Принцип действия атомной бомбы кратко

Обновлено: 05.07.2024

Очень часто меня спрашивают разные люди, почему атомную бомбу так долго не могли сделать? Все изучали в школе физику и знают, что если взять достаточно большой кусок урана, то непременно "заведётся" цепная реакция и этот кусок неминуемо взорвётся. В таком случае почему ещё не все страны обзавелись атомным оружием?

Так ли это? Достаточно ли взять уран в нужном количестве и любой человек легко сделает бомбу своими руками? Она же так просто устроена? Возьми один кусок в одну руку, другой — в другую, хлоп их друг об друга и получишь Большой Барабум.

Так, да не так. Всё обстоит несколько сложнее. Попробуем разобраться.

Действительно, если взять два куска урана, каждый из которых имеет массу меньше необходимой для взрыва (это называется докритическая масса) и соединить их в один кусок критической массы, то должен произойти взрыв. Должен, конечно, но вопрос в том, как именно вы будете соединять эти куски. Давайте попробуем взять в каждую руку по куску урана 235 и начнём их сближать.

Как только вы приблизите куски U-235 на достаточное расстояние, они начнут разогреваться от обмена друг с другом нейтронами. Причём чем ближе мы их успеем свести, тем быстрее они будут разогреваться. Через какое-то время куски разогреваются докрасна и их уже трудно будет держать ツ. Но у нас цель — заставить наш уран взорваться, мы надеваем рукавицы и продолжая удерживать, сближаем наши куски ещё ближе. Уран разогревается добела, начинает капать под ноги, собираясь в лужицу и продолжая разогреваться ещё сильнее. Подставим кастрюльку, чтобы жидкий уран не растекался. Наконец наши урановые куски полностью расплавляются и начинают просто испаряться. Всё. Больше вы уже ничего не можете сделать: ваша "бомба" испарилась, не успев взорваться. Поделать с этим вы ничего не сможете. Энергии выделяется так много, что охладить куски абсолютно невозможно. Ничем.

Как ни старайся быстро сближать, любые устройства неминуемо будут расплавлены и испарены. Атомного взрыва не получится. В лучшем случае вы получите тепловой хлопок.

Это происходит потому, что механические устройства не способны развить такие огромные скорости сближения, каких будет достаточно, чтобы опередить рост плотности нейтронного потока. Чтобы это сделать, нужно сближать куски с огромной скоростью. Тысячи метров в секунду. Только в этом случае, вы сумеете "опередить" разогрев и куски успеют "впечататься" друг в друга прежде, чем разогреются. И вот только тогда вы получите такое огромное энерговыделение, что появится всем знакомое грибовидное облако. Большой Барабум.

Ага. Вот как всё просто! Надо просто взять один кусок U235 и выстрелить им в другой кусок U235 из пушки. Спешу вас разочаровать: ничего не выйдет. Порохом разогнать наш кусок до таких скоростей не получится. Чтобы достичь необходимой скорости придётся использовать специальную взрывчатку. Причём, именно специальную. Обычная разорвёт наш кусок на части и опять ничего не выйдет. Используют специальную комбинацию разных видов взрывчатки, которая обеспечивает достаточно большую скорость сближения, но при этом не разрушает наш кусок урана.

Таким вот образом обеспечивают достаточно быстрый перевод всей нашей системы в сверхкритическое состояние до того, как система будет разрушена растущим разогревом. Эта система называется "пушечной" или "баллистической". Такая схема использовалась в ядерном оружии первого поколения и обеспечивала энерговыделение порядка десятков килотонн в тротиловом эквиваленте. Именно по этой схеме работала атомная бомба Little Boy, сброшенная на Хиросиму 6 августа 1945 года.

Данная схема возможна только при использовании в качестве начинки урана, при использовании плутония — номер уже не пройдёт. Активность плутония в сотни раз выше чем у урана и для сближения кусков нужно обеспечить гораздо больше скорости, что невозможно осуществить. Любые попытки "выстрелить" приведут к тому, что наша "пуля" испариться не успев долететь до "мишени" на достаточное расстояние. Произойдет обычный хлопок. Или fizzle , как говорят англоязычные.

Плутоний гораздо более "заводной" и реагирует на сближение гораздо активнее. Кусок плутония на ощупь всегда тёплый, в нём постоянно происходит реакция. Потому плутоний и гораздо более заманчив для наших целей, так как критическая масса плутония может быть в десять раз меньше урановой. 5 килограммов плутония меньше куриного яйца, но способны дать взрыв мощностью 20 килотонн. Однако, из-за своей активности для подрыва по пушечной схеме, необходимо сближать куски со скоростями в десятки километров в секунду. Никакие взрывчатки обеспечить такие скорости не в состоянии.

Для подрыва плутония используется одно из удивительных свойств металлического плутония: он имеет шесть фазовых состояний. При переходе из дельта-фазы в альфа-фазу, металл способен поменять свою плотность на аномальные 25%! Беда в том, что дельта-фаза нестабильна, а переход этот происходит при комнатной температуре и атмосферном давлении. Но если добавить в сплав совсем немного галлия, то дельта-фаза становится метастабильной при комнатной температуре и переходит в плотную альфа-фазу лишь при воздействии высоким давлением.

Вот так мы и сможем взорвать наш плутоний. Мы должны взять кусок плутония в дельта-фазе, поместить его очень плотный пучок нейтронов так, чтобы до критических условий оставалось совсем чуть-чуть, а затем взять и увеличить его плотность на 25%, переведя его из дельта, в альфа фазу. Бабах!

Как же это можно сделать? Возьмём мощную взрывчатку, обложим наш кусок плутония со всех сторон и взорвём. Скорость ударной волны получится порядка 5 км/сек с каждой стороны куска, что даст в сумме 10 км/сек. И вот это взрывное давление, пробежав по куску, обеспечит переход плутония из дельта-фазы в альфа-фазу. При этом сам кусок никуда двигаться не будет, двигаться будет лишь взрывная волна.

Атомная бомба

Существует два типа атомных взрывов, которым может способствовать уран-235: деление и синтез.

Деление, проще говоря, является ядерной реакцией, в которой атомное ядро расщепляется на фрагменты (обычно два фрагмента сопоставимой массы) все время испуская 100 миллионов до нескольких сотен миллионов вольт энергии. Эта энергия извергается взрывом и яростью в атомной бомбе.

Реакция синтеза, с другой стороны, обычно начинается с реакции деления. Но в отличие от делящейся (атомной) бомбы, термоядерная (водородная) бомба черпает свою энергию из слияния ядер различных изотопов водорода в ядра гелия.

Атомная бомба

В этой статье рассматривается атомная бомба или атомная бомба. Огромная сила, стоящая за реакцией в атомной бомбе, возникает из сил, которые удерживают атом вместе. Эти силы сродни, но не совсем таковы, как магнетизм.

Об атомах

Атомы состоят из различных чисел и комбинаций трех субатомных частиц: протонов, нейтронов и электронов. Протоны и нейтроны группируются вместе, образуя ядро (центральную массу) атома, в то время как электроны вращаются вокруг ядра, подобно планетам вокруг Солнца. Именно баланс и расположение этих частиц определяют стабильность атома.

Большинство элементов имеют очень стабильные атомы, которые невозможно расщепить, кроме как бомбардировкой ускорителей частиц. Для всех практических целей единственным естественным элементом, атомы которого можно легко расщепить, является Уран – тяжелый металл с самым большим атомом из всех природных элементов и необычно высоким отношением нейтронов к протонам.

Это более высокое соотношение не повышает его “расщепляемость”, но оно имеет важное значение для его способности способствовать взрыву, что делает уран-235 исключительным кандидатом на ядерное деление.

Изотопы урана

Существуют два естественных изотопа урана. Природный уран состоит в основном из изотопа U-238, в каждом атоме которого содержится 92 протона и 146 нейтронов (92+146=238). Смешанный с этим 0.6% накопление U-235, только c 143 нейтронами в атоме. Атомы этого более легкого изотопа можно расщеплять, поэтому он “расщепляется” и полезен при создании атомных бомб.

Нейтронно-тяжелый U-238 также играет роль в атомной бомбе, поскольку его нейтронно-тяжелые атомы могут отклонять случайные нейтроны, предотвращая случайную цепную реакцию в урановой бомбе и сохраняя нейтроны, содержащиеся в плутониевой бомбе. U-238 также может быть “насыщен” для производства плутония (Pu-239), искусственного радиоактивного элемента, также используемого в атомных бомбах.

Оба изотопа урана естественно радиоактивны; их громоздкие атомы со временем распадаются. При наличии достаточного времени (сотни тысяч лет) Уран в конечном итоге потеряет столько частиц, что превратится в свинец. Этот процесс распада может быть значительно ускорен в так называемой цепной реакции. Вместо того чтобы распадаться естественно и медленно, атомы насильственно расщепляются бомбардировкой нейтронами.

Цепные ядерные реакции

Одного удара нейтрона достаточно для расщепления менее стабильного атома U-235, создания атомов меньших элементов (чаще всего бария и криптона) и высвобождения тепла и гамма-излучения (самой мощной и смертоносной формы радиоактивности).

Эта цепная реакция происходит, когда “запасные” нейтроны из этого атома вылетают с достаточной силой, чтобы расщепить другие атомы U-235, с которыми они соприкасаются. В теории необходимо расщепить только один атом U-235, который будет выпускать нейтроны, которые будут расщеплять другие атомы, которые будут выпускать нейтроны … и так далее. Эта прогрессия не арифметическая; он геометрический и происходит в миллионную долю секунды.

Минимальная сумма для начала цепной реакции, как описано выше, называется сверхкритической массы. Для чисто U-235, 110 фунтов (50 килограмм). Однако Уран никогда не бывает достаточно чистым, поэтому в действительности потребуется больше, например, U-235, U-238 и плутоний.

О Плутонии

Уран-не единственный материал, используемый для изготовления атомных бомб. Другим материалом является изотоп PU-239 искусственного элемента плутония. Плутоний встречается только в природе в ничтожных, поэтому полезной суммы должны быть изготовлены из урана. В ядерном реакторе более тяжелый изотоп урана U-238 может быть вынужден приобретать дополнительные частицы, в конечном итоге превращаясь в плутоний.

Плутоний сам по себе не начнет быструю цепную реакцию, но эта проблема преодолевается наличием источника нейтронов или высокорадиоактивного материала, который выделяет нейтроны быстрее, чем сам плутоний. В некоторых типах бомб для этой реакции используется смесь элементов бериллия и полония. Только малая часть необходима (закритическая масса около 32 фунта, хотя как немногую по мере того как 22 можно использовать). Материал не расщепляется сам по себе, а просто действует как катализатор большей реакции.

Эту статью могут комментировать только участники сообщества.
Вы можете вступить в сообщество одним кликом по кнопке справа.

Появление такого мощного оружия, как ядерная бомба, стало результатом взаимодействия глобальных факторов объективного и субъективного характера. Объективно его создание было вызвано бурным развитием науки, начавшимся с фундаментальных открытий физики первой половины ХХ века. Сильнейшим субъективным фактором стала военно-политическая обстановка 40-х годов, когда страны антигитлеровской коалиции – США, Великобритания, СССР – пытались опередить друг друга в разработках ядерного оружия.

Ядерная бомба

Предпосылки создания ядерной бомбы

Точкой отсчета научного пути по созданию атомного оружия стал 1896 год, когда французским химиком А. Беккерелем была открыта радиоактивность урана. Именно цепная реакция этого элемента стала впоследствии источником огромной энергии и легла в основу разработок страшного оружия.

Атомная бомба

В конце ХІХ – первых десятилетиях ХХ века разными учеными мира были обнаружены альфа-, бета-, гамма-лучи, открыто немало радиоактивных изотопов химических элементов, закон радиоактивного распада и положено начало изучению ядерной изометрии. В 1930-х годах стали известны нейтрон и позитрон, а также впервые расщеплено ядро атома урана с поглощением нейтронов. Это стало толчком к началу создания ядерного оружия. Первым изобрел и в 1939 году запатентовал конструкцию ядерной бомбы французский физик Фредерик Жолио-Кюри.

В результате дальнейшего развития ядерное оружие стало исторически беспрецедентным военно-политическим и стратегическим феноменом, который способен обеспечить национальную безопасность государства-обладателя и минимизировать возможности всех остальных систем вооружения.

Ядерная бомба

Устройство ядерной бомбы

Конструкция атомной бомбы состоит из целого ряда различных компонентов, среди которых выделяют два основных:

Автоматика вместе с ядерным зарядом располагается в корпусе, который защищает их от различных воздействий (механического, теплового и др.). Система автоматики контролирует, чтобы взрыв произошел в строго установленное время. Она состоит из следующих элементов:

  • аварийный подрыв;
  • устройство предохранения и взведения;
  • источник питания;
  • датчики подрыва и подрыва заряда.

Доставка атомных бомб осуществляется с помощью зенитных, баллистических и крылатых ракет. При этом ядерные боеприпасы могут быть элементом фугаса, торпеды, авиабомбы и др.

Устройство ядерной бомбы

Системы детонирования для ядерных бомб бывают разными. Самым простым является инжекторное устройство, при котором толчком для взрыва становится попадание в цель и последующее образование сверхкритической массы.

Еще одной характеристикой атомного оружия является размер калибра: малый, средний, крупный. Чаще всего мощность взрыва характеризуют в тротиловом эквиваленте. Малый калибр ядерного оружия подразумевает мощность заряда в несколько тысяч тонн тротила. Средний калибр равен уже десяткам тысяч тонн тротила, крупный – измеряется миллионами.

Фото ядерной бомбы

Принцип действия

В основе действия атомной бомбы лежит принцип использования ядерной энергии, выделяемой в ходе цепной ядерной реакции. Этот процесс подразумевает деление тяжелых или синтез легких ядер. Из-за выделения огромного количества внутриядерной энергии в кратчайший промежуток времени на небольшом пространстве ядерная бомба относится к оружию массового поражения.

В ходе указанного процесса выделяют два ключевых места:

  • центр ядерного взрыва, в котором непосредственно протекает процесс;
  • эпицентр, являющийся проекцией этого процесса на поверхность (земли или воды).

При ядерном взрыве высвобождается такое количество энергии, которое при проекции на землю вызывает сейсмические толчки. Дальность их распространения очень велика, но значительный вред окружающей среде наносится на расстоянии только нескольких сотен метров.

Советская ядерная бомба

Факторы поражения

Атомное оружие имеет несколько типов поражения:

  • световое излучение,
  • радиоактивное заражение,
  • ударная волна,
  • проникающая радиация,
  • электромагнитный импульс.

Ядерный взрыв сопровождается яркой вспышкой, которая образуется из-за высвобождения большого количества световой и тепловой энергии. Сила этой вспышки во много раз выше, чем мощность солнечных лучей, поэтому опасность поражения светом и теплом распространяется на несколько километров.

Факторы поражения

Еще одним очень опасным фактором воздействия ядерной бомбы является радиация, образующаяся при взрыве. Она действует только первые 60 секунд, но обладает максимальной проникающей способностью.

Ударная волна имеет большую мощность и значительное разрушающее действие, поэтому в считанные секунды причиняет огромный вред людям, технике, строениям.

Проникающая радиация опасна для живых организмов и является причиной развития лучевой болезни у человека. Электромагнитный импульс поражает только технику.

Все эти виды поражений в совокупности делают атомную бомбу очень опасным оружием.

Первые испытания ядерной бомбы

Испытания ядерной бомбы

Для США наступило время действовать. Для победного окончания второй мировой войны было решено разгромить союзника гитлеровской Германии – Японию. В Пентагоне были выбраны цели для первых ядерных ударов, на которых США хотели продемонстрировать, насколько мощным оружием они обладают.

Схема ядерной бомбы

Попадание в Хиросиме было признано идеальным: ядерное устройство взорвалось на высоте 200 метров от цели. Взрывной волной были опрокинуты печки в домах японцев, отапливаемые углем. Это привело к многочисленным пожарам в местах, удаленных от эпицентра.

За первоначальной вспышкой последовало действие тепловой волны, которое длилось секунды, но его мощность, захватив радиус в 4 км, расплавила черепицу и кварц в гранитных плитах, испепелила телеграфные столбы. Вслед за тепловой волной пришла ударная. Скорость ветра составила 800 км/час, а его порыв распространился на тот же радиус и снес практически все. Из 76 тысяч зданий 70 тысяч были полностью повреждены.

Атомная бомба Толстяк

Через несколько минут пошел странный дождь из крупных капель черного цвета. Он был вызван конденсатом, образовавшимся в более холодных слоях атмосферы из пара и пепла.

Люди, попавшие под действие огненного шара на расстоянии 800 метров, были сожжены и превратились в пыль. У некоторых обгоревшая кожа была сорвана ударной волной. Капли черного радиоактивного дождя оставляли неизлечимые ожоги.

Оставшиеся в живых заболели неизвестным ранее заболеванием. У них началась тошнота, рвота, лихорадка, приступы слабости. В крови резко упал уровень белых телец. Это были первые признаки лучевой болезни.

Через 3 дня после проведения бомбардировки Хиросимы была сброшена бомба на Нагасаки. Она имела такую же мощность и вызвала аналогичные последствия.

Две атомные бомбы за секунды уничтожили сотни тысяч человек. Первый город был практически стерт ударной волной с лица земли. Больше половины мирных жителей (порядка 240 тысяч человек) погибли сразу от полученных ран. Многие люди подверглись облучению, которое привело к лучевой болезни, раку, бесплодию. В Нагасаки в первые дни было убито 73 тысячи человек, а через некоторое время в сильных муках умерло еще 35 тысяч жителей.

Создание атомной бомбы в России

Последствия бомбардировок и история жителей японских городов потрясли И. Сталина. Стало понятно, что создание собственного ядерного оружия – это вопрос национальной безопасности. 20 августа 1945 года в России начал свою работу комитет по атомной энергии, который возглавил Л. Берия.

Ядерная бомба СССР

Исследования по ядерной физике велись в СССР еще с 1918 года. В 1938 году при Академии наук была создана комиссия по атомному ядру. Но с началом войны были прекращены практически все работы в этом направлении.

В 1943 году советские разведчики передали из Англии закрытые научные труды по атомной энергии, из которых было видно, что создание атомной бомбы продвинулось далеко вперед. В это же время с помощью резидентов в США были внедрены надежные агенты в несколько центров американских ядерных исследований. Они передавали информацию по атомной бомбе советским ученым.

  1. РДС-1 – бомба с зарядом из плутония, который предполагалось подрывать путем сферического обжатия. Его устройство передала русская разведка.
  2. РДС-2 – пушечная бомба с двумя частями уранового заряда, которые должны сближаться в стволе пушки до создания критической массы.

РДС

Сведения, поступившие по каналам разведки, ускорили работу советских ученых. По мнению западных специалистов, в России ядерное оружие могло быть создано не раньше 1954-1955 года. Однако испытание первой атомной бомбы произошло в СССР в конце августа 1949 года.

Взрыв ядерной бомбы

Ядерный клуб – условное обозначение нескольких государств, владеющих ядерным оружием. Сегодня такое вооружение есть:

  • в США (с 1945)
  • в России (первоначально СССР, с 1949)
  • Великобритании (с 1952)
  • Франции (с 1960)
  • Китае (с 1964)
  • Индии (с 1974)
  • Пакистане (с 1998)
  • КНДР (с 2006)

Имеющим ядерное оружие также считается Израиль, хотя руководство страны не комментирует его наличие. Кроме того, на территории государств – членов НАТО (Германии, Италии, Турции, Бельгии, Нидерландов, Канады) и союзников (Японии, Южной Кореи, несмотря на официальный отказ) располагается ядерное оружие США.

Атомная бомба

Казахстан, Украина, Белоруссия, которые владели частью ядерного вооружения после распада СССР, в 90-х годах передали его России, ставшей единственным наследником советского ядерного арсенала.

Атомное оружие – самый мощный инструмент глобальной политики, который твердо вошел в арсенал взаимоотношений между государствами. С одной стороны, оно является эффективным средством устрашения, с другой – весомым аргументом для предотвращения военного конфликта и укрепления мира между державами, владеющими этим оружием. Это – символ целой эпохи в истории человечества и международных отношений, с которым надо обращаться очень разумно.


Я́дерное ору́жие (или а́томное ору́жие) — совокупность ядерных боеприпасов, средств их доставки к цели и средств управления; относится к оружию массового поражения наряду с биологическим и химическим оружием. Ядерный боеприпас — оружие взрывного действия, основанное на использовании ядерной энергии, высвобождающейся при цепной ядерной реакции деления тяжёлых ядер и/или термоядерной реакции синтеза лёгких ядер.

Содержание

Поражающие факторы

При подрыве ядерного боеприпаса происходит ядерный взрыв, поражающими факторами которого являются:

Люди, непосредственно подвергшиеся воздействию поражающих факторов ядерного взрыва, кроме физических повреждений, испытывают мощное психологическое воздействие от ужасающего вида картины взрыва и разрушений. Электромагнитный импульс непосредственного влияния на живые организмы не оказывает, но может нарушить работу электронной аппаратуры.

Классификация ядерных боеприпасов

Все ядерные боеприпасы могут быть разделены на две основные категории:

  • Иногда в отдельную категорию выделяется нейтронное оружие — двухфазный боеприпас малой мощности (от 1 кт до 25 кт), в котором 50—75% энергии получается за счет термоядерного синтеза. Поскольку основным переносчиком энергии при синтезе являются быстрые нейтроны, то при взрыве такого боеприпаса выход нейтронов может в несколько раз превышать выход нейтронов при взрывах однофазных ядерных взрывных устройств сравнимой мощности. За счет этого достигается существенно больший вес поражающих факторов нейтронное излучение и наведённая радиоактивность (до 30% от общего энерговыхода), что может быть важным с точки зрения задачи уменьшения радиоактивных осадков и снижения разрушений на местности при высокой эффективности применения против танков и живой силы. Следует отметить мифический характер представлений о том, что нейтронное оружие поражает исключительно людей и оставляет в сохранности строения. По разрушительному воздействию взрыв нейтронного боеприпаса в сотни раз превосходит любой неядерный боеприпас.

Мощность ядерного заряда измеряется в тротиловом эквиваленте — количестве тринитротолуола, которое нужно взорвать для получения той же энергии. Обычно его выражают в килотоннах (кт) и мегатоннах (Мт). Тротиловый эквивалент условен: во-первых, распределение энергии ядерного взрыва по различным поражающим факторам существенно зависит от типа боеприпаса и, в любом случае, сильно отличается от химического взрыва. Во-вторых, просто невозможно добиться полного сгорания соответствующего количества химического взрывчатого вещества.

Принято делить ядерные боеприпасы по мощности на пять групп:

  • сверхмалые (менее 1 кт);
  • малые (1 — 10 кт);
  • средние (10 — 100 кт);
  • крупные (большой мощности) (100 кт — 1 Мт);
  • сверхкрупные (сверхбольшой мощности) (свыше 1 Мт).

Принцип действия

В основу ядерного оружия положены неуправляемые цепная реакция деления тяжелых ядер и реакции термоядерного синтеза.

Варианты детонации

Существуют две основные схемы подрыва делящегося заряда: пушечная, иначе называемая баллистической, и имплозивная.

Пушечная схема


Верхний блок показывает принцип работы пушечной схемы. Второй и третий показывают возможность преждевременного развития цепной реакции до полного соединения блоков.



Имплозивная схема


В ядерных зарядах на основе реакции деления в центре полой сборки обычно размещается небольшое количество термоядерного топлива (дейтерий и тритий), которое нагревается и сжимается в процессе деления сборки до такого состояния, что в нём начинается термоядерная реакция синтеза. Эту газовую смесь необходимо непрерывно обновлять, чтобы скомпенсировать непрерывно идущий самопроизвольный распад ядер трития. Выделяющиеся при этом дополнительные нейтроны инициируют новые цепные реакции в сборке и возмещают убыль нейтронов, покидающих активную зону, что приводит к многократному росту энергетического выхода от взрыва и более эффективному использованию делящегося вещества. Варьируя содержание газовой смеси в заряде получают боеприпасы с регулируемой в широких пределах мощностью взрыва.

Двухфазные боеприпасы позволяют повысить мощность ядерных взрывов до десятков мегатонн. Однако ракеты с разделяющимися боеголовками, высокая точность современных средств доставки и спутниковая разведка сделали устройства мегатонного класса практически ненужными. Тем более, что носители сверхмощных боеприпасов более уязвимы для систем ПРО и ПВО.



В двухфазном устройстве первая стадия физического процесса (primary) используется для запуска второй стадии (secondary), в ходе которой выделяется наибольшая часть энергии. Такую схему принято называть дизайном Теллера-Улама.

Энергия от детонации primary передаётся через специальный канал (interstage) в процессе радиационной диффузии квантов рентгеновского излучения и обеспечивает детонацию secondary посредством радиационной имплозии тампера/пушера, внутри которого находится дейтерид лития-6 и запальный плутониевый стержень. Последний также служит дополнительным источником энергии вместе с пушером и/или тампером из урана-235 или урана-238, причем совместно они могут давать до 85 % от общего энерговыхода ядерного взрыва. При этом термоядерный синтез служит в большей мере источником нейтронов для деления ядер. Под действием нейтронов деления на ядра Li в составе дейтерида лития образуется тритий, который сразу вступает в реакцию термоядерного синтеза с дейтерием.

Читайте также: