Производные тригонометрических функций кратко

Обновлено: 05.07.2024

Вычисление производных основано на применении следующих правил, которые мы будем использовать без доказательств, поскольку доказательства выходят за рамки школьного курса математики.

Правило 1 (производная от произведения числа на функцию) . Справедливо равенство

где c – любое число.

Другими словами, производная от произведения числа на функцию равна произведению этого числа на производную функции.

Правило 2 (производная суммы функций) . Производная суммы функций вычисляется по формуле

то есть производная от суммы функций равна сумме производных этих функций.

Правило 3 (производная разности функций) . Производная разности функций вычисляется по формуле

то есть производная от разности функций равна разности производных этих функций.

Правило 4 (производная произведения двух функций) . Производная произведения двух функций вычисляется по формуле

Другими словами, производная от произведения двух функций равна производной от первой функции, умноженной на вторую функцию, плюс первая функция, умноженная на производную от второй функции.

Правило 5 (производная частного двух функций) . Производная от дроби (частного двух функций) вычисляется по формуле

При этом функцию f (x) называют внешней функцией, а функцию g (x) – внутренней функцией.

Правило 6 (производная сложной функции) . Производная сложной функции вычисляется по формуле

Другими словами, для того, чтобы найти производную от сложной функции f (g (x)) в точке x нужно умножить производную внешней функции, вычисленную в точке g (x) , на производную внутренней функции, вычисленную в точке x .

Таблица производных часто встречающихся функций

В следующей таблице приведены формулы для производных от степенных, показательных (экспоненциальных), логарифмических, тригонометрических и обратных тригонометрических функций. Доказательство большинства их этих формул выходит за рамки школьного курса математики.

Пример 3. Решите уравнение:
a) \( y'\cdot y+y^2=0\), если \(y=3cosx\)
\(y'=3\cdot cos'x=-3sinx\)
Подставляем: \begin -3sinx\cdot 3cosx+(3cosx)^2=0\\ -9sincosx+9cos^2x=0\\ 9cosx(cosx-sinx)=0 \end Уравнение: \begin \left[ \begin cosx=0\\ cosx-sinx=0\ |:cosx \end \right. \Rightarrow \left[ \begin x=\frac\pi 2+\pi k\\ 1-tgx=0 \end \right. \Rightarrow \left[ \begin x=\frac\pi 2+\pi k\\ tgx=1 \end \right. \Rightarrow \left[ \begin x=\frac\pi 2+\pi k\\ x=\frac\pi 4+\pi k \end \right. \end Ответ: \(\left\<\frac\pi 2+\pi k;\ x=\frac\pi 4+\pi k\right\>\)

б) \( (y')^2+y^2=1\), если \(y=1-cosx\)
\(y'=1'-cos'x=0+sinx=sinx\)
Подставляем: \begin sin^2x+(1-cosx)^2=1\\ sin^2x+1-2cosx+cos^2x=1\\ 1-2cosx=0\\ cosx=\frac12\\ x=\pm\frac\pi 3+2\pi k \end Ответ: \(\left\<\pm\frac\pi 3+2\pi k\right\>\)

Приведем сводную таблицу для удобства и наглядности при изучении темы.

Константа y = C

Степенная функция y = x p

( x p ) ' = p · x p - 1

Показательная функция y = a x

( a x ) ' = a x · ln a

В частности, при a = e имеем y = e x

( e x ) ' = e x

Логарифмическая функция

( log a x ) ' = 1 x · ln a

В частности, при a = e имеем y = ln x

( ln x ) ' = 1 x

Тригонометрические функции

( sin x ) ' = cos x ( cos x ) ' = - sin x ( t g x ) ' = 1 cos 2 x ( c t g x ) ' = - 1 sin 2 x

Обратные тригонометрические функции

( a r c sin x ) ' = 1 1 - x 2 ( a r c cos x ) ' = - 1 1 - x 2 ( a r c t g x ) ' = 1 1 + x 2 ( a r c c t g x ) ' = - 1 1 + x 2

Гиперболические функции

( s h x ) ' = c h x ( c h x ) ' = s h x ( t h x ) ' = 1 c h 2 x ( c t h x ) ' = - 1 s h 2 x

Разберем, каким образом были получены формулы указанной таблицы или, иначе говоря, докажем вывод формул производных для каждого вида функций.

Производная постоянной

Для того, чтобы вывести данную формулу, возьмем за основу определение производной функции в точке. Используем x 0 = x , где x принимает значение любого действительного числа, или, иначе говоря, x является любым числом из области определения функции f ( x ) = C . Составим запись предела отношения приращения функции к приращению аргумента при ∆ x → 0 :

lim ∆ x → 0 ∆ f ( x ) ∆ x = lim ∆ x → 0 C - C ∆ x = lim ∆ x → 0 0 ∆ x = 0

Итак, производная постоянной функции f ( x ) = C равна нулю на всей области определения.

Даны постоянные функции:

f 1 ( x ) = 3 , f 2 ( x ) = a , a ∈ R , f 3 ( x ) = 4 . 13 7 22 , f 4 ( x ) = 0 , f 5 ( x ) = - 8 7

Необходимо найти их производные.

Решение

Опишем заданные условия. В первой функции мы видим производную натурального числа 3 . В следующем примере необходимо брать производную от а , где а - любое действительное число. Третий пример задает нам производную иррационального числа 4 . 13 7 22 , четвертый - производную нуля (нуль – целое число). Наконец, в пятом случае имеем производную рациональной дроби - 8 7 .

Ответ: производные заданных функций есть нуль при любом действительном x (на всей области определения)

f 1 ' ( x ) = ( 3 ) ' = 0 , f 2 ' ( x ) = ( a ) ' = 0 , a ∈ R , f 3 ' ( x ) = 4 . 13 7 22 ' = 0 , f 4 ' ( x ) = 0 ' = 0 , f 5 ' ( x ) = - 8 7 ' = 0

Производная степенной функции

Переходим к степенной функции и формуле ее производной, имеющей вид: ( x p ) ' = p · x p - 1 , где показатель степени p является любым действительным числом.

Приведем доказательство формулы, когда показатель степени – натуральное число: p = 1 , 2 , 3 , …

Вновь опираемся на определение производной. Составим запись предела отношения приращения степенной функции к приращению аргумента:

( x p ) ' = lim ∆ x → 0 = ∆ ( x p ) ∆ x = lim ∆ x → 0 ( x + ∆ x ) p - x p ∆ x

Чтобы упростить выражение в числителе, используем формулу бинома Ньютона:

( x + ∆ x ) p - x p = C p 0 + x p + C p 1 · x p - 1 · ∆ x + C p 2 · x p - 2 · ( ∆ x ) 2 + . . . + + C p p - 1 · x · ( ∆ x ) p - 1 + C p p · ( ∆ x ) p - x p = = C p 1 · x p - 1 · ∆ x + C p 2 · x p - 2 · ( ∆ x ) 2 + . . . + C p p - 1 · x · ( ∆ x ) p - 1 + C p p · ( ∆ x ) p

( x p ) ' = lim ∆ x → 0 ∆ ( x p ) ∆ x = lim ∆ x → 0 ( x + ∆ x ) p - x p ∆ x = = lim ∆ x → 0 ( C p 1 · x p - 1 · ∆ x + C p 2 · x p - 2 · ( ∆ x ) 2 + . . . + C p p - 1 · x · ( ∆ x ) p - 1 + C p p · ( ∆ x ) p ) ∆ x = = lim ∆ x → 0 ( C p 1 · x p - 1 + C p 2 · x p - 2 · ∆ x + . . . + C p p - 1 · x · ( ∆ x ) p - 2 + C p p · ( ∆ x ) p - 1 ) = = C p 1 · x p - 1 + 0 + 0 + . . . + 0 = p ! 1 ! · ( p - 1 ) ! · x p - 1 = p · x p - 1

Так, мы доказали формулу производной степенной функции, когда показатель степени – натуральное число.

Чтобы привести доказательство для случая, когда p - любое действительное число, отличное от нуля, используем логарифмическую производную (здесь следует понимать отличие от производной логарифмической функции). Чтобы иметь более полное понимание желательно изучить производную логарифмической функции и дополнительно разобраться с производной неявно заданной функции и производной сложной функции.

Рассмотрим два случая: когда x положительны и когда x отрицательны.

Итак, x > 0 . Тогда: x p > 0 . Логарифмируем равенство y = x p по основанию e и применим свойство логарифма:

y = x p ln y = ln x p ln y = p · ln x

На данном этапе получили неявно заданную функцию. Определим ее производную:

( ln y ) ' = ( p · ln x ) 1 y · y ' = p · 1 x ⇒ y ' = p · y x = p · x p x = p · x p - 1

Теперь рассматриваем случай, когда x – отрицательное число.

Если показатель p есть четное число, то степенная функция определяется и при x 0 , причем является четной: y ( x ) = - y ( ( - x ) p ) ' = - p · ( - x ) p - 1 · ( - x ) ' = = p · ( - x ) p - 1 = p · x p - 1

Тогда x p 0 и возможно составить доказательство, используя логарифмическую производную.

Если p есть нечетное число, тогда степенная функция определена и при x 0 , причем является нечетной: y ( x ) = - y ( - x ) = - ( - x ) p . Тогда x p 0 , а значит логарифмическую производную задействовать нельзя. В такой ситуации возможно взять за основу доказательства правила дифференцирования и правило нахождения производной сложной функции:

y ' ( x ) = ( - ( - x ) p ) ' = - ( ( - x ) p ) ' = - p · ( - x ) p - 1 · ( - x ) ' = = p · ( - x ) p - 1 = p · x p - 1

Последний переход возможен в силу того, что если p - нечетное число, то p - 1 либо четное число, либо нуль (при p = 1 ), поэтому, при отрицательных x верно равенство ( - x ) p - 1 = x p - 1 .

Итак, мы доказали формулу производной степенной функции при любом действительном p .

f 1 ( x ) = 1 x 2 3 , f 2 ( x ) = x 2 - 1 4 , f 3 ( x ) = 1 x log 7 12

Определите их производные.

Решение

Часть заданных функций преобразуем в табличный вид y = x p , опираясь на свойства степени, а затем используем формулу:

f 1 ( x ) = 1 x 2 3 = x - 2 3 ⇒ f 1 ' ( x ) = - 2 3 · x - 2 3 - 1 = - 2 3 · x - 5 3 f 2 ' ( x ) = x 2 - 1 4 = 2 - 1 4 · x 2 - 1 4 - 1 = 2 - 1 4 · x 2 - 5 4 f 3 ( x ) = 1 x log 7 12 = x - log 7 12 ⇒ f 3 ' ( x ) = - log 7 12 · x - log 7 12 - 1 = - log 7 12 · x - log 7 12 - log 7 7 = - log 7 12 · x - log 7 84

Производная показательной функции

Выведем формулу производной, взяв за основу определение:

( a x ) ' = lim ∆ x → 0 a x + ∆ x - a x ∆ x = lim ∆ x → 0 a x ( a ∆ x - 1 ) ∆ x = a x · lim ∆ x → 0 a ∆ x - 1 ∆ x = 0 0

Мы получили неопределенность. Чтобы раскрыть ее, запишем новую переменную z = a ∆ x - 1 ( z → 0 при ∆ x → 0 ). В таком случае a ∆ x = z + 1 ⇒ ∆ x = log a ( z + 1 ) = ln ( z + 1 ) ln a . Для последнего перехода использована формула перехода к новому основанию логарифма.

Осуществим подстановку в исходный предел:

( a x ) ' = a x · lim ∆ x → 0 a ∆ x - 1 ∆ x = a x · ln a · lim ∆ x → 0 1 1 z · ln ( z + 1 ) = = a x · ln a · lim ∆ x → 0 1 ln ( z + 1 ) 1 z = a x · ln a · 1 ln lim ∆ x → 0 ( z + 1 ) 1 z

Вспомним второй замечательный предел и тогда получим формулу производной показательной функции:

( a x ) ' = a x · ln a · 1 ln lim z → 0 ( z + 1 ) 1 z = a x · ln a · 1 ln e = a x · ln a

Даны показательные функции:

f 1 ( x ) = 2 3 x , f 2 ( x ) = 5 3 x , f 3 ( x ) = 1 ( e ) x

Необходимо найти их производные.

Решение

Используем формулу производной показательной функции и свойства логарифма:

f 1 ' ( x ) = 2 3 x ' = 2 3 x · ln 2 3 = 2 3 x · ( ln 2 - ln 3 ) f 2 ' ( x ) = 5 3 x ' = 5 3 x · ln 5 1 3 = 1 3 · 5 3 x · ln 5 f 3 ' ( x ) = 1 ( e ) x ' = 1 e x ' = 1 e x · ln 1 e = 1 e x · ln e - 1 = - 1 e x

Производная логарифмической функции

Приведем доказательство формулы производной логарифмической функции для любых x в области определения и любых допустимых значениях основания а логарифма. Опираясь на определение производной, получим:

( log a x ) ' = lim ∆ x → 0 log a ( x + ∆ x ) - log a x ∆ x = lim ∆ x → 0 log a x + ∆ x x ∆ x = = lim ∆ x → 0 1 ∆ x · log a 1 + ∆ x x = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x = = lim ∆ x → 0 log a 1 + ∆ x x 1 ∆ x · x x = lim ∆ x → 0 1 x · log a 1 + ∆ x x x ∆ x = = 1 x · log a lim ∆ x → 0 1 + ∆ x x x ∆ x = 1 x · log a e = 1 x · ln e ln a = 1 x · ln a

Из указанной цепочки равенств видно, что преобразования строились на основе свойства логарифма. Равенство lim ∆ x → 0 1 + ∆ x x x ∆ x = e является верным в соответствии со вторым замечательным пределом.

Заданы логарифмические функции:

f 1 ( x ) = log ln 3 x , f 2 ( x ) = ln x

Необходимо вычислить их производные.

Решение

Применим выведенную формулу:

f 1 ' ( x ) = ( log ln 3 x ) ' = 1 x · ln ( ln 3 ) ; f 2 ' ( x ) = ( ln x ) ' = 1 x · ln e = 1 x

Итак, производная натурального логарифма есть единица, деленная на x .

Производные тригонометрических функций

Используем некоторые тригонометрические формулы и первый замечательный предел, чтобы вывести формулу производной тригонометрической функции.

Согласно определению производной функции синуса, получим:

( sin x ) ' = lim ∆ x → 0 sin ( x + ∆ x ) - sin x ∆ x

Формула разности синусов позволит нам произвести следующие действия:

( sin x ) ' = lim ∆ x → 0 sin ( x + ∆ x ) - sin x ∆ x = = lim ∆ x → 0 2 · sin x + ∆ x - x 2 · cos x + ∆ x + x 2 ∆ x = = lim ∆ x → 0 sin ∆ x 2 · cos x + ∆ x 2 ∆ x 2 = = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2

Наконец, используем первый замечательный предел:

sin ' x = cos x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = cos x

Итак, производной функции sin x будет cos x .

Совершенно также докажем формулу производной косинуса:

cos ' x = lim ∆ x → 0 cos ( x + ∆ x ) - cos x ∆ x = = lim ∆ x → 0 - 2 · sin x + ∆ x - x 2 · sin x + ∆ x + x 2 ∆ x = = - lim ∆ x → 0 sin ∆ x 2 · sin x + ∆ x 2 ∆ x 2 = = - sin x + 0 2 · lim ∆ x → 0 sin ∆ x 2 ∆ x 2 = - sin x

Т.е. производной функции cos x будет – sin x .

Формулы производных тангенса и котангенса выведем на основе правил дифференцирования:

t g ' x = sin x cos x ' = sin ' x · cos x - sin x · cos ' x cos 2 x = = cos x · cos x - sin x · ( - sin x ) cos 2 x = sin 2 x + cos 2 x cos 2 x = 1 cos 2 x c t g ' x = cos x sin x ' = cos ' x · sin x - cos x · sin ' x sin 2 x = = - sin x · sin x - cos x · cos x sin 2 x = - sin 2 x + cos 2 x sin 2 x = - 1 sin 2 x

Производные обратных тригонометрических функций

Раздел о производной обратных функций дает исчерпывающую информацию о доказательстве формул производных арксинуса, арккосинуса, арктангенса и арккотангенса, поэтому дублировать материал здесь не будем.

Производные гиперболических функций

Вывод формул производных гиперболического синуса, косинуса, тангенса и котангенса осуществим при помощи правила дифференцирования и формулы производной показательной функции:

s h ' x = e x - e - x 2 ' = 1 2 e x ' - e - x ' = = 1 2 e x - - e - x = e x + e - x 2 = c h x c h ' x = e x + e - x 2 ' = 1 2 e x ' + e - x ' = = 1 2 e x + - e - x = e x - e - x 2 = s h x t h ' x = s h x c h x ' = s h ' x · c h x - s h x · c h ' x c h 2 x = c h 2 x - s h 2 x c h 2 x = 1 c h 2 x c t h ' x = c h x s h x ' = c h ' x · s h x - c h x · s h ' x s h 2 x = s h 2 x - c h 2 x s h 2 x = - 1 s h 2 x

Рекомендуется выучить формулы из таблицы производных: они не столь сложны для запоминания, но экономят много времени, когда необходимо решать задачи дифференцирования.

Тригонометрические функции - это периодические функции с периодами для sin , cos , sec и cosec , и для tg и ctg .

Тригонометрические функции - это периодические функции с периодами для sin, cos, sec и cosec, и для tg и ctg.

Зачастую тригонометрические функции обозначают отношением сторон прямоугольного треугольника либо длины конкретных отрезков в единичной окружности.

Прямые тригонометрические функции.

Производные тригонометрические функции.

Другие тригонометрические функции.

В современном мире есть 6 базовых тригонометрических функций, которые ниже в таблице указаны вместе с уравнениями, которые связывают их.

Функция

Соотношение

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

Знаки тригонометрических функций .

Значения тригонометрических функций.

α

30°

π/6

45°

π/4

60°

π/3

90°

π/2

180°

π

270°

3π/2

360°

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

<infty></p>
<p>,!

<infty></p>
<p>,!

<infty></p>
<p>,!

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

<infty></p>
<p>,!

<infty></p>
<p>,!

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

<infty></p>
<p>,!

<infty></p>
<p>,!

<infty></p>
<p>,!

Тригонометрические функции. Значение тригонометрических функций.

Тригонометрические функции. Значение тригонометрических функций.

<infty></p>
<p>,!

<infty></p>
<p>,!

Читайте также: