Приложения производной к исследованию функции кратко

Обновлено: 07.07.2024

Максимумы и минимумы функции называются ее экстремумами.

Интервал, на котором функция возрастает или убывает, называется интервалом монотонности функции.

Теорема 1. (необходимое условие монотонности функции). Если дифференцируе­мая в интервале (а, b) функция у = f (х) возрастает (убывает) на этом интервале, то ее производная в каждой точке (а, b) .

Доказательство. Пусть у = f (х) – дифференцируема и возрастает на (а, b). Пусть точки х и х+х принадлежат (а, b). Если >0, то f(x+) > f(x); если 0. Переходя к пределу в последнем неравенстве при 0 и учитывая, что функция дифференцируема, получаем .

Аналогично доказывается теорема в случае убывающей функции. Рекомендуем сделать это самостоятельно.

Теорема 2. (достаточное условие монотонности функции). Если непрерывная на отрезке [а, b] функция у = f(х) в каждой точке интервала (а, b) имеет положи­тельную (отрицательную) производную, то эта функция возрастает (убывает) на отрезке [а, b].

Доказательство. Пусть >0 для всех хÎ (а,b). Рассмотрим два произвольных значения x2 > x1, принадлежащих [а, b]. По формуле Лагранжа х1 0 и х2 – х1 > 0, поэтому >0, откуда >, то есть функция f(х) возрастает на отрезке [а, b]. Аналогично доказывается вторая часть теоремы.

Теорема 3. (необходимый признак существования экстремума функции). Если дифференцируемая в точке c функция у = f(х) имеет в этой точке экстремум, то .

Доказательство. Пусть, например, функция у = f(х) имеет в точке c максимум. Это означает, что существует такая проколотая окрестность точки c, что для всех точек x этой окрестности выполняется f(x) 3 не имеет экс­тремумов, хотя ее производная = 0.

Теорема 4. (достаточный признак существования экстремума). Если непрерывная функция у = f(x) имеет производную во всех точках некоторого интервала, содержащего критическую точку С (за исключением, может быть, самой этой точки), и если производная при переходе аргумента слева направо через критическую точку С меняет знак с плюса на минус, то функция в точке С имеет максимум, а при перемене знака с минуса на плюс – минимум.

Доказательство. Пусть c – критическая точка и пусть, например, при переходе аргумента через точку c меняет знак с плюса на минус. Это означает, что на некотором интервале (ce; c) функция возрастает, а на интервале (c; c+e) – убывает (при e >0). Следовательно, в точке с функция имеет максимум. Аналогично доказывается случай минимума.

Замечание. Если производная не меняет знака при переходе аргумента через критическую точку, то функция в этой точке не имеет экстремума.

п. 2. Выпуклость и вогнутость графика функции

График дифференцируемой функции у = f(x) называется выпуклым (вогнутым) в интервале (а,b), если он расположен ниже (выше) любой своей касательной на этом интервале.

Точка графика непрерывной функции, отделяющая ее выпуклую часть от вогнутой, называется точкой перегиба.

Теорема 5. (достаточный признак выпуклости и вогнутости). Пусть функция у = f(x) имеет вторую производную (x) во всех точках интервала (а, b). Если во всех точках этого интервала 0 – вогнутый.

Доказательство. Допустим для определенности, что 0.

Поэтому у – У 0 график вогнутый.

Теорема 6. (достаточный признак существования точки перегиба). Если вторая производная непрерывной функции меняет знак при переходе аргумента через точку х0, то точка (х0; f(х0)) является точкой перегиба графика функции.

Доказательство. Пусть, например, (х) 0 в ин­тервале (х0; х0+e), где e – положительное число. В этом случае график функции в интервале (х0–ε; х0) выпуклый, а в интервале (х0; х0) – вогнутый. Следовательно, точка (х0; f(х0)) по определению является точкой перегиба.

Теорема 7. (необходимое условие существования точки перегиба). Пусть функция y = f(x) имеет в интервале (a, b) непрерывную вторую производную f''(x) и пусть точка х0(a, b) является абсциссой точки перегиба графика данной функции. Тогда f''(x0) = 0.

Доказательство. Предположим противное: f''(x0)0, например, для определенности f''(x0)>0. Тогда в силу непрерывности f''(x0)>0 в некоторой окрестности точки х0. Следовательно, в этой окрестности график вогнутый, но это противоречит тому, что х0 – абсцисса точки перегиба. Противоречие доказывает теорему.

Замечание. Могут встретиться случаи, когда в точке х0 вторая производная непрерывной функции не существует, однако точка является абсциссой точки перегиба. Например, для функции у = у'' = 10/(9) у''(0) не существует. Очевидно, что у'' 0 при х(0;+∞), то есть точка (0; 0) является точкой перегиба.

Точки, в которых вторая производная функции равна нулю или не существует, называются критическими точками функции второго порядка. Как мы отметили, не все такие точки являются абсциссами точек перегиба.

п. 3. Асимптоты графика функции

Асимптотой графика функции у = f(x) называется прямая, расстояние от которой до текущей точки графика функции стремится к нулю при неограниченном удалении этой точки от начала координат.

Для нахождения вертикальных асимптот, то есть асимптот, параллельных оси OY, надо найти точки разрыва функции II рода. Если х0 – такая точка, то хотя бы один из пределов f(x) или f(x) равен бесконечности. Это означает, что прямая х = х0 – вертикальная асимптота. Если функция не имеет точек разрыва II рода, то график функции не имеет вертикальных асимптот.

Пусть график функции y = f(x) имеет невертикальную асимптоту. Уравнение невертикальной прямой можно записать в виде y = kx+b. Пусть М(х,у) – текущая точка графика. Опустим из точки М перпендикуляр МN на асимптоту. Из определения асимптоты следует: MN = 0. Из ∆М1 MN получаем М1М = , где a – угол между асимптотой и осью ОХ. Поскольку a – величина постоянная, то . Заметим, что М1М = РМ1-РМ =уасимпт.графика = (kx+b)-f(x), поэтому Последнее равенство означает, что функция является бесконечно малой при . Разделим обе части последнего равенства на х и перейдем к пределу при , получим . Так как

Определим теперь b. Так как то Переходя к пределу при , получаем

Если k или b не существуют, то график функции не имеет невертикальной асимптоты.

В частном случае при k = 0 получается горизонтальная асимптота. Аналогично находят асимптоты при x. График может иметь различные асимптоты при и x или иметь только одну из них.

п. 4. План исследования функции и построение графика

Исследование функции удобно проводить по следующему плану.

1. Область определения функции.

2. Точки пересечения графика функции с осями координат.

3. Четность, нечетность функции.

4. Исследование функции на непрерывность. Вертикальные асимптоты.

5. Невертикальные асимптоты.

6. Интервалы монотонности. Экстремумы.

7. Интервалы выпуклости, вогнутости. Точки перегиба.

8. Дополнительные точки, (по мере необходимости).

9. Построение графика.

Подчеркнем, что пункт 8 не является необходимым. его выполняют, если необходимо уточнить график.

Пример 1. Исследовать функцию и построить ее график.

1. Область определения ().

2. Пусть х=0, тогда у=0. Пусть у=0, тогда и . Итак, (0;0) и – точки пересечение графика с осями координат.

3. у() = – функция не является ни четной, ни нечетной.

4. Функция непрерывна во всей области определения. Вертикальных асимптот нет.

5. Невертикальные асимптоты

Найдем k и b, если они существуют. поэтому при невертикальной асимптоты не существует. Аналогично можно показать, что и при невертикальных асимптот не существует.

6. Вычислим Найдем критические точки: х = 1 – критическая точка. Кроме того, y' не существует при х = 0 – тоже критическая точка. Нанесем критические точки на числовую прямую и определим знаки производной в образовавшихся интервалах.

Таким образом, на интервалах (-и (1;+ функция возрастает, на интервале (0;1) убывает.

у'' не обращается в нуль ни при каком значении х и у'' не существует при х=0. х=0 – критическая точка второго порядка. Нанесем критическую точку на числовую прямую и определим знаки второй производной в образовавшихся интервалах.

Таким образом, на интервалах ( и график функции вогнутый, точек перегиба нет.

8. Заметим, что , то есть в точке (0;0) график имеет вертикальную касательную.

Пример 2. Исследовать функцию y = x-2arctg x и построить ее график.

1. Область определения (.

Пусть y = 0, тогда х-2arctg x = 0; х = 2arctg x – решить такое уравнение точнo не удается.

Найдена точка (0;0) пересечения с осями координат.

3. функция нечетная.

4. Функция непрерывна во всей области определения. Вертикальных асимптот нет.

5. Невертикальные асимптоты.

Выясним, есть ли асимптоты при

и х = 1 – критические точки. Нанесем критические точки на числовую прямую и определим знаки производной в образовавшихся интервалах.

На интервалах функция возрастает, на интервале

7. y'' = 0; 4х = 0; х = 0 – критическая точка второго порядка. Нанесем ее на числовую прямую и определим знаки второй производной в образовавшихся интервалах.

На интервале ( график выпуклый, на интервале – вогнутый.

х = 0 – абсцисса точки перегиба.

Пример 3. Исследовать функцию и построить ее график.

1. Область определения так как при и х=2 в знаменателе получается нуль.

(0;0) – точка пересечения графика с осями координат.

3. = – функция нечетная.

4. Функция имеет разрывы в точках х = -2 и х = 2, так как значения f(-2) и f(2) не определены. ; Это означает, что в точках и х = 2 функция имеет разрывы II рода и прямые и х = 2 являются вертикальными асимптотами.

5. Найдем невертикальные асимптоты.

следовательно, прямая у=0 является горизонтальной асимптотой при и .

6. Вычислим при всех значениях х, принадлежащих области определения функции. Точки и х = 2 – критические, так как в них производная не существует.

На интервалах функция убывает. Экстремумов нет.

х = 0; х = 2 – критические точки второго порядка.

На интервалах и (0;2) график функции выпуклый, а на интервалах (-2;0) и – вогнутый; х = 0 – абсцисса точки перегиба.

Одними из основных аспектов применения производной к исследованию функции являются: исследование функции на возрастание и убывание, исследование функций на выпуклость и вогнутость, нахождение точек экстремума функции, а также наибольшего и наименьшего значения функции. Рассмотрим их отдельно.

Экстремумы функции

Точки $x_0$ называются точками экстремума функции, если они являются точками максимума и минимума для функции $f(x)$.

$x_0$ называется критической точкой функции $f(x)$, если:

1) $x_0$ - внутренняя точка области определения;

2) $f'(x_0)=0$ или не существует.

Для исследования функции на существование точек экстремума, мы будем использовать теорему о достаточных условиях существования экстремума:

Достаточное условие экстремума

Пусть точка $x_0$ является критической для функции $y=f(x)$ и лежит в интервале $(a,b)$. Пусть на каждом интервале $\left(a,x_0\right)\ и\ (x_0,b)$ производная $f'(x)$ существует и сохраняет постоянный знак. Тогда:

1) Если на интервале $(a,x_0)$ производная $f'\left(x\right)>0$, а на интервале $(x_0,b)$ производная $f'\left(x\right)

2) Если на интервале $(a,x_0)$ производная $f'\left(x\right)0$, то точка $x_0$ - точка минимума для данной функции.

3) Если и на интервале $(a,x_0)$, и на интервале $(x_0,b)$ производная $f'\left(x\right)>0$ или производная $f'\left(x\right)

Схема исследования функции на экстремум

2) Найти производную $f'(x)$;

3) Найти точки, в которых выполняется равенство $f'\left(x\right)=0$;

Готовые работы на аналогичную тему

4) Найти точки, в которых $f'(x)$ не существует;

5) Отметить на координатной прямой все найденные точки и область определения данной функции;

6) Определить знак производной $f'(x)$ на каждом получившемся промежутке;

7) Сделать выводы о наличии максимумов и минимумов на каждом промежутке, используя теорему 2.

Монотонность функции

Функция $y=f(x)$, определенная на промежутке $X$, называется возрастающей, если для любых точек $x_1,x_2\in X$ при $x_1

Функция $y=f(x)$, определенная на промежутке $X$, называется возрастающей, если для любых точек $x_1,x_2\in X$ при $x_1f(x_2)$.

Функция $y=f(x)$, определенная на промежутке $X$, называется неубывающей, если для любых точек $x_1,x_2\in X$ при $x_1

Функция $y=f(x)$, определенная на промежутке $X$, называется невозрастающей, если для любых точек $x_1,x_2\in X$ при $x_1

Схема исследования функции на возрастание и убывание

1) Найти область определения функции $f(x)$;

2) Найти производную $f'(x)$;

3) Найти точки, в которых выполняется равенство $f'\left(x\right)=0$;

4) Найти точки, в которых $f'(x)$ не существует;

5) Отметить на координатной прямой все найденные точки и область определения данной функции;

6) Определить знак производной $f'(x)$ на каждом получившемся промежутке;

7) Сделать вывод: на промежутках, где $f'\left(x\right)0$ функция возрастает.

Наибольшее и наименьшее значение функции

Функция $y=f(x)$, определенная на промежутке $X$, достигает своего наибольшего значения, если существует точка $x_0\in X$, такая, что для всех $x\in X$ выполняется неравенство

Функция $y=f(x)$, определенная на промежутке $X$, достигает своего наименьшего значения, если существует точка $x_0\in X$, такая, что для всех $x\in X$ выполняется неравенство

Схема нахождения наибольшего и наименьшего значений функции $f(x)$ на отрезке $[a,b]$

1) Найти производную $f'(x)$;

2) Найти точки, в которых производная $f'\left(x\right)=0$;

3) Найти точки, в которых производная $f'(x)$ не существует;

4) Выбрать из полученных в пунктах 2 и 3 точек те, которые принадлежат отрезку $[a,b]$;

5) Вычислить значение функции в точках, полученных в пункте 4, а также на концах отрезка $[a,b]$;

6) Выбрать из полученных значений наибольшее и наименьшее значение.

Выпуклость и вогнутость функции

Функция $y=f(x)$, определенная на промежутке $X$, называется выпуклой, если для любых точек $x_1,x_2\in X$ выполняется неравенство

Функция $y=f(x)$, определенная на промежутке $X$, называется вогнутой, если для любых точек $x_1,x_2\in X$ выполняется неравенство

Если в определении выпуклости и вогнутости функции нестрогие знаки заменить на строгие, то мы получим, соответственно, определение строго выпуклой и строго вогнутой функции.

Схема исследования функции на возрастание и убывание

1) Найти область определения функции $f(x)$;

2) Найти вторую производную $f''(x)$;

3) Найти точки, в которых выполняется равенство $f''\left(x\right)=0$;

4) Найти точки, в которых $f''(x)$ не существует;

5) Определить знак производной $f''(x)$ на каждом получившемся промежутке;

6) Сделать вывод: на промежутках, где $f''\left(x\right)0$ функция вогнута.

Задачи на применение производной

Исследовать функцию на возрастание, убывание, выпуклость, вогнутость и наличие точек максимумов и минимумов:$f(x)=\frac$

Решение:

1) Область определения - все действительные числа;

4) $f'(x)$ существует во всех точках области определения;

5) Координатная прямая:


6) Определить знак производной $f'(x)$ на каждом промежутке:

\[f'\left(x\right) >0,\ при\ (1,+\infty )\] \[f'\left(x\right)7) Изобразим все на одном рисунке:


Функция убывает, при $\left(-\infty ,1\right)$, функция возрастает, при $(1,+\infty )$.


Математика берет свои истоки со времен Античности. Благодаря ней архитектура, строительство и военное дело дали новый виток развития, достижения, которые были получены с помощью математики, привели к движению прогресса. И по сей день математика остается главной наукой, которая встречается во всех остальных отраслях.

Чтобы быть образованными, дети с первого класса начинают постепенно вливаться в эту среду. Очень важно разбираться в математике, так как она, в той или иной степени, встречается каждому человеку на протяжении всей его жизни. В этой статье будет разобран один из ключевых элементов - нахождение и применение производных. Не всякий человек может представить, насколько широко используется это понятие. Рассмотрим более 10 применений производных в определенных областях или науках.

Формулы на стекле

Применение производной к исследованию функции

Производная - это такой предел отношения приращения функции к увеличению ее аргумента, когда показатель аргумента стремится к нулю. Производная - незаменимая вещь при исследовании функции. Например, с помощью нее можно определить возрастание и убывание последней, экстремумы, выпуклости и вогнутости. Дифференциальные исчисления входят в обязательную программу обучения студентов 1 и 2 курса математических вузов.

применение производной

Область определения и нули функции

Первый этап любого исследования графика начинается с выяснения области определения, в более редких случаях - значения. Область определения задается по оси абсциссы, если говорить другими словами, то это числовые значения на оси OX. Часто область определения уже задана, но если она не задана, то следует оценить значение аргумента х. Допустим, если при каком-то значениях аргумента функция не имеет смысла, то этот аргумент исключается из области определения.

Нули функции находятся простым способом: функцию f(x) следует приравнивнять к нулю и решить полученное уравнение относительно одной переменной x. Полученные корни уравнения являются нулями функции, то есть в этих x функция равна 0.

Возрастание и убывание

Применение производной для исследования функций на монотонность может рассматриваться с двух позиций. Монотонная функция - это категория, которая имеет только положительные значения производной, либо только отрицательные. Простыми словами - функция только возрастает или только убывает на всем исследуемом промежутке:

  1. Параметр возрастания. Функция f(x) будет возрастать, если производная f`(x) больше нуля.
  2. Параметр убывания. Функция f(x) будет убывать, если производная f`(x) меньше нуля.

Касательная и угловой коэффициент

Применение производной к исследованию функции определяется еще и касательной (прямой, направленной под углом) к графику функции в данной точке. Касательная в точке (x0) - прямая, которая проходит через точку и принадлежит функции, координаты которой (x0, f(x0)), и имеющая угловой коэффициент f`(x0).

угловой коэффициент

y = f(x0) + f`(x0)(x - x0) - уравнение касательной к данной точке графика функции.

Геометрический смысл производной: производная функции f(x) равняется угловому коэффициенту образованной касательной к графику этой функции в данной точке x. Угловой коэффициент, в свою очередь, равняется тангенсу угла наклона касательной к оси ОХ (абсцисс) в положительном направлении. Это следствие является основополагающим к применению производной к графику функции.

касательная к экспоненте

Точки экстремума

Применение производной к исследованию включает в себя нахождение точек максимума и минимума.

Для того чтобы найти и определить точки минимума и максимума, необходимо:

  • Отыскать производную функции f(x).
  • Приравнять полученное уравнение к нулю.
  • Найти корни уравнения.
  • Определить точки максимума и минимума.

Чтобы найти экстремумы функции:

  • Отыскать точки минимума и максимума по способу выше.
  • Подставить эти точки в первоначальное уравнение и высчитать yнаиб. и yнаим.

точка экстремума

Точка максимума функции - это наибольшее значение функции f(x) на промежутке, другими словами xнаиб.

Точка минимума функции - это наименьшее значение функции f(x) на промежутке, другими словами xнаим.

Точки экстремума - то же самое, что и точки максимума и минимума, а экстремум функции (yнаиб. и унаим) - значения функций, которые соответствуют точкам экстремума.

Выпуклости и вогнутости

Определить выпуклость и вогнутость можно, прибегая к применению производной для построения графиков:

  • Функция f(x), исследуемая на промежутке (a, b), является вогнутой, если функция расположена ниже всех своих касательных, находящихся внутри этого интервала.
  • Функция f(x), исследуемая на промежутке (a, b), является выпуклой, если функция расположена выше всех своих касательных, находящихся внутри этого интервала.

Точка, которая разделяет выпуклость и вогнутость, называется точкой перегиба функции.

Чтобы найти точки перегиба:

  • Найти критические точки второго рода (вторую производную).
  • Точками перегиба являются те критические точки, которые разделяют два противоположенных знака.
  • Вычисление значений функций в точках перегиба функции.

Частные производные

Применение производных такого типа есть в задачах, где используется больше одной неизвестной переменной. Чаще всего такие производные встречаются при построении графика функции, если быть точнее, то поверхности в пространстве, где вместо двух осей - три, следовательно, три величины (две переменные и одна постоянная).

частные производные

Основное правило при вычислении частных производных - выбираем одну переменную, а остальные рассматриваем как постоянные. Следовательно, при вычислении частной производной постоянная величина становится как-будто числовым значением (во многих таблицах производных они обозначаются как C = const). Смысл такой производной - это скорость изменения функции z = f(x, y) по оси OX и OY, то есть характеризует крутизну впадин и выпуклостей построенной поверхности.

Производная в физике

Применение производной в физике имеет широкое распространение и значение. Физический смысл: производная пути по времени - скорость, а ускорение - производная скорости по времени. Из физического смысла можно провести множество ответвлений в различные разделы физики, при этом полностью сохраняя смысл производной.

С помощью применения производной находятся такие величины:

  • Скорость в кинематике, где вычисляется производная от пройденного пути. Если находится вторая производная от пути или первая производная от скорости, то находится ускорение тела. Помимо этого, возможно нахождение мгновенной скорости материальной точки, однако для этого необходимо знать приращение ∆t и ∆r.
  • В электродинамике: вычисление мгновенной силы переменного тока, а также ЭДС электромагнитной индукции. Вычисляя производную, можно найти максимальную мощность. Производная от количества электрического заряда - сила тока в проводнике.

переменная в физике

Производная в химии и биологии

Химия: производная используется для определения скорости протекания химической реакции. Химический смысл производной: функция p = p(t), в данном случае p - количество вещества, которое вступает в химическую реакцию во времени t. ∆t - приращение времени, ∆p - приращение количества вещества. Предел отношения ∆p к ∆t, при котором ∆t стремится к нулю, называется скоростью протекания химической реакции. Среднее значение химической реакции - отношение ∆p/∆t. При определении скорости необходимо точно знать все необходимые параметры, условия, знать агрегатное состояние вещества и среду протекания. Это довольно большой аспект в химии, который широко применяется в различных отраслях и деятельности человека.

Биология: понятие производной используют при вычислении средней скорости размножения. Биологический смысл: имеем функцию y = x(t). ∆t - приращение по времени. Тогда с помощью некоторых преобразований получаем функцию y`= P(t) = x`(t) - активность жизнедеятельности популяции времени t (средняя скорость размножения). Такое применение производной позволяет вести статистику, отслеживать темпы размножения и так далее.

Лабораторные работы химия

Производная в географии и экономике

Производная позволяет географам решать такие задачи, как нахождение численности населения, вычислять значения в сейсмографии, рассчитать радиоактивность ядерно-геофизических показателей, вычислить интерполяцию.

В экономике важную часть расчетов занимает дифференциальное исчисление и вычисление производной. В первую очередь это позволяет определить пределы необходимых экономических величин. Например, наибольшую и наименьшую производительность труда, издержки, прибыль. В основном эти величины рассчитываются по графикам функций, где находят экстремумы, определяют монотонность функции на нужном участке.

Заключение

Роль данного дифференциального исчисления задействована, как было отмечено в статье, в различных научных структурах. Применение производных функций - важный элемент в практической части науки и производства. Не зря нас в старшей школе и университете учили строить сложные графики, исследовать и работать над функциями. Как видим, без производных и дифференциальных исчислений невозможно было бы рассчитать жизненно важные показатели и величины. Человечество научилось моделировать различные процессы и исследовать их, решать сложные математические задачи. Действительно, математика - царица всех наук, потому что эта наука лежит в основе всех других естественных и технических дисциплин.

Правило нахождения экстремумов функции y=f(x) с помощью первой производной.

Найти производную f '(x).

Найти критические точки функции y=f(x), т.е. точки, в которых f '(x) обращается в нуль или терпит разрыв.

Исследовать знак производной f '(x) в промежутках, на которые найденные критические точки делят область определения функции f(x). При этом критическая точка есть точка минимума, если она отделяет промежуток, в котором f '(x) 0, и точка максимума – в противном случае. Если же в соседних промежутках, разделенной критической точкой функция экстремума не имеет.

Вычислить значения функции в точках экстремума.

Исследовать на экстремум следующие функции:


Решение: Находим . Полагая , получим единственную критическую точку ч=2. Дальнейшие рассуждения представлены в таблице:

Читайте также: