыкание или полный механический разрыв выходной цепи.

Бесконтактные реле воздействуют на управляемую цепь путём резкого (скачкообразного) изменения параметров выходных электрических цепей (сопротивления, индуктивности, емкости) или изменения уровня напряжения (тока).

Основные характеристики реле определяются зависимостями между параметрами выходной и входной величины.

Различают следующие основные характеристики реле.

1. Величина срабатывания Хср реле – значение параметра входной величины, при которой реле включается. При Х Хср величина У скачком изменяется от Уmin до Уmax и реле включается. Величина срабатывания, на которую отрегулировано реле, называется уставкой.

2. Мощность срабатывания Рср реле – минимальная мощность, которую необходимо подвести к воспринимающему органу для перевода его из состояния покоя в рабочее состояние.

3. Управляемая мощность Рупр – мощность, которой управляют коммутирующие органы реле в процессе переключении. По мощности управления различают реле цепей малой мощности (до 25 Вт), реле цепей средней мощности (до 100 Вт) и реле цепей повышенной мощности (свыше 100 Вт), которые относятся к силовым реле и называются контакторами.

4. Время срабатывания tср реле – промежуток времени от подачи на вход реле сигнала Хср до начала воздействия на управляемую цепь. По времени срабатывания различают нормальные, быстродействующие, замедленные реле и реле времени. Обычно для нормальных реле tср = 50…150 мс, для быстродействующих реле tср -1 с.

Конструкция электромагнитного реле

Принцип действия и устройство электромагнитных реле

Электромагнитные реле, благодаря простому принципу действия и высокой надежности, получили самое широкое применение в системах автоматики и в схемах защиты электроустановок. Электромагнитные реле делятся на реле постоянного и переменного тока.

Реле постоянного тока делятся на нейтральные и поляризованные. Нейтральные реле одинаково реагируют на постоянный ток обоих направлений, протекающий по его обмотке, а поляризованные реле реагируют на полярность управляющего сигнала.

Работа электромагнитных реле основана на использовании электромагнитных сил, возникающих в металлическом сердечнике при прохождении тока по виткам его катушки. Детали реле монтируются на основании и закрываются крышкой.

Над сердечником электромагнита установлен подвижный якорь (пластина) с одним или несколькими контактами. Напротив них находятся соответствующие парные неподвижные контакты.

В исходном положении якорь удерживается пружиной. При подаче напряжения электромагнит притягивает якорь, преодолевая её усилие, и замыкает или размыкает контакты в зависимости от конструкции реле. После отключения напряжения пружина возвращает якорь в исходное положение.

В некоторые модели, могут быть встроены электронные элементы. Это резистор, подключенный к обмотке катушки для более чёткого срабатывания реле, или (и) конденсатор, параллельный контактам для снижения искрения и помех.

Управляемая цепь электрически никак не связана с управляющей, более того в управляемой цепи величина тока может быть намного больше чем в управляющей. То есть реле по сути выполняют роль усилителя тока, напряжения и мощности в электрической цепи.

Когда через катушку электромагнитного реле начинает течь управляющий ток, якорь подтягивается к сердечнику с катушкой и замыкает подвижные контакты. Это запускает управляемое устройство в работу. В то же время для притяжения якоря достаточно гораздо меньшего управляющего тока, чем ток, протекающий по цепи управляющего устройства.

Реле переменного тока срабатывают при подаче на их обмотки тока определенной частоты, то есть основным источником энергии является сеть переменного тока.

Конструкция реле переменного тока напоминает конструкцию реле постоянного тока, только сердечник и якорь изготавливаются из листов электротехнической стали, чтобы уменьшить потери на гистерезис и вихревые токи.

Достоинства и недостатки электромагнитных реле

  • способность коммутации нагрузок мощностью до 4 кВт при объеме реле менее 10 см3;
  • устойчивость к импульсным перенапряжениям и разрушающим помехам, появляющимся при разрядах молний и в результате коммутационных процессов в высоковольтной электротехнике;
  • исключительная электрическая изоляция между управляющей цепью (катушкой) и контактной группой — последний стандарт 5 кВ является недоступной мечтой для подавляющего большинства полупроводниковых ключей;
  • малое падение напряжения на замкнутых контактах, и, как следствие, малое выделение тепла: при коммутации тока 10 А малогабаритное реле суммарно рассеивает на катушке и контактах менее 0,5 Вт, в то время как симисторное реле отдает в атмосферу более 15 Вт, что, во-первых, требует интенсивного охлаждения, а во-вторых, усугубляет парниковый эффект на планете;
  • экстремально низкая цена электромагнитных реле по сравнению с полупроводниковыми ключами

Отмечая достоинства электромеханики, отметим и недостатки реле: малая скорость работы, ограниченный (хотя и очень большой) электрический и механический ресурс, создание радиопомех при замыкании и размыкании контактов и, наконец, последнее и самое неприятное свойство — проблемы при коммутации индуктивных нагрузок и высоковольтных нагрузок на постоянном токе.

Типовая практика применения мощных электромагнитных реле — это коммутация нагрузок на переменном токе 220 В или на постоянном токе от 5 до 24 В при токах коммутации до 10–16 А.

Обычными нагрузками для контактных групп мощных реле являются нагреватели, маломощные электродвигатели (например, вентиляторы и сервоприводы), лампы накаливания, электромагниты и прочие активные, индуктивные и емкостные потребители электрической мощности в диапазоне от 1 Вт до 2–3 кВт.

Поляризованные электромагнитные реле

Разновидностью электромагнитных реле являются поляризованные электромагнитные реле. Их принципиальное отличие от нейтральных реле состоит в способности реагировать на полярность управляющего сигнала.

Твердотельные реле

В настоящее время все чаще функции реле выполняют полупроводниковые схемы - твердотельные реле (SSR - Solid-State-Relay).

Поскольку это полупроводниковый переключающий элемент, он не содержит (в отличие от электромагнитного реле) каких-либо движущихся частей, которые могут изнашиваться при частом переключении. Другими преимуществами являются бесшумность работы и меньшие размеры при той же мощности переключения. И последнее, но не менее важное: скорость переключения выше, чем у электромагнитных реле.

С другой стороны, недостатком твердотельных реле является более высокое падение напряжения на переключающем элементе и, как правило, необходимость охлаждения такого реле с помощью дополнительного пассивного радиатора. Другим недостатком, связанным с меньшим расширением SSR на практике, является более высокая цена по сравнению с электромагнитными реле.

В отличие от полупроводников в твердотельном реле, электромагнитное реле позволяет гальванически (электрически) разделить цепь управления и цепь управления (смотрите - Что такое гальваническая развязка).

Твердотельные реле часто используется в автоматическом управлении электрическим нагревом, когда нагреватель включается и выключается через короткие переменные интервалы (широко-импульсная модуляция, ШИМ) для регулирвания температуры нагревателей.

Электромагнитные реле в шкафу управления

Самые распространенные серии электромагнитных реле управления

Реле промежуточное серии РПЛ . Реле предназначены для применения в качестве комплектующих изделий в стационарных установках, в основном в схемах управления электроприводами при напряжении до 440В постоянного тока и до 660 В переменного тока частотой 50 и 60 Гц.

Реле пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки ограничителем ОПН или при тиристорном управлении. При необходимости на промежуточное реле может быть установлена одна из приставок ПКЛ и ПВЛ. Номинальный ток контактов – 16А

Реле промежуточное серии РПУ-2М. Реле промежуточные РПУ-2М предназначены для работы в электрических цепях управления и промышленной автоматики переменного тока напряжением до 415В, частоты 50Гц и постоянного тока напряжением до 220В.

Реле серии РПУ-0, РПУ-2, РПУ-4. Реле изготавливаются с втягивающими катушками постоянного тока на напряжения 12, 24, 48, 60, 110, 220 В и токи 0,4 - 10 А и втягивающими катушками переменного тока - на напряжения 12, 24, 36, 110, 127, 220, 230, 240, 380 и токаи 1 - 10 А. Реле РПУ-3 с втягивающими катушками постоянного тока - на напряжения 24, 48, 60, 110 и 220 В.

Реле промежуточное серии РП-21 предназначены для применения в цепях управления электроприводами переменного тока напряжением до 380В и в цепях постоянного тока напряжением до 220В. Реле РП-21 комплектуются розетками под пайку, под дин. рейку или под винт.

Основные характеристики реле РП-21:

  • Диапазон напряжений питания, В: постоянного тока - 6, 12, 24, 27, 48, 60, 110, переменного тока частоты 50 Гц - 12, 24, 36, 40, 110, 127, 220, 230, 240, переменного тока частоты 60 Гц - 12, 24, 36, 48, 110, 220, 230, 240.
  • Номинальное напряжение цепи контактов, В: реле постоянного тока - 12. 220, реле переменного тока - 12. 380 Номинальный ток - 6,0 А.
  • Количество контактов замык. / размык. / перекл. - 0. 4 / 0. 2 / 0. 4.
  • Механическая износостойкость - не менее 20 млн. циклов.

Большое распространение в системах автоматики станков, механизмов и машин получили электромагнитные реле постоянного тока серии РЭС-6 в качестве промежуточного реле напряждением 80 - 300 В, коммутируемый ток 0,1 - 3 А

В качестве промежуточных применяются также электромагнитные реле серий РП-250, РП-321, РП-341, РП-42 и ряд других, которые могут использоваться и как реле напряжения.

Как выбрать электромагнитное реле

Рабочие напряжения и токи в обмотке реле должны находится в пределах допустимых значений. Уменьшение рабочего тока в обмотке приводит к снижению надежности контактирования, а увеличение к перегреву обмотки, снижению надежности реле при максимально-допустимой положительной температуре.

Нежелательна даже кратковременная подача на обмотку реле повышенного рабочего напряжения, так как при этом возникают механические перенапряжения в деталях магнитопровода и контактных групп, а электрическое перенапряжение обмотки при размыкании ее цепи может вызвать пробой изоляции.

При выборе режима работы контактов реле необходимо учитывать значение и род коммутируемого тока, характер нагрузки, общее количество и частоту коммутации.

При коммутации активных и индуктивных нагрузок наиболее тяжелым для контактов является процесс размыкания цепи, так как при этом из-за образования дугового разряда происходит основной износ контактов.

Читайте также: