Принцип работы синхрофазотрона кратко

Обновлено: 02.07.2024

Для изучения микромира и познания структуры элементарных частиц, законов их взаимодействия друг с другом был создан прибор под названием синхрофазатрон. Сам способ познания был чрезвычайно прост: поломать частицу и посмотреть, что находится внутри. Однако как можно поломать протон? Для этого и был создан синхрофазотрон, который разгоняет частицы и ударяет их о мишень.

Последняя может быть неподвижной, а в современном Большом адронном коллайдере (он является усовершенствованной версией старого доброго синхрофазотрона) мишень является подвижной. Там пучки протонов с огромной скоростью движутся друг к другу и ударяются.

Считалось, что эта установка позволит осуществить научный прорыв, открыть новые элементы и способы получения атомной энергии из дешевых источников, которые превосходили бы по эффективности обогащенный уран и являлись бы более безопасными и менее вредными для окружающей среды.

Что такое синхрофазотрон

Данная установка представляет собой ускоритель элементарных частиц, протонов в частности. Синхрофазотрон состоит из немагнитной закольцованной трубы с вакуумом внутри, а также мощных электромагнитов. Поочередно магниты включаются, направляя заряженные частицы внутри вакуумной трубы. Когда они с помощью ускорителей достигают максимальной скорости, их направляют в специальную мишень.

Протоны в нее ударяются, разбивают саму мишень и разбиваются при этом сами. Осколки разлетаются в разные стороны и оставляют следы в пузырьковой камере. По этим следам группа ученых анализирует их природу. Сама по себе установка является достаточно сложной и высокотехнологичной. Можно сказать, что синхрофазотрон – это "дальний родственник" современного Большого адронного коллайдера. По сути, его можно назвать аналогом микроскопа. Оба эти прибора предназначаются для изучения микромира, только принцип изучения разный.

Подробнее об устройстве

В установке частицы двигаются по кругу, и на каждом обороте их подпитывают энергией, получая ускорение. И хотя подобная подпитка невелика, за миллионы оборотов можно набрать необходимую энергию. В основу работы синхрофазотрона положен именно этот принцип. Разогнанные до небольших значений элементарные частицы запускаются в туннель, где располагаются магниты. Они создают перпендикулярное кольцу магнитное поле. Многие ошибочно полагают, что эти магниты ускоряют частицы, но на самом деле это не так. Они лишь меняют их траекторию, заставляя двигаться по окружности, однако не ускоряют их. Само ускорение происходит на определенных разгонных промежутках.

Разгон частиц

Подобный промежуток ускорения представляет собой конденсатор, на который подается напряжение с высокой частотой. Пучок протонов влетает в данный конденсатор в момент, когда напряжение в нем равно нулю. По мере того как частицы пролетают по конденсатору, напряжение успевает возрасти, что подгоняет частицы. На следующем кругу это повторяется, так как частота переменного напряжения специально подбирается равной частоте обращения частицы по кольцу.

Следовательно, синхронно и в фазе осуществляется ускорение протонов. Отсюда и название – синхрофазотрон. Кстати, при таком способе ускорения есть определенный полезный эффект. Если вдруг пучок протонов летит быстрее необходимой скорости, то он влетает в разгонный промежуток при отрицательном значении напряжения, из-за чего немного притормаживает. Если скорость движения меньшая, то эффект будет обратным: частица получает ускорение и догоняет основной сгусток протонов. В результате плотный и компактный пучок частиц движется с одной скоростью.


Видео

Проблемы

В идеале частицы необходимо разогнать до максимально возможной скорости. И если протоны на каждом круге движутся быстрее и быстрее, то почему нельзя их разогнать до максимально возможной скорости? Причин несколько.

Во-первых, рост энергии предполагает увеличение массы частиц. К сожалению, релятивистские законы не позволяют ни один элемент разогнать выше скорости света. В синхрофазотроне скорость протонов практически достигает скорости движения света, что сильно увеличивает их массу. В результате их становится трудно удерживать на круговой орбите радиуса. Еще со школы известно, что радиус движения частиц в магнитном поле обратно пропорционален массе и прямо пропорционален величине поля. И так как масса частиц растет, то радиус необходимо увеличивать и делать магнитное поле сильнее. Эти условия и создают ограничения в реализации условий для исследования, так как технологии даже сегодня ограничены. Пока что не удается создать поле с индукцией выше нескольких тесла. Поэтому и делают туннели большой длины, ведь при большом радиусе тяжелые частицы на огромной скорости удается удерживать в магнитном поле.

Вторая проблема – движение с ускорением по окружности. Известно, что заряд, который движется с определенной скоростью, излучает энергию, то есть теряет ее. Следовательно, частицы при ускорении постоянно теряют часть энергии, и чем выше их скорость, тем больше энергии они расходуют. В какой-то момент наступает равновесие между получаемой энергией на участке разгона и потерей этого же количества энергии за один оборот.

Что такое синхрофазотрон простыми словами?

Если обобщить и говорить понятным языком? Синхрофазотрон – это установка, где протоны можно разогнать до большой скорости. Она состоит из закольцованной трубы с вакуумом внутри и мощных электромагнитов, которые не дают протонам двигаться хаотично. Когда протоны достигают своей максимальной скорости движения, их поток направляется на специальную мишень. Ударяясь о нее, протоны разлетаются на мелкие осколки. Учены могут видеть следы разлетающихся осколков в специальной пузырьковой камере, и по этим следам они анализируют природу самих частиц.

Пузырьковая камера – это немного устаревшее устройство для фиксации следов протонов. Сегодня в подобных установках применяются более точные радары, дающие больше информации о движении осколков протонов.

Проблемы, с которыми столкнулись ученые при проведении экспериментов

Чтобы лучше понять, что такое синхрофазотрон, и по

Чтобы лучше понять, что такое синхрофазотрон, и почему его создание является очень сложным и наукоемким процессом, следует рассмотреть проблемы, возникающие в процессе его работы.

Во-первых, чем больше скорость пучка протонов, тем большей массой они начинают обладать согласно знаменитому закону Эйнштейна. При скоростях близких к световым масса частиц становится настолько большой, что для их удержания на нужной траектории, необходимо иметь мощные электромагниты. Чем больше размер синхрофазотрона, тем большие магниты можно поставить.

Во-вторых, создание синхрофазотрона осложнялось еще и потерями энергии пучком протонов во время их кругового ускорения, причем, чем больше скорость пучка, тем более значительными становятся эти потери. Получается, что для разгона пучка до необходимых гигантских скоростей, необходимо иметь огромные мощности.

С какими проблемами столкнулись ученые?

Одна из главных проблем при создании этой установки заключалась именно в разгоне частиц. Конечно, им можно было придавать ускорение на каждом круге, однако при ускорении их масса становилась выше. При скорости движения, близкой к скорости света (как известно, ничто не может двигаться быстрее скорости света), их масса становилась огромной, из-за чего удерживать их на круговой орбите было сложно. Из школьной программы нам известно, что радиус движения элементов в магнитом поле обратно пропорционален их массе, поэтому с ростом массы протонов приходилось увеличивать радиус и использовать большие сильные магниты. Подобные законы физики сильно ограничивают возможности для исследования. Кстати, ими же можно объяснить, почему синхрофазотрон получился таким огромным. Чем большим будет тоннель, тем большие магниты можно установить для создания сильного магнитного поля для удержания нужного направления движения протонов.

Вторая проблема – потеря энергии при движении. Частицы при прохождении по окружности излучают энергию (теряют ее). Следовательно, при движении на скорости часть энергии улетучивается, и, чем выше скорость движения, тем выше и потери. Рано или поздно наступает момент, когда величины излучаемой и получаемой энергии сравниваются, что делает невозможным дальнейший разгон частиц. Следовательно, возникают потребности в больших мощностях.

Можно сказать, что мы теперь более точно понимаем, что это – синхрофазотрон. Но чего именно добились ученые в ходе испытаний?

Принцип работы синхрофазотрона

Приведенное выше описание задач, которые стояли пе

Приведенное выше описание задач, которые стояли перед синхрофазотроном, может многим показаться не слишком сложным для их реализации на практике, но это не так. Несмотря на всю простоту вопроса, что такое синхрофазотрон, чтобы ускорить протоны до необходимых огромных скоростей, нужны электрические напряжения в сотни млрд вольт. Такие напряжения невозможно создать даже в настоящее время. Поэтому было решено распределить во времени вкачиваемую в протоны энергию.

Принцип работы синхрофазотрона заключался в следующем: пучок протонов начинает свое движение по кольцеобразному туннелю, в некотором месте этого туннеля стоят конденсаторы, которые создают скачек напряжения в тот момент, когда пучок протонов пролетает через них. Таким образом, на каждом витке происходит небольшое ускорение протонов. После того, как пучок частиц совершит несколько миллионов оборотов по туннелю синхрофазотрона, протоны достигнут желаемых скоростей, и будут направлены на мишень.

Стоит отметить, что используемые во время ускорения протонов электромагниты выполняли направляющую роль, то есть они определяли траекторию пучка, но не участвовали в его ускорении.

Подробнее об устройстве

В установке частицы двигаются по кругу, и на каждом обороте их подпитывают энергией, получая ускорение. И хотя подобная подпитка невелика, за миллионы оборотов можно набрать необходимую энергию.

В основу работы синхрофазотрона положен именно этот принцип. Разогнанные до небольших значений элементарные частицы запускаются в туннель, где располагаются магниты. Они создают перпендикулярное кольцу магнитное поле. Многие ошибочно полагают, что эти магниты ускоряют частицы, но на самом деле это не так. Они лишь меняют их траекторию, заставляя двигаться по окружности, однако не ускоряют их. Само ускорение происходит на определенных разгонных промежутках.

Синхрофазотрон - это циклический резонансный ускоритель заряженных частиц. Циклический - значит частицы циркулируют по замкнутой траектории, которая формируется магнитными полями. Резонансный - значит, что на кольце расположен высокочастотый электромагнитный резонатор, в котором внешним генератором раскачана волна электрического поля; сгусток частиц пролетает этот резонатор на каждом обороте синхронно с колебанием поля, и это электрическое поле его резонансным образом легонько ускоряет (как мама легонько толкает качели, добиваясь большой скорости). Таким образом удаётся электрическим полем с амплитудой в десятки киловольт ускорить частицы до десятков гига(электрон)вольт.

Особенностью синхрофазотрона является то, что при ускорении тяжёлых частиц не самых высоких энергий у них всё ещё меняется скорость движения (для лёгких электронов это быстро заканчивается, их скорость приближается к скорости света, и больше не растёт). Это означает, что при ускорении меняется период обращения по кольцу, и приходится варьировать частоту резонатора (поддерживать правильную фазу), что достаточно трудно по ряду причин.

Синхрофазотрон - это, грубо говоря, установка, которая представляет собой ускоритель элементарных частиц. Он состоит из немагнитной трубы с вакуумом и сильных электромагнитов. Магниты включаются по очереди, постепенно разгоняя элементарные частицы. Когда частицы достигнут максимальной скорости, их направляют в специальную мишень, которую частицы разбивают, но и о. Читать далее

Технологии в СССР развивались стремительно. Чего только стоит запуск первого искусственного спутника Земли, за которым наблюдал весь мир. Мало кто знает, что в тот же 1957 год в СССР заработал (то есть был не просто достроен и введен в эксплуатацию, а именно запущен) синхрофазотрон. Слово это обозначает установку для разгона элементарных частиц. Практически каждый сегодня слышал про Большой адронный коллайдер – он представляет собой более новую и усовершенствованную версию описанного в данной статье устройства.

синхрофазотрон что это

Что это – синхрофазотрон? Для чего он нужен?

Эта установка представляет собой большой ускоритель элементарных частиц (протонов), который позволяет более глубоко изучить микромир, а также взаимодействие этих самых частиц друг с другом. Способ изучения очень прост: разбить протоны на мелкие части и посмотреть, что находится внутри. Звучит все просто, но сломать протон – это чрезвычайно сложная задача, для решения которой потребовалось строительство столь огромного сооружения. Здесь по специальному тоннелю частицы разгоняются до огромных скоростей и затем направляются на мишень. Ударившись о нее, они разлетаются на мелкие осколки. Ближайший "коллега" синхрофазотрона, Большой адронный коллайдер, действует приблизительно по такому же принципу, вот только там частицы разгоняются в противоположных направлениях и ударяются не о стоячую мишень, а сталкиваются друг с другом.

Теперь вы немного понимаете, что это – синхрофазотрон. Считалось, что установка позволит сделать научный прорыв в области исследования микромира. В свою очередь, это позволит открыть новые элементы и способы получать дешевые источники энергии. В идеале хотели открыть элементы, превосходившие по эффективности обогащенный уран и являющиеся при этом менее вредными и более простыми в утилизации.

 синхрофазотрон слова

Применение в военных целях

Стоит отметить, что создавалась данная установка для осуществления научно-технического прорыва, однако ее цели были не только лишь мирными. Во многом научно-технический прорыв обязан гонке военных вооружений. Синхрофазотрон был создан под грифом "Совершенно секретно", и его разработка и строительство проводились в рамках создания атомной бомбы. Предполагалось, что устройство позволит создать совершенную теорию ядерных сил, однако все оказалось не так просто. Даже сегодня эта теория отсутствует, хотя технический прогресс шагнул далеко вперед.

Что такое синхрофазотрон простыми словами?

Если обобщить и говорить понятным языком? Синхрофазотрон – это установка, где протоны можно разогнать до большой скорости. Она состоит из закольцованной трубы с вакуумом внутри и мощных электромагнитов, которые не дают протонам двигаться хаотично. Когда протоны достигают своей максимальной скорости движения, их поток направляется на специальную мишень. Ударяясь о нее, протоны разлетаются на мелкие осколки. Учены могут видеть следы разлетающихся осколков в специальной пузырьковой камере, и по этим следам они анализируют природу самих частиц.

Пузырьковая камера – это немного устаревшее устройство для фиксации следов протонов. Сегодня в подобных установках применяются более точные радары, дающие больше информации о движении осколков протонов.

принцип синхрофазотрона

Несмотря на простой принцип синхрофазотрона, сама эта установка является высокотехнологичной, и ее создание возможно только при достаточном уровне технического и научного развития, которым, безусловно, обладал СССР. Если приводить аналогию, то обычный микроскоп является тем устройством, предназначение которого совпадает с назначением синхрофазотрона. Оба прибора позволяют исследовать микромир, только последний позволяет "копнуть глубже" и имеет несколько своеобразный метод исследования.

Подробно

Выше была описана работа прибора простыми словами. Разумеется, принцип действия синхрофазотрона является более сложным. Дело в том, что для разгона частиц до высоких скоростей необходимо обеспечить разность потенциалов в сотни миллиарды вольт. Это невозможно даже на нынешнем этапе развитии технологий, не говоря уже о предыдущем.

Поэтому было принято решение разгонять частицы постепенно и гонять их по кругу долго. На каждом кругу протоны подпитывались энергией. В результате прохождения миллионов оборотов удалось набрать требуемую скорость, после чего их направляли в мишень.

Именно такой принцип применялся в синхрофазотроне. Сначала по тоннелю частицы двигались с небольшой скоростью. На каждом круге они попадали на так называемые промежутки ускорения, где получали дополнительный заряд энергии и набирали скорость. Эти участки ускорения являются конденсаторами, частота переменного напряжения которых равна частоте прохождения протонов по кольцу. То есть частицы попадали на участок ускорения при отрицательном заряде, в этот момент напряжение резко возрастало, что придавало им скорости. Если же частицы попадали на участок ускорения при положительном заряде, то их движение притормаживалось. И это - положительная особенность, так как из-за нее весь пучок протонов двигался с одной скоростью.

коллега синхрофазотрона

И так повторялось миллионы раз, и когда частицы приобретали требуемую скорость, их направляли в специальную мишень, о которую те разбивались. После группа ученых изучала результаты столкновения частиц. Вот по такой схеме синхрофазотрон и работал.

Роль магнитов

Известно, что в этой огромной машине по ускорению частиц применялись также мощные электромагниты. Люди ошибочно полагают, что они использовались для разгона протонов, но это не так. Разгонялись частицы с помощью специальных конденсаторов (участков ускорения), а магниты лишь удерживали протоны в строго заданной траектории. Без них последовательное движение пучка элементарных частиц было бы невозможно. А высокая мощность электромагнитов объясняется большой массой протонов при высокой скорости движения.

С какими проблемами столкнулись ученые?

Одна из главных проблем при создании этой установки заключалась именно в разгоне частиц. Конечно, им можно было придавать ускорение на каждом круге, однако при ускорении их масса становилась выше. При скорости движения, близкой к скорости света (как известно, ничто не может двигаться быстрее скорости света), их масса становилась огромной, из-за чего удерживать их на круговой орбите было сложно. Из школьной программы нам известно, что радиус движения элементов в магнитом поле обратно пропорционален их массе, поэтому с ростом массы протонов приходилось увеличивать радиус и использовать большие сильные магниты. Подобные законы физики сильно ограничивают возможности для исследования. Кстати, ими же можно объяснить, почему синхрофазотрон получился таким огромным. Чем большим будет тоннель, тем большие магниты можно установить для создания сильного магнитного поля для удержания нужного направления движения протонов.

что такое синхрофазотрон простыми словами

Вторая проблема – потеря энергии при движении. Частицы при прохождении по окружности излучают энергию (теряют ее). Следовательно, при движении на скорости часть энергии улетучивается, и, чем выше скорость движения, тем выше и потери. Рано или поздно наступает момент, когда величины излучаемой и получаемой энергии сравниваются, что делает невозможным дальнейший разгон частиц. Следовательно, возникают потребности в больших мощностях.

Можно сказать, что мы теперь более точно понимаем, что это – синхрофазотрон. Но чего именно добились ученые в ходе испытаний?

Какие исследования проводились?

Естественно, работа этой установки не прошла бесследно. И хотя от нее ожидали получить более серьезные результаты, некоторые исследования оказались крайне полезными. В частности, ученые изучили свойства ускоренных дейтронов, взаимодействий тяжелых ионов с мишенями, разработали более эффективную технологию для утилизации отработанного урана-238. И хотя для обычного человека все эти результаты мало о чем говорят, в научной сфере их значимость сложно переоценить.

 синхрофазотрон применение

Применение результатов

Результаты проводимых на синхрофазотроне испытаний применяются даже сегодня. В частности, они используются при строительства электростанций, работающих на атомном топливе, применяются при создании космических ракет, робототехники и сложного оборудования. Безусловно, вклад в науку и технический прогресс этого проекта достаточно большой. Некоторые результаты применяются и в военной сфере. И хотя ученым не удалось открыть новые элементы, которые можно было бы использовать для создания новых атомным бомб, на самом деле никто не знает, правда это или нет. Вполне возможно, что от населения скрывают некоторые результаты, ведь стоит учитывать, что данный проект был реализован под грифом "Совершенно секретно".

Заключение

Теперь вы понимаете, что это – синхрофазотрон, и какова его роль в научно-техническом прогрессе СССР. Даже сегодня подобные установки активно используются во многих странах, вот только есть уже более усовершенствованные варианты – нуклотроны. Большой адронный коллайдер является, пожалуй, самой лучшей на сегодняшний день реализацией идеи синхрофазотрона. Применение этой установки позволяет ученым точнее познавать микромир за счет сталкивания двух пучков протонов, движущихся на огромных скоростях.

принцип действия синхрофазотрона

Что касается нынешнего состояния советского синхрофазотрона, то он был переделан в ускоритель электронов. Сейчас работает в ФИАНе.

Читайте также: