Принцип работы токового зеркала кратко

Обновлено: 04.07.2024

> > This page is based on a Wikipedia article written by contributors (read/edit).
Text is available under the CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.

Tell your friends about Wikiwand!

  • Введение
  • Принцип работы схемы
  • Характеристики токового зеркала
  • Практические приближения
  • Реализация схем токовых зеркал
    1. Основная идея
    2. Недостатки токовых зеркал, обусловленные эффектом Эрли
    3. Простейшее транзисторное токовое зеркало
    4. Схема Уилсона
    5. Схемы с несколькими выходами и коэффициенты отражения тока
  • Примеры
  • Примечания
  • Литература
  • Ссылки

Suggest as cover photo

Would you like to suggest this photo as the cover photo for this article?

Thank you for helping!

Your input will affect cover photo selection, along with input from other users.

Токовые зеркала. Классическая схема.

Классическая схема токового зеркала. Положительное питающее напряжение принято обозначать Uкк, даже в тех случаях, когда используются транзисторы р-n-р типа.

Одно из достоинств описанной схемы состоит в том, что ее диапазон устойчивости по напряжению равен UKK за вычетом нескольких десятых долей вольта, так как нет падения напряжения на эмиттерном резисторе. Кроме того, во многих случаях удобно задавать ток с помощью тока. Легче всего получить управляющий ток Iпр с помощью резистора.

Токовые зеркала. Управление с помощью резистора.

В связи с тем, что эмиттерные переходы транзисторов представляют собой диоды, падение напряжения на которых мало по сравнению с UKK, резистор 14,4 кОм формирует управляющий, а следовательно, и выходной ток величиной 1 мА. Токовые зеркала можно использовать в тех случаях, когда в транзисторной схеме необходим источник тока. Их широко используют при проектировании интегральных схем, когда: а) под рукой есть много согласованных транзисторов и б) разработчик хочет создать схему, которая бы работала в широком диапазоне питающих напряжений.

Недостатки токовых зеркал, обусловленные эффектом Эрли.

Простое токовое зеркало обладает одним недостатком: выходной ток несколько изменяется при изменении выходного напряжения, т. е. выходное сопротивление схемы не бесконечно. Это связано с тем, что при заданном токе транзистора Т2 напряжение UБЭ слегка меняется в зависимости от коллекторного напряжения (проявление эффекта Эрли); иначе говоря, график зависимости коллекторного тока от напряжения между коллектором и эмиттером при фиксированном напряжении между базой и эмиттером не является горизонтальной линией.

Эффект Эрли в токовых зеркалах

Практически ток может изменяться приблизительно на 25 % в диапазоне устойчивой работы схемы, т. е. характеристики такой схемы существенно хуже, чем характеристики рассмотренного выше источника тока с эмиттерным резистором.
Если же нужен более высококачественный источник тока, то подойдет схема, показанная ниже.

Токовые зеркала. Улучшенная схема токового зеркала.

Улучшенная схема токового зеркала.

Эмиттерные резисторы выбраны таким образом, что падение напряжения на них составляет несколько десятых долей вольта; такая схема – гораздо лучший источник тока, так как в ней изменения напряжения UБЭ , обусловленные изменениями напряжения UКЭ , оказывают пренебрежимо малое влияние на выходной ток. В этой схеме также следует использовать согласованные транзисторы.

Токовое зеркало Уилсона

На рисунке ниже представлено еще одно токовое зеркало, обеспечивающее высокую степень постоянства выходного тока.

Токовое зеркало Уилсона

Влияние изменений напряжения на нагрузке на выходной ток подавлено за счет каскодного включения транзистора Т3, которое позволяет уменьшить изменения напряжения транзистора T1.

Транзисторы Т1 и Т2 включены как в обычном токовом зеркале. Благодаря транзистору Т3 потенциал коллектора транзистора Т1 фиксирован и на удвоенную величину падения напряжения на диоде ниже, чем напряжение питания UKK. Такое включение позволяет подавить эффект Эрли в транзисторе Т1, коллектор которого теперь служит для задания режима работы схемы; выходной ток определяется транзистором Т2. Транзистор Т3 не влияет на баланс токов, если его базовый ток пренебрежимо мал; его единственная функция состоит в том, чтобы зафиксировать потенциал коллектора Т1 . В результате в токозадающих транзисторах Т1 и Т2 падения напряжения на эмиттерных переходах фиксированы; транзистор Т3 можно рассматривать как элемент, который просто передает выходной ток в нагрузку, напряжение на которой является переменным. Транзистор Т3 не обязательно согласовывать с транзисторами Т1 и Т2.

Схемы с несколькими выходами и коэффициенты отражения тока

Схему токового зеркала можно построить так, что вытекающий выходной ток (или втекающий ‑ в случае использования транзисторов n‑p‑n‑типа) будет передаваться в несколько нагрузок. Рассмотрим схему ниже.

Токовые зеркала. Схема токового зеркала с несколькими выходами. Эта схема широко используется для получения нескольких программируемых источников тока.

Схема токового зеркала с несколькими выходами. Эта схема широко используется для получения нескольких программируемых источников тока.

Рис. 2.44. Классическая схема токового зеркала на основе согласованной пары биполярных транзисторов. Отметим, что положительное питающее напряжение принято обозначать Uкк, даже в тех случаях, когда используются транзисторы p-n-p - типа.

Одно из достоинств описанной схемы состоит в том, что ее диапазон устойчивости по напряжению равен Uкк за вычетом нескольких десятых долей вольта, так как нет падения напряжения на эмиттерном резисторе. Кроме того, во многих случаях удобно задавать ток с помощью тока. Легче всего получить управляющий ток Iпр с помощью резистора (рис. 2.45). В связи с тем, что эмиттерные переходы транзисторов представляют собой диоды, падение напряжения на которых мало по сравнению с Uкк, резистор 14,4 кОм формирует управляющий, а следовательно, и выходной ток величиной 1 мА. Токовые зеркала можно использовать в тех случаях, когда в транзисторной схеме необходим источник тока. Их широко используют при проектировании интегральных схем, когда: а) под рукой есть много согласованных транзисторов и б) разработчик хочет создать схему, которая бы работала в широком диапазоне питающих напряжений. Существуют даже безрезисторные интегральные операционные усилители, в которых режимный ток всего усилителя задается с помощью одного внешнего резистора, а токи отдельных внутренних усилительных каскадов формируются с помощью токовых зеркал.

Недостатки токовых зеркал, обусловленные эффектом Эрли. Простое токовое зеркало обладает одним недостатком: выходной ток несколько изменяется при изменении выходного напряжения, т.е. выходное сопротивление схемы не бесконечно. Это связано с тем, что при заданном токе транзистора Т2 напряжение Uбэ слегка меняется в зависимости от коллекторного напряжения (проявление эффекта Эрли); иначе говоря, график зависимости коллекторного тока от напряжения между коллектором и эмиттером при фиксированном напряжении между базой и эмиттером не является горизонтальной линией (рис. 2.46). Практически ток может изменяться приблизительно на 25% в диапазоне устойчивой работы схемы, т. е. характеристики такой схемы существенно хуже, чем характеристики рассмотренного выше источника тока с эмиттерным резистором.

Если же нужен более высококачественный источник тока (чаше всего таких требований не возникает), то подойдет схема. показанная на рис. 2.47. Эмиттерные резисторы выбраны таким образом, что падение напряжения на них составляет несколько десятых долей вольта; такая схема - гораздо лучший источник тока, так как в ней изменения напряжения Uбэ, обусловленные изменениями напряжения Uкэ, оказывают пренебрежимо малое влияние на выходной ток. В этой схеме также следует использовать согласованные транзисторы.

Рис. 2.47. Улучшенная схема токового зеркала.

Токовое зеркало Уилсона. На рис. 2.48 представлено еще одно токовое зеркало, обеспечивающее высокую степень постоянства выходного тока. Транзисторы Т1 и Т2 включены как в обычном токовом зеркале. Благодаря транзистору Т3 потенциал коллектора транзистора Т1 фиксирован и на удвоенную величину падения напряжения на диоде ниже, чем напряжение питания Uкк. Такое включение позволяет подавить эффект Эрли в транзисторе Т1, коллектор которого теперь служит для задания режима работы схемы; выходной ток определяется транзистором Т2. Транзистор Т3 не влияет на баланс токов, если его базовый ток пренебрежимо мал; его единственная функция состоит в том, чтобы зафиксировать потенциал коллектора Т1. В результате в токозадающих транзисторах Т1 и Т2 падения напряжения на эмиттерных переходах фиксированы; транзистор Т3 можно рассматривать как элемент, который просто передает выходной ток в нагрузку, напряжение на которой является переменным (аналогичный прием используют при каскодном включении, которое мы рассмотрим позже). Кстати, транзистор Т3 не обязательно согласовывать с транзисторами Т1 и Т2.

Рис. 2.48. Токовое зеркало Уилсона. Влияние изменений напряжения на нагрузке на выходной ток подавлено за счет каскодного включения транзистора Т3, которое позволяет уменьшить изменения напряжения транзистора Т1.

Схемы с несколькими выходами и коэффициенты отражения тока. Схему токового зеркала можно построить так, что вытекающий выходной ток (или втекающий - в случае использования транзисторов n-p-n - типа) будет передаваться в несколько нагрузок. О том, как эта идея воплощается в жизнь, дает представление схема, изображенная на рис. 2.49. Отметим, что если один из транзисторов - источников тока переходит в режим насыщения (в том случае, например, когда отключается его нагрузка), то его база будет отбирать повышенный ток из обшей линии, соединяющей базы всех транзисторов, и в связи с этим уменьшаются остальные выходные токи. Положение можно улучшить, если включить в схему еще один транзистор (рис. 2.50).

Рис. 2.49. Схема токового зеркала с несколькими выходами. Эта схема широко используется для получения нескольких программируемых источников тока.

На рис. 2.51 представлены два варианта многовыходного токового зеркала. Эти схемы отражают удвоенный (или половинный) управляющий ток. При разработке токовых зеркал в интегральных схемах коэффициент отражения тока задают путем выбора размеров (площадей) эмиттерных переходов.

Рис. 2.51. Токовые зеркала, в которых коэффициент отражения тока отличен oт 1 : 1.

Фирма Texas Instruments предлагает токовые зеркала Уилсона в виде законченных монолитных схем в удобных транзисторных корпусах типа ТО-92. Серия TL011 включает схемы, которые обеспечивают отношения 1:1, 1:2, 1:4 и 2:1, при этом диапазон устойчивости выходного напряжения определяется значениями от 1,2 до 40 В. Схема Уилсона обладает хорошими характеристиками источника тока - при постоянном программирующем токе выходной ток увеличивается только на 0,05% на вольт - помимо всего она очень недорога (50 центов и дешевле). К сожалению, эти полезные схемы существуют только на транзисторах n-p-n - типа.

Еще один способ получения выходного тока, кратного управляющему, состоит во включении дополнительного резистора в цепь эмиттера выходного транзистора (рис. 2.52). Если схема работает с токами различной плотности, то, согласно уравнению Эберса-Молла, разность напряжении Uбэ зависит только от отношения плотностей токов. Для согласованных транзисторов отношение коллекторных токов равно отношению плотностей токов. График на рис. 2.53 позволяет определить разность напряжений между базой и эмиттером в подобном случае и полезен при разработке токовых зеркал с неединичным отражением.

Рис. 2.52. Снижение выходного тока с помощью эмиттерного резистора. Отметим, что выходной ток здесь не кратен управляющему.

Рис. 2.53. Зависимость отношения коллекторных токов в согласованных парах транзисторов от разности напряжений база-эмиттер.

Упражнение 2.12. Покажите, что токовое зеркало с неединичным отражением, показанное на рис. 2.52. работает так, как мы описали.

Содержание

Характеристики токового зеркала

Есть три основные характеристики, которые характеризуют токовое зеркало. Первыми из них являются коэффициент передачи (в случае операционного усилителя) или величина выходного тока (в случае постоянного тока CCSШаблон:Какого? источника). Во-вторых, его выходное сопротивление для переменного тока, которое определяет, насколько выходной ток меняется в зависимости от напряжения, приложенного к зеркалу. Третья спецификация – это минимальное падение напряжения на выходе зеркала, необходимого, чтобы заставить ее работать должным образом. Это минимальное напряжение продиктовано необходимостью поддерживать выходной транзистор зеркала в активном режиме. Диапазон напряжений, в котором работает зеркало, называется диапазоном соответствия, и напряжение, лежащее на разделе между хорошим и плохим поведением, называется диапазоном напряжения. Есть также ряд второстепенных вопросов по работе с зеркалами, например, температурная стабильность.

Практические приближения

Для анализа в режиме малого сигнала токовое зеркало можно приблизить его эквивалентным сопротивлением Нортона. In large-signal hand analysis, текущее зеркало, как правило, просто заменяется идеальным источником тока. Тем не менее, идеальный источник тока не является эквивалентом в нескольких отношениях:

  1. он имеет бесконечное сопротивление переменного тока, в то время как реальное зеркало имеет конечное сопротивление
  2. он обеспечивает один и тот же ток, независимо от напряжения, то есть, нет никаких требований по диапазону соответствия
  3. он не имеет ограничений по частоте, в то время как реальное зеркало имеет свои ограничения из-за паразитных емкостей транзисторов
  4. идеальный источник не чувствителен ко внешним эффектам, таким как шум, перепадам напряжения источника питания и допускам на элементы схемы.

Реализация схем токовых зеркал


Основная идея

  1. под рукой есть много согласованных транзисторов
  2. разработчик хочет создать схему, которая бы работала в широком диапазоне питающих напряжений.

Существуют даже безрезисторные интегральные операционные усилители, в которых режимный ток всего усилителя задаётся с помощью внешнего резистора, а токи отдельных внутренних усилительных каскадов формируются с помощью токовых зеркал.

Недостатки токовых зеркал, обусловленные эффектом Эрли

Простое токовое зеркало обладает одним недостатком: выходной ток несколько изменяется при изменении выходного напряжения, то есть выходное сопротивление схемы не бесконечно. Это связано с тем, что при заданном токе транзистора T1, напряжение Uвэ слегка меняется в зависимости от коллекторного напряжения (проявление эффекта Эрли); иначе говоря, график зависимости коллекторного тока от напряжения между коллектором и эмиттером при фиксированном напряжении между базой и эмиттером не является горизонтальной линией.Практически ток может изменяться приблизительно на 25 % в диапазоне устойчивой работы схемы.Если же нужен более высококачественный источник тока(чаще всего таких требований не возникает), то подойдёт схема , показанная на рисунке. Эмиттерные резисторы выбраны таким образом, что падение напряжения на них составляет несколько десятых долей вольта; такая схема – гораздо лучший источник тока. Так как в ней изменения напряжения Uвэ , обусловленные изменениями напряжения Uкэ , оказывают пренебрежительно малое влияние на выходной ток. В этой схеме также следует использовать согласованные транзисторы.

Простейшее транзисторное токовое зеркало


Схема Уилсона

Простое токовое зеркало имеет один существенный недостаток — выходной ток в некоторых пределах меняется при изменении выходного напряжения, то есть выходное сопротивление такой схемы не бесконечно. При заданном токе транзистора напряжение UБЭ, а вместе с ним и ток коллектора, меняется в зависимости от коллекторного напряжения.

На рисунке приведена схема токового зеркала Уилсона. Эта схема избавлена от описанного выше недостатка и обеспечивает высокую степень постоянства выходного тока. Транзисторы T1 и T2 в этой схеме включены так же, как в обычном токовом зеркале, но благодаря транзистору T3 потенциал коллектора фиксирован и не влияет на выходной ток.

Схемы с несколькими выходами и коэффициенты отражения тока

Схему токового зеркала можно построить так, что вытекающий выходной ток (или втекающий - в случае использования транзистора n-p-n типа будет предаваться в несколько нагрузок. О том, как эта идея воплощается в жизнь, даёт представленная на рисунке схема. Отметим, что если один из транзисторов – источников тока переходит в режим насыщения ( в том случае, например, когда отключается его нагрузка), то база будет отбирать повышенный ток из общей линии, соединяющей базы всех его транзисторов, и в связи с этим уменьшаются остальные выходные токи. Положение можно улучшить если включить в схему ещё один транзистор. На рисунке представлены два варианта многовыходного токового зеркала. Эти схемы отражают удвоенный (или половинный) управляющий ток. При разработке токовых зеркал в интегральных схемах коэффициенты отражения тока задают путём выбора размеров (площадей) эмиттерных переходов . Ещё один способ получения выходного тока, кратного управляющему состоит во включении дополнительного резистора в цепь эмиттера выходного транзистора. Если схема работает с токами различной плотности, то, согласно уравнению Эберса – Молла , разность напряжения UБЭ зависит только от отношения плотностей токов. Для согласованных транзисторов отношение коллекторных токов равно отношению плотностей токов. График позволяет определить разность напряжений между базой и эмиттером в подобном случаеи полезен при разработке токовых зеркал с неединичным отражением.

Читайте также: