Развитие понятий числа и счета кратко

Обновлено: 04.07.2024

По мнению ученых числа появились еще тогда, когда человеку удалось научиться считать окружающие предметы. Это произошло очень и очень давно. Но знаки, обозначающие числа, появились по меркам истории относительно недавно.

Наука считает, что это произошло в 3000-2000 гг. до н. э. Их изобретение приписывают шумерам – народу, проживавшему на территории Месопотамии (в нынешнее время Ирак).

Историки полагают, что глиняные таблички, на которых они выдавливали определенные черточки, привели к изобретению клинописи. Ею обозначали своеобразные разрядные числа: единицы, десятки, сотни, и также они являлись обозначением цифр. Все остальные записи делались при помощи объединения данных знаков.

Использование цифр существенно упрощало подсчеты: вели счет дням недели, количеству голов скота, объемам урожая, считали размеры участков земли. После шумеров в Месопотамии появились вавилоняне. Они получили систему чисел в наследство от шумеров. До наших дней сохранились таблички-клинопись, на которых изображены превращения шумерских единиц для измерений в вавилонские.

Вавилонские цифры

Древние египтяне также использовали цифры. Свидетельством тому является находка Ринда – папирус с математическим трактатом, носящим имя изучавшего Египет англичанина и купившего его в 1858 году в стране пирамид. Такой случай представился в Луксоре. Документ содержит записи 84 математических заданий. Все они с решениями. Глядя на папирус, видно использование в Египте такого порядка цифр, где числовое обозначение – это сумма цифровых значений. При обозначении разрядных чисел, кратных десяти: 1, 10, 100, и т.д., египтяне придумали специальный иероглиф. Записывая разные числа, этот символ использовали такое количество раз, сколько в числе единиц данного разряда.

Египетские цифры

Похожая система счета существовала у римлян. Ей повезло больше других: она оказалась долгожителем среди древних систем счисления. Иногда ее используют и наши современники.

Такие народы, как финикийцы или древние греки, использовали в качестве цифр буквы.

Распространение индийских числовых обозначений в арабских странах приписывают работам двух математиков. Это Хорезми, живший ок. 780-ок. 850 гг. в Средней Азии и арабский ученый Кинди (ок.800-ок. 870). Первый, в Багдаде написал трактат о цифрах из Индии. Европейскую известность труд получил после перевода математика из Италии Леонардо Пизанского (Фибоначчи). Эта работа привела к закреплению арабо-индийской числовой системы в Европе.

Арифметика каменного века

Обучаться счету наши предки стали на заре своего развития. Учила их этому окружающая жизнь. Охота была главным способом добычи еды. Чтобы не упустить жертву, ее окружали с разных сторон. Пять человек с одной стороны, четыре с другой. Здесь счет выходил на первое место. Люди, даже не имея понятий о цифрах, обходились показом на пальцах. До сих пор существуют племена, пользующиеся таким видом счета.

Археологи, нашедшие поселение древних людей, обнаружили среди волчьих останков кость, с нанесенными отметинами. 55 нанесенных зазубрин указывают на то, что древний охотник вел расчеты при помощи пальцев. Из рисунка на кости можно узнать, что количество зарубок составляет 11 групп по 5 отметин. Начальные 5 групп отделены от других удлиненной отметиной.

Человечество далеко продвинулось вперед с той поры. Но и поныне швейцарские фермеры, отвозя молоко для обработки, зарубками отмечают количество отправляемых емкостей.

Для успешного занятия сельским хозяйством, необходимы были знания арифметики. Не рассчитав количество дней, определить время посева, начало полива составляло определенные трудности. Нужно было определять сроки появления приплода у животных, численность скота в загоне, какое количество урожая помещено в амбары.

Примерно за 6 тыс. лет до н. э. скотоводы того времени начали лепить из глины различные предметы для подсчета животных в стаде. Чтобы узнать, все ли стадо вернулось домой, пастух откладывал в сторону один глиняный кружочек за каждую возвратившуюся овцу. Когда число кружочков и количество животных совпадало, считавший шел отдыхать. Его стадо состояло не только из овец. На пастбища выгоняли коров, коз и других животных. Поэтому возникала потребность в изготовлении и других глиняных фигурок. Люди, обрабатывавшие землю, при помощи таких изделий подсчитывали размеры полученного урожая. Число мешков в амбаре, количество выжатого масла в кувшинах. Сколько у него имеется кусков полотна. Все это требовало подсчета. Когда в стаде случался приплод, хозяин добавлял новые кружочки. При забое скота некоторые фигурки приходилось убирать в сторону.

Так, не зная счета, древние совершали арифметические действия.

Получение названий числами

Прошло немало столетий, или даже тысячелетий, чтобы одинаковые числа стали относиться к различным предметам. В это время и возникли универсальные числовые названия.

Развитие понятия числа

Описание: Число - важнейшее математическое понятие. Возникнув в простейшем виде ещё в первобытном обществе, понятие числа изменялось на протяжении веков, постепенно обогащаясь содержанием по мере расширения сферы человеческой деятельности и связанного с ним расширения круга вопросов, требовавшего количественного описания и исследования

Дата добавления: 2015-01-27

Размер файла: 14.79 KB

Работу скачали: 200 чел.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

Тема: Развитие понятия числа

  1. Натуральные числа и дроби.
    1. Введение и применение отрицательных чисел.
    2. Развитие понятия действительного числа.
    3. Комплексные числа

    1.1 НАТУРАЛЬНЫЕ ЧИСЛА И ДРОБИ

    Число - важнейшее математическое понятие. Возникнув в простейшем виде ещё в первобытном обществе, понятие числа изменялось на протяжении веков, постепенно обогащаясь содержанием по мере расширения сферы человеческой деятельности и связанного с ним расширения круга вопросов, требовавшего количественного описания и исследования. На первых ступенях развития понятие числа определялось потребностями счёта и измерения, возникавшими в непосредственной практической деятельности человека. Затем число становится основным понятием математики, и дальнейшее развитие понятия числа определяется потребностями этой науки.

    Потребность счета предметов привела к возникновению понятия натурального числа. Все народы, обладавшие письменностью, владели понятием натурального числа и пользовались той или иной системой счисления. О ранних этапах возникновения и развития понятия числа, можно судить лишь на основе косвенных данных, которые доставляют языкознание и этнография. Первобытному человеку, видимо, не требовалось умение считать, чтобы установить, полной или нет, является какая-нибудь совокупность.

    С развитием понятия натурального числа как результата счёта предметов в обиход включаются действия над числами. Действия сложения и вычитания возникают сначала как действия над самими совокупностями в форме объединения двух совокупностей в одну и отделения части совокупности. Умножение, по-видимому, возникло в результате счёта равными частями (по два, по три и т.д.), деление — как деление совокупности на равные части. Лишь в многовековом опыте сложилось представление об отвлечённом характере этих действий, о независимости количественного результата действия от природы предметов, составляющих совокупности, о том, что, например, два предмета и три предмета составят пять предметов независимо от природы этих предметов. Тогда стали разрабатывать правила действий, изучать их свойства, создавать методы для решения задач, т. е. начинается развитие науки о числе — арифметики. В первую очередь арифметика развивается как система знаний, имеющая непосредственно прикладную направленность. Но в самом процессе развития арифметики проявляется потребность в изучении свойств чисел. как таковых, в уяснении всё более сложных закономерностей в их взаимосвязях, обусловленных наличием действий. Начинается детализация понятия натурального числа, выделяются классы чётных и нечётных чисел, простых и составных и т.д. Изучение глубоких закономерностей в натуральном ряду чисел продолжается и составляет раздел математики, носящий название теория чисел.

    Натуральные числа, кроме основной функции — характеристики количества предметов, несут ещё другую функцию — характеристику порядка предметов, расположенных в ряд. Возникающее в связи с этой функцией понятие порядкового числа (первый, второй и т.д.) тесно переплетается с понятием количественного числа. (один, два и т.д.). В частности, расположение в ряд считаемых предметов и последующий их пересчёт с применением порядковых чисел является наиболее употребительным с незапамятных времён способом счёта предметов (так, если последний из пересчитываемых предметов окажется седьмым, то это и означает, что имеется семь предметов).

    Другое обоснование понятия натурального числа базируется на анализе отношения порядка следования, которое, как оказывается, может быть аксиоматизировано. Построенная на этом принципе система аксиом была сформулирована Дж. Пеано.

    Следует отметить, что перенесение понятия порядкового числа на бесконечные совокупности резко расходится с обобщённым понятием количественного числа; это обусловлено тем, что количественно одинаковые (равномощные) множества могут быть упорядочены различными способами.

    1.2 ВВЕДЕНИЕ И ПРИМЕНЕНИЕ ОТРИЦАТЕЛЬНЫХ ЧИСЕЛ

    Введение отрицательных чисел было с необходимостью вызвано развитием алгебры как науки, дающей общие способы решения арифметических задач, независимо от их конкретного содержания и исходных числовых данных. Необходимость введения в алгебру отрицательного числа возникает уже при решении задач, сводящихся к линейным уравнениям с одним неизвестным. Возможный отрицательный ответ в задачах такого рода может быть истолкован на примерах простейших направленных величин (таких, как противоположно направленные отрезки, передвижение в направлении, противоположном выбранному, имущество — долг, и т.д.). В задачах же, приводящихся к многократному применению действий сложения и вычитания, для решения без помощи отрицательного числа необходимо рассмотрение очень многих случаев; это может быть настолько обременительным, что теряется преимущество алгебраического решения задачи перед арифметическим. Таким образом, широкое использование алгебраических методов для решения задач весьма затруднительно без пользования отрицательного числа. В Индии ещё в 6—11 вв. отрицательные числа систематически применялись при решении задач и истолковывались в основном так же, как это делается в настоящее время.

    В европейской науке отрицательные числа окончательно вошли в употребление лишь со времени Р. Декарта, давшего геометрическое истолкование отрицательного числа как направленных отрезков. Создание Декартом аналитической геометрии, позволившее рассматривать корни уравнения как координаты точек пересечения некоторой кривой с осью абсцисс, окончательно стёрло принципиальное различие между положительными и отрицательными корнями уравнения, их истолкование оказалось по существу одинаковым.

    1.3. РАЗВИТИЕ ПОНЯТИЯ ДЕЙСТВИТЕЛЬНОГО ЧИСЛА

    Совокупность рациональных чисел оказалась недостаточной для изучения непрерывно изменяющихся переменных величин. Здесь оказалось необходимым новое расширение понятия числа, заключающееся в переходе от множества рациональных чисел к множеству действительных (вещественных) чисел.

    Веще́ственное, или действи́тельное число — математическая абстракция, возникшая из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких операций как извлечение корня, вычисление логарифмов, решение алгебраических уравнений.

    Если натуральные числа возникли в процессе счета, рациональные — из потребности оперировать частями целого, то вещественные числа предназначены для измерения непрерывных величин. Таким образом, расширение запаса рассматриваемых чисел привело к множеству вещественных чисел, которое помимо чисел рациональных включает также другие элементы, называемые иррациональными числами.

    Наглядно понятие вещественного числа можно представить себе при помощи числовой прямой. Если на прямой выбрать направление, начальную точку и единицу длины для измерения отрезков, то каждому вещественному числу можно поставить в соответствие определённую точку на этой прямой, и обратно, каждая точка будет представлять некоторое, и притом только одно, вещественное число. Вследствие этого соответствия термин числовая прямая обычно употребляется в качестве синонима множества вещественных чисел.

    Понятие вещественного числа прошло долгий путь становления. Ещё в Древней Греции в школе Пифагора, которая в основу всего ставила целые числа и их отношения, было открыто существование несоизмеримых величин (несоизмеримость стороны и диагонали квадрата), то есть в современной терминологии — чисел, не являющихся рациональными. Вслед за этим Евдоксом Книдским была предпринята попытка построить общую теорию числа, включавшую несоизмеримые величины. После этого, на протяжении более двух тысяч лет, никто не ощущал необходимости в точном определении понятия вещественного числа, несмотря на постепенное расширение этого поняти. Лишь во второй половине XIX века, когда развитие математического анализа потребовало перестройки его основ на новом, более высоком уровне строгости, в работах К. Вейерштрасса, Р. Дедекинда, Г. Кантора, Э. Гейне, Ш. Мере была создана строгая теория вещественных чисел.

    С точки зрения современной математики, множество вещественных чисел — суть, непрерывное упорядоченное поле. Это определение, или эквивалентная система аксиом, в точности определяет понятие вещественного числа в том смысле, что существует только одно, с точностью до изоморфизма, непрерывное упорядоченное поле.

    Первая развитая числовая система, построенная в Древней Греции, включала только натуральные числа и их отношения. Однако вскоре выяснилось, что для целей геометрии и астрономии этого недостаточно: например, отношение длины диагонали квадрата к длине его стороны не может быть представлено ни натуральным, ни рациональным числом.

    Долгое время это прикладное определение считалось достаточным, так что практически важные свойства вещественных чисел и функций не доказывались, а считались интуитивно очевидными

    Современная теория вещественных чисел была построена во второй половине XIX века, в первую очередь трудами Вейерштрасса, Дедекинда и Кантора. Они предложили различные, но эквивалентные подходы к теории этой важнейшей математической структуры и окончательно отделили это понятие от геометрии и механики.

    При конструктивном определении понятия вещественного числа, на основе известных математических объектов (например, множества рациональных чисел), которые принимают заданными, строят новые объекты, которые, в определённом смысле, отражают наше интуитивное понимание о понятии вещественного числа. Существенным отличием между вещественными числами и этими построенными объектами является то, что первые, в отличие от вторых, понимаются нами лишь интуитивно и пока не являются строго определённым математическим понятием.

    Эти объекты и объявляют вещественными числами. Для них вводят основные арифметические операции, определяют отношение порядка и доказывают их свойства.

    Исторически первыми строгими определениями вещественного числа были именно конструктивные определения. В 1872 году были опубликованы одновременно три работы: теория фундаментальных последовательностей Кантора, теория Вейерштрасса (в современном варианте — теория бесконечных десятичных дробей) и теория сечений в области рациональных чисел Дедекинда.

    1.4. КОМПЛЕКСНЫЕ ЧИСЛА

    Совокупность всех комплексных чисел обладает так же, как совокупность действительных чисел и совокупность рациональных чисел, свойством замкнутости по отношению к действиям сложения, вычитания, умножения и деления. Более того, совокупность всех комплексных чисел обладает свойством алгебраической замкнутости, заключающейся в том, что каждое алгебраическое уравнение с комплексными коэффициентами имеет корни снова в области всех комплексных чисел. Совокупность всех действительных чисел (и тем более рациональных) свойством алгебраической замкнутости не обладает. Как установлено Вейерштрассом, совокупность всех комплексных чисел не может быть далее расширена за счёт присоединения новых чисел так, чтобы в расширенной совокупности сохранились все законы действий, имеющие место в совокупности комплексных чисел.

    Читайте также: