Принцип работы гидравлического двигателя кратко

Обновлено: 07.07.2024

Гидравлический привод — устройство, предназначенное для приведения в движение машин и механизмов с помощью гидравлической энергии.

Составной частью гидропривода является гидравлический механизм, который работает под давлением, и имеет один или несколько объемных гидродвигателей.

К устройствам гидропривода относятся

  • гидромашины
  • гидроаппараты
  • гидролинии
  • гидроемкость
  • кондиционеры рабочей среды

Например в отечественной гидравлике популярным гидроприводом для большого количества самой разнообразной техники - служит ГСТ-90 и ГСТ-112.

Функции гидропривода [вверх]

В состав гидропривода входит ряд основных устройств, которые выполняют следующие функции: насос, как поставщик гидравлической энергии; гидравлический двигатель, как потребитель гидравлической энергии, и преобразователь ее в механическую энергию; гидрораспределители, дроссели, которые регулируют поток рабочей жидкости, управляя движением выходного звена гидродвигателя; для перемещения рабочей жидкости внутри гидросистемы, а также подачи ее к соответствующим устройствам, используются гидролинии; отделение из гидравлической жидкости загрязнений, образующихся во время эксплуатации системы, осуществляется с помощью фильтра; для регулирования температуры жидкости применяются различные устройства, выполняющие как нагрев, так и ее охлаждение.

Основной задачей гидропривода, как и механической передачи, остается преобразование механической характеристики приводного двигателя в соответствии с нагрузкой (регулирование, защита от перегрузок и др.). Другая функция — это передача мощности от приводного двигателя к рабочим механизмам машины (например, в одноковшовом экскаваторе — передача мощности от двигателя внутреннего сгорания к ковшу или к гидродвигателям привода стрелы, и т. д.).

Что же собой представляет система гидроуправления?

Это система, обеспечивающая управление гидропередачей и состоящая из функциональных золотниково-клапанных устройств, колонок управления и насосно-аккумуляторной части.

Благодаря системе гидроуправления мы обеспечиваем:

  • снижения усилий на ручках управления
  • ввода автоматических связей работы гидропередачи
  • легкого подвода управляющего сигнала к агрегату, где бы он не располагался.

Типы гидроприводов [вверх]

Гидравлические приводы типизируются как объемные и гидродинамические.

Объемные гидроприводы характеризуются большим давлением (до 300 МПа и выше) и небольшими скоростями движения жидкости. Они работают за счет потенциальной энергии давления жидкости. Также к гидромашинам объемного типа относятся насосы и гидравлические двигатели этих приводов, функционирование которых связано с поочередным наполнением рабочей полости гидравлической жидкостью и выталкиванием ее из полости. Представителями объемных гидромашин являются аксиально-поршневые и пластинчатые гидравлические насосы и двигатели. Как правило, гидродинамические приводы работают за счет кинетической энергии потока рабочей жидкости. Их главное отличие — высокая скорость перемещения жидкости и небольшое давление системе (обычно в интервале 1. 2 МПа). В связи с тем, что габаритные размеры и масса гидродинамических приводов намного больше, чем у объемных приводов, последние стали более распространены.

Классификация объемных гидроприводов

Существуют следующие разновидности объемных гидроприводов: с вращательным, поступательным и поворотным движением (в зависимости от вида перемещения выходного звена); регулируемый (дроссельный, объемный, объемно-дроссельный), нерегулируемый и саморегулируемый (по возможности регулирования скорости выходного звена); программный, следящий, стабилизированный (в соответствии с решаемыми задачами регулирования); с замкнутой и разомкнутой системой циркуляции (по виду циркуляции рабочей жидкости); насосный, аккумуляторный, магистральный (по способу подачи рабочей жидкости); с электроприводом, приводом от двигателя внутреннего сгорания, турбины (в соответствии с типом двигателя, используемого в приводе).

Область применения гидроприводов [вверх]

Гидроприводы объемного типа широкое применяются:

  • в дорожных и строительных машинах (автогрейдеры, экскаваторы, бульдозеры);
  • в автомобильной промышленности, в авиа-, тракторо-, станко- и танкостроении;
  • в гидросистемах промышленного оборудования.

Преимущества гидроприводов [вверх]

В качестве приводов для станков нашли широкое применение регулируемые объемные гидроприводы, а также для литейного и прессового оборудования, прокатных станков, строительных, дорожных, подъемных, транспортных и сельскохозяйственных машин. Такой широкий спектр их применения объясняется явно выраженными преимуществами гидропривода по сравнению с электрическими или механическими.

Среди основных достоинств можно выделить следующие элементы:

1. У данного привода высокая удельная мощность. То есть, транслируемая мощность, которая приходится на одну единицу суммарного веса всех элементов. Этот показатель в 3-5 раза выше, чем у электрического аналога. При чем это преимущество повышается с ростом подаваемой мощности.

2. Очень просто, к тому же, в обширном диапазоне, обеспечивается вариант бесступенчатого выбора скорости, выходящего звена самого гидропривода.

3. Высокая скорость быстродействия гидропривода. В несколько раз быстрее будет выполняться активизация операции по спуску, реверсу или остановке. Все это благодаря тому, что у гидропривода малый момент инерции у исполнительного органа двигателя.

4. Величина коэффициента усиления гидроусилителя по мощности довольно значительная и достигает отметки в 10^5.

5. Простота реализации технологических действий при определенно-заданном режиме, а также вариант элементарного, но надежного предохранения приводящего мотора и остальных элементов гидропривода от вероятных перегрузок.

6. Весьма эффективно и просто преобразуется вращательные движения в возвратно – поступательные.

7. Компоновка агрегатов гидропривода полностью свободная и не имеет каких-либо ограничений.

8. Очень удобно то, что к гидроприводу можно подключать любое дополнительное гидравлическое оборудование. Например, дисковые пилы, захваты, отбойные молотки, разнообразные ковши.

9. Слабое воздействие гидропривода на руки рабочего, не способствует быстрой его утомляемости.

Недостатки гидроприводов [вверх]

Однако есть у гидропривода и свои недостатки. Отметим их:

1. Гидропривод имеет относительно низкий уровень КПД, а также при передаче энергии на дальние расстояния происходит значительная ее трата.

2.Рабочие характеристики гидропривода зависят от действующих эксплуатационных условий, таких как давление, температура.

3. Чувствительны к загрязненной рабочей жидкости. Необходимо проводить регулярное обслуживание данного агрегата. Если рабочая жидкость загрязненная и какими-либо абразивными элементами, то это может привести к быстрому износу определенных частей прецизионных пар в агрегатах гидравлического типа и возможному их выходу из строя.

4. По мере его выработки или части его элементов заложенного эксплуатационного периода работы, происходит понижение уровня КПД, а также снижение характеристик данного аппарата. Сначала изнашиваются прецизионные пары, что приводит к увеличению размеров зазоров, а также к возрастанию утечек рабочей жидкости. То есть – понижению уровня объемного КПД агрегата.

Таким образом, приводы гидравлического типа обладают, как явными преимуществами перед иными типами приводов, так и имеют свои недостатки.

Поэтому проектируя и изготавливая данные приводы необходимо четко изучить поставленные задачи определенного характера. К таким задачам конструктора при проектировании гидропривода добавляется оптимизация схемы работы, обеспечивающая выполнение данным агрегатом необходимый функциональных требований, и определенный выбор элементов привода. Основные неисправности гидросистем и способы их устранения

В основе работы гидравлического мотора лежит принцип зацепления двух шестерен. Они начинаются вращаться под давлением подаваемой жидкости и тем самым приводят в движение вал. При работе гидромотора происходит преобразование энергии жидкости (подача рабочей жидкости под давлением) в механическую энергию (съем с вала крутящего момента). Сам процесс описывается, как периодическое заполнение рабочей камеры жидкостью при дальнейшем её вытеснении. Слив происходит с потерей давления, что позволяет получить полезный перепад давления, который и трансформируется в механическую энергию.

Шестеренные гидромоторы нашли применение в следующих видах спецтехники и оборудования:

  • Рабочих станках;
  • Погрузчиках различного типа;
  • Самосвалах;
  • Других машинах, работающих под невысокими нагрузками.

100713-эи5

Преимущество, которым обладают гидромоторы обусловлено широким диапазоном регулирования частоты вращения. Так при использовании гидрораспределителя или других средств, регулирующих движение вала, можно добиться показателей 30-40 об/мин, а гидромоторы специального исполнения позволяют задать параметры 1-4 об/мин.

Как устроен гидравлический мотор

Устройство гидромотора выглядит следующим образом. Рабочая жидкость перемещается в подковообразный канал корпуса через отверстия, а затем транспортируется на пластины ротора. Последний поворачивается против часовой стрелки синхронно с валом. Для слива рабочей среды предусмотрены окна в заднем диске и отверстие в крышке.

Вал гидравлического мотора движется в шарикоподшипниках, а ротор установлен на шлицы. В пазах ротора движутся пластины, они находятся в прижатом состоянии к внутренней поверхности статора. Изначально прижимная система состоит из пружин, напоминающих форму коромысла. Одна пружина создает давление на целую пару пластин, установленных перпендикулярно друг другу. Поэтому одна пластина выходит ровно настолько, насколько другая поступает в паз ротора. Это позволяет избежать повреждения пружины при эксплуатации гидромотора.

Вращение ротора происходит между двумя распределительными дисками из стали, расположенными со стороны корпуса и крышки.

Кольцевые диски имеют одинаковый диаметр и с помощью отверстия крышки входят в задний диск. За ним есть полость, которая через отверстия и пазы сообщается с напорной магистралью. Пазы установлены напротив окон, соединенных с каналом корпуса, откуда выходит отверстие. Оно сообщается с напорной магистралью.

Давление в полости создается за счет автоматического прижима заднего диска, осуществляемого тремя пружинами. Под давлением рабочей среды, перемещающейся из отверстия, золотник движется в пробку. Давление передается из одной полости в другую через отверстия и создает энергию, необходимую для прижимания пластины к статору.

В моторе предусмотрены отверстия для смены направления вращения вала. Через них проходит рабочая жидкость и поступает в другое отверстие, сообщающееся со сливной магистралью. Под давлением рабочей среды золотник уходит в пробку до упора, после чего давление жидкости передается полости за задним диском и под пластинами.

Для герметичности вала используется манжета из маслостойкой резины, а протечки сливаются через специальное отверстие. Течи между корпусом и крышкой предупреждает резиновое кольцо или сальник.

По конструктивным особенностям гидромоторы подразделяются на следующие типы:

  • Шестеренные;
  • Пластинчатые;
  • Радиально-поршневые;
  • Аксиально-поршневые;

Принцип действия шестеренных гидромоторов

Шестеренные гидромоторы работают по принципу подачи давления жидкости на шестерни с неуравновешенными зубьями, что придает им вращение. Преимущество данного типа гидравлического мотора заключается в простоте конструкции и возможности достижения частоты вращения до 10000 об/мин (специальное исполнение). Обычная частота вращения достигает 5000 об/мин при установленном давлении рабочей жидкости — 200 bar. К недостаткам шестеренного гидромотора относится низкий коэффициент полезного действия, который не превышает значения 0,9.

3164382

Пластинчатые гидромоторы

В пластинчатых гидромоторах рабочие камеры образуются вытеснителями, пластинами расположенными на роторе. Для герметичности камер применяются пружины под пластинами, обеспечивая их постоянное прижимное усилие к стенкам статора. Ось ротора смещена относительно оси статора и при подаче рабочей жидкости объем камеры всасывания увеличивается, а объем камеры, из которой происходит нагнетание, уменьшается. К недостаткам механизмов подобного типа относят низкую ремонтопригодность и невозможность эксплуатации агрегата при низких температурах (залипание пластин).

tovar563

Радиально-поршневые гидромоторы

Радиально-поршневые гидромоторы применяются при относительно высоком давлении рабочей жидкости (от 10 мПа). Камерами в гидромоторе являются цилиндры, расположенные радиально, соответственно роль вытеснителей играют поршни. Под воздействием высокого давления рабочие камеры приводят в движение вал мотора. Механизм распределения на валу поочередно соединяет камеры с линиями давления и слива рабочей жидкости.

5-gidromotor-radialno-porshnevyie

Радиально-поршневые моторы бывают одно- и многократного действия. В первом случае полный цикл всасывания и нагнетания жидкости выполняется за один оборот вала. Его вращение осуществляется за счет воздействия рабочих камер на кулак привода. Затем с помощью распределительной системы камеры соединяются со сливными магистралями и линиями высокого давления.

Агрегаты однократного действия выдерживают давление до 350 бар и рассчитаны на частоту вращения до 2000 об/мин. Они широкого применяются в приводах шнеков для перекачивания сухих или жидких смесей, поворотных механизмах (например – башнях автокрана).

Моторы многократного действия выполняют несколько циклов работы за один оборот вала. Конструктивное отличие состоит в более сложной схеме взаимодействия камер с валом и распределительной системой. Данные агрегаты могут работать в режиме свободного вращения. Под низким давлением жидкость поступает в дренажную линию, а камеры сопрягаются со сливной магистралью.

Область применения гидромоторов многократного действия:

  • Буровое оборудование;
  • Дорожно-строительная техника;
  • Конвейеры;
  • Гидропрессы;
  • Мощные производства;
  • Станочное оборудование.

Аксиально-поршневой гидромотор

Аксиально-поршневые гидромоторы работают по уже известному принципу — рабочие камеры, это цилиндры, аксиально расположенные относительно оси ротора, а вытеснители — поршни. Цилиндры располагаются вокруг оси вращения или под небольшим углом к ней. Во время вращения вала вращаются и блоки цилиндров. При выдвижении поршней из цилиндров происходит всасывание жидкости, а при обратном движении поршней осуществляется нагнетание.

5261336

Преимуществом данного агрегата является возможность реверсного хода для движения в обратную сторону.

Гидромоторы аксиально-поршневого типа рассчитаны на давление до 450 бар, крутящий момент составляет 6000 Нм, а частота вращения – до 5000 об/мин. Они бывают с наклонным блоком или наклонным диском.

Область применения гидроагрегатов:

  • Мобильная техника;
  • Станочные гидроприводы;
  • Гидропрессы;
  • Буровые и промышленные машины.

Героторные гидромоторы

Это подвид мотора шестеренчатого типа. Принцип его работы таков: жидкость поступает в рабочие полости агрегата при помощи распределителя. В этих полостях образуется крутящий момент, приводящий в движение зубчатый ротор. Он вращает внутреннюю шестерню, которая находится на карданном валу, затем жидкость уходит в сливную магистраль. В результате шестерня вращает вал и привод мотора.

5261336

К преимуществам героторных (планетарных) гидромоторов относятся:

  • Высокий крутящий момент (до 2000 Нм) при сравнительно небольших габаритах;
  • Максимальное давление – 250 бар;
  • Стабильная работа при низких температурах;
  • Рабочий объем составляет 800 м3.

Благодаря этим параметрам, пластинчатые моторы нашли широкое применение в сельхозмашинах, строительной и коммунальной спецтехнике.

Основные неисправности гидромоторов

Практически все виды неисправностей гидромоторов относятся к механическим повреждениям и износу деталей, участвующих в передаче крутящего момента. Наиболее распространенными поломками являются:

  • Выход из строя пружины, которая прижимает пластину к статору;
  • Застревание пластин в пазах;
  • Заклинивание заднего диска;
  • Застревание золотника;
  • Засоренность сетчатого фильтра золотника.

Неисправности гидромоторов могут проявляться треском, утечками по валу, высокими шумами, заклиниванием исполнительного устройства и др. При появлении первых признаков сразу прекратите эксплуатацию техники или оборудования, чтобы не усугублять проблему. Не пытайтесь устранять поломку самостоятельно. Обнаружение неисправности и ремонт гидродвигателей осуществляется в специализированных мастерских, обладающих необходимым инструментарием и диагностическим оборудованием.

Гидравлические двигатели преобразуют гидравлическое давление в силу, способную генерировать большую мощность. Это тип привода, который преобразует давление движущейся гидравлической жидкости в крутящий момент и энергию вращения.

Гидравлические двигатели являются важным компонентом в области гидравлики, специальной формы передачи энергии, которая использует энергию, передаваемую при перемещении жидкостей под давлением, и преобразует ее в механическую энергию.

Передача энергии — это общий термин, обозначающий область преобразования энергии в полезные повседневные формы. Тремя основными ветвями передачи энергии являются электрическая энергия, механическая мощность и гидравлическая энергия.

Гидравлическую энергию можно далее разделить на область гидравлики и область пневматики (перевод энергии сжатого газа в механическую энергию).

Поскольку их часто путают в повседневном языке, важно различать гидравлические двигатели и гидроагрегаты.

С технической точки зрения замкнутая механическая система, которая использует жидкость для производства гидравлической энергии, известна как гидравлический силовой агрегат или гидравлический силовой агрегат.

Эти блоки или блоки обычно включают резервуар, насос, систему трубопроводов / трубопроводов, клапаны и приводы (включая как цилиндры, так и двигатели).

Гидравлические двигатели

Однако нередко можно услышать, что гидравлический двигатель описывается как состоящий из этих компонентов — резервуара, насоса и т. д. Однако более точнее описывать гидравлический двигатель как часть общей гидравлической системы питания, которая работает в синхронизировать с этими другими компонентами.

Гидравлические двигатели — это тип исполнительного компонента в общей гидравлической энергетической системе — компонент, ответственный за фактическое преобразование гидравлической энергии в механическую.

История гидравлических двигателей

С точки зрения разработки гидравлических двигателей середина промышленной революции стала заметным поворотным моментом. В том же году английский промышленник Уильям Армстронг начал разработку более эффективных приложений гидравлической энергии после того, как заметил неэффективность использования водяного колеса во время рыбалки.

Одним из его первых изобретений был роторный двигатель с водяной тягой. К сожалению, это изобретение не привлекло большого внимания, но оно предоставило раннюю модель поворотного привода, основанного на гидравлической энергии.

Как работает гидравлическая энергия

Одним из следствий этого является то, что сила, приложенная к одной точке в ограниченной жидкости, может довольно эффективно передаваться в другую точку той же жидкости.

Эта реальность составляет основу механической энергии, которую могут производить гидравлические системы. Для более полного объяснения того, как работает гидравлическая мощность, обратитесь к нашей статье о гидравлических насосах.

Как работают гидравлические двигатели

Схема работы гидравлического двигателя

Поскольку гидравлические двигатели представляют собой довольно простые машины, состоящие из вращающихся механизмов, они специально преобразуют гидравлическую энергию в механическую энергию вращения.

В целом, гидравлический силовой агрегат перекачивает жидкость (обычно это масло) через небольшой пневматический двигатель из резервуара и отправляет ее в двигатель, регулируя температуру жидкости. Масло перекачивается из резервуара через впускной клапан к выпускному клапану через ряд шестерен, поворотные лопатки или цилиндры, в зависимости от типа гидравлического двигателя.

Жидкость под давлением создает механическую энергию и движение, физически толкая двигатель, заставляя вращающиеся компоненты вращаться очень быстро и передавая энергию механизму, к которому подключен двигатель.

Как правило, не каждый компонент вращения напрямую связан с производством механической энергии; например, в типичном мотор-редукторе только одна из двух шестерен связана с валом двигателя и отвечает за его вращение.

Этот тип работы прямо контрастирует с электрическими двигателями, в которых электромагнитные силы, создаваемые протекающим электрическим током, являются ответом на вращение вала двигателя.

Типы гидравлических двигателей

Существует три основных типа гидравлических двигателей: шестеренчатые, лопастные и поршневые. Каждый идентифицируется по конструкции вращающегося внутри компонента. В совокупности различные типы гидравлических двигателей оптимальны для широкого диапазона конкретных применений, условий или использования.

Как устроен гидравлический двигатель

Гидравлические двигатели и их различные применения все еще совершенствуются. Одним из примеров является разработка гибридных гидравлических автомобилей, которые разрабатываются как альтернатива гибридным газовым / электрическим автомобилям. Транспортные средства с гибридной гидравликой особенно эффективны при рекуперации энергии при торможении или замедлении.

Преимущества гидравлических систем и двигателей

Использование гидравлических систем в целом дает несколько преимуществ в общей области передачи энергии. Некоторые из этих преимуществ включают эффективность, простоту, универсальность, относительную безопасность и т. Д. Эти и другие преимущества более подробно рассматриваются в нашей статье о гидравлических насосах.

В частности, гидравлические двигатели имеют два очевидных преимущества:

  • Мощность. Гидравлические двигатели могут производить гораздо большую мощность, чем другие двигатели того же размера, и по этой причине используются для больших нагрузок, чем электродвигатели.
  • Компактность. Когда ограниченное пространство является проблемой, используются небольшие гидравлические двигатели. Небольшие гидравлические двигатели имеют малую длину хода; они могут быть меньше дюйма.

Основным недостатком использования гидравлических двигателей является неэффективное использование фактического источника энергии. Энергетические системы с гидравлическими двигателями могут потреблять большое количество гидравлической жидкости.

Что нужно знать о гидравлических двигателях

Например, машинам с гидравлическим приводом на строительных площадках нередко требуется 100 или более галлонов гидравлического масла для работы.

Применение гидравлических двигателей

Гидравлические системы и их использование широко используются в самых разных областях, включая строительство, сельскохозяйственные поля, промышленные поля, области транспорта (например, автомобилестроение, авиакосмическая промышленность), различные морские рабочие среды и т. д.

Гидравлические двигатели обычно используются в машинах, требующих высокого давления такие действия, как воздушные суда для подъема закрылков, тяжелые строительные машины, такие как экскаваторы-погрузчики или промышленные подъемные краны, или для питания автоматизированных производственных систем.

Гидравлические двигатели также используются в траншеекопателях, автомобилях, строительном оборудовании, приводах для морских лебедок , процессах утилизации и утилизации отходов, колесных двигателях для военной техники, самоходных кранах, экскаваторах, лесном хозяйстве, сельском хозяйстве,конвейерные и шнековые системы, дноуглубительные работы и промышленная обработка.

Уход за гидравлическими двигателями

Несмотря на кажущуюся простоту гидравлических систем, инженеры и производители должны учитывать определенные переменные, чтобы создать эффективное и безопасное устройство. Жидкость, используемая в двигателе или системе, должна, прежде всего, быть хорошей смазкой.

Он также должен быть химически стабильным и совместимым с металлами внутри двигателя. Насос, резервуар для жидкости и предохранительные клапаны должны иметь соответствующую мощность, производительность или прочность, чтобы двигатель работал на оптимальном уровне.

Проблемы с гидравлическими двигателями часто могут быть связаны с плохим обслуживанием, использованием неподходящей жидкости в двигателе или неправильным использованием самого двигателя. Некоторые нередкие причины отказа мотора:

  • внутренняя утечка (из трубопроводов, питающих двигатель и т. д.)
  • плохая центровка двигателя (например, несоосность вала двигателя во время установки)
  • использование грязной гидравлической жидкости.

Никогда не следует откладывать диагностику и устранение первопричины отказа двигателя, когда бы он ни происходил.

Важно помнить, что гидравлические двигатели предназначены для работы в определенных пределах, которые нельзя превышать. Эти ограничения в основном включают крутящий момент, давление, скорость, температуру и нагрузку.

В качестве одного примера, работа гидравлического двигателя при чрезмерных температурах приводит к разжижению гидравлической жидкости, отрицательно влияет на внутреннюю смазку и снижает общий КПД двигателя. Пребывание в рабочих пределах двигателя предотвратит ненужные и ненужные неисправности.

С точки зрения безопасности относительная простота гидравлических систем и компонентов (по сравнению с электрическими или механическими аналогами) не означает, что с ними не следует обращаться осторожно.

Основная мера безопасности при взаимодействии с гидравлическими системами — по возможности избегать физического контакта. Активное давление жидкости в гидравлической системе может представлять опасность, даже если гидравлическая машина не работает активно.

Виды и типы гидравлических двигателей

  • Двигатели с гидроприводом используются в системах с цилиндрами, насосами, клапанами и другими компонентами.
  • Гидравлические барабанные двигатели представляют собой передовую и высокоэффективную систему привода конвейера, в которой двигатель, трансмиссия и подшипники полностью заключены в корпус барабана.
  • Двигатели гидравлических насосов используются в системах с цилиндрами, насосами, клапанами и другими компонентами.
  • Роликовые гидравлические двигатели , разновидность орбитальных гидравлических двигателей, имеют ролики, которые имеют гидродинамическую опору для минимизации трения, что обеспечивает максимальную долговечность и высокую производительность при высоком давлении.
  • Роторные гидравлические двигатели , разновидность орбитальных гидравлических двигателей, особенно подходят для длительных рабочих циклов при среднем давлении. Роторные двигатели приводятся в действие лопастями, которые закреплены и установлены непосредственно на статоре.

Гидравлический мотор термины

Аэрация — воздух в гидравлической жидкости.

Аккумулятор — емкость, в которой хранится жидкость под давлением. Аккумуляторы, обычно поршневые, баллонные и диафрагменные, используются в качестве источника энергии или для поглощения гидравлических ударов.

Цилиндр — устройство, преобразующее гидравлическую энергию в линейное механическое движение и силу.

Смещение — количество жидкости, которое проходит через насос, двигатель или цилиндр за период времени или во время одного события срабатывания, такого как оборот или ход.

Коэффициент сухого трения — степень трения, возникающего в результате контакта между движущимися поверхностями вала двигателя.

Фильтр — Устройство в гидравлической системе, которое используется для удаления загрязнений из масла.

Гидравлическая система питания — система, которая использует давление жидкости для передачи и управления мощностью.

Шестерня — зубчатое колесо, используемое для передачи механической энергии.

Гидравлика — наука о передаче силы через среду содержащейся жидкости.

Гидравлический тестер — устройство, которое используется для поиска и устранения неисправностей и проверки компонентов гидравлической системы.

Линия — трубка, труба или шланг, который действует как проводник гидравлической жидкости.

Масло — скользкая и вязкая жидкость, не смешиваемая с водой. Масло часто используется в гидравлических системах, потому что его нельзя сжимать.

Поршень — цилиндрический кусок металла, который движется вверх и вниз внутри цилиндра гидравлического двигателя.

Нажимная пластина — пластина на стороне шестеренчатого или лопастного насоса или картриджа двигателя, которая используется для сведения к минимуму зазора и проскальзывания.

Насос — механическое устройство, которое перекачивает жидкости и газы всасыванием или давлением.

Сопротивление — в гидравлике состояние, вызванное препятствием или ограничением на пути потока.

Вал — Устройство, которое механически прикреплено к рабочей нагрузке и обеспечивает вращательное движение в двигателях.

Ход — движение элемента золотника клапана, штока цилиндра или насоса или смещение двигателя по прямой линии, которая устанавливает пределы движения.

Дроссель — ограничение нормального потока жидкости.

Крутящий момент — мера силы, прилагаемой к вращательному движению, обычно измеряется в фут-фунтах.

Клапан — устройство, контролирующее расход, направление или давление жидкости.

Лопасть — в гидравлическом двигателе плоская поверхность, которая вращается и отталкивается от жидкости.

Гидравлический двигатель (гидродвигатель) — гидравлическая машина, предназначенная для преобразования гидравлической энергии в механическую.



Конструкция гидротурбины: 1 — сопло-пасадка, 2 — запорный орган-игла, 3 — резервуар с водой, 4 — рабочее колесо, 5 — струя воды

По принципу действия гидродвигатели подразделяют на:

  • лопастные (гидротурбины, водяное колесо)
  • объёмные (гидроцилиндр)

В лопастных гидравлических двигателях ведомое звено перемещается вследствие изменения момента количества движения потока жидкости. Обьёмные же гидродвигатели, действуют от гидростатического напора в результате наполнения жидкостью рабочих камер и перемещения вытеснителей. На практике чаще используют объёмные гидродвигатели, так как при той же преобразуемой мощности они компактнее и меньше по массе.

Кроме того, гидравлические двигатели имеют свойство обратимости. Что позволят за его конструктивными особенностями так же выполнять работу насосов.

Принцип работы



Схема работы гидродвигателя в режиме мотора показана на рисунке 3. Предположим, что работающие камеры машины, расположенные справа от вертикальной оси, подается жидкость от насоса, а камеры, расположенные слева соединены баком. Под действием избыточного давления на пластинах возникают неуравновешенные силы, создающие вращающий момент на валу мотора, направленный против часовой стрелки. Камеры, соединенные с баком, при вращении ротора освобождаются от рабочей жидкости. Если кольца А установить в корпусе мотора соосно с ротором, то момент на валу мотора станет равным нулю и вращение вала прекратиться.

Читайте также: