Презентация на тему история развития компьютерной техники кратко

Обновлено: 05.07.2024

2 500 г. н.э. 500 г. н.э. Изобретение счётов (абака) устройства, состоящего из набора костяшек, нанизанных на стержни. Изобретение счётов (абака) устройства, состоящего из набора костяшек, нанизанных на стержни.

3 1914 год 1914 год Шотландец Джон Непер изобрёл логарифмы. Вскоре после этого Р. Биссакар создал логарифмическую линейку. Шотландец Джон Непер изобрёл логарифмы. Вскоре после этого Р. Биссакар создал логарифмическую линейку.

4 1642 г. Французский ученый Блез Паскаль приступил к созданию арифметической машины механического устройства с шестернями, колёсами, зубчатыми рейками и т.п. Она умела "запоминать" числа и выполнять элементарные арифметические операции г. Французский ученый Блез Паскаль приступил к созданию арифметической машины механического устройства с шестернями, колёсами, зубчатыми рейками и т.п. Она умела "запоминать" числа и выполнять элементарные арифметические операции.

5 1804 г. Французский инженер Жаккар изобрёл перфокарты для управления автоматическим ткацким станком 1804 г. Французский инженер Жаккар изобрёл перфокарты для управления автоматическим ткацким станком

6 Первый программист- леди Ада Лавлейс (дочь английского поэта Байрона). В честь графини Лавлейс назван язык программирования АДА

8 1834 г. Английский ученый Чарльз Бэббидж составил проект "аналитической" машины, в которую входили: устройства ввода и вывода информации, запоминающее устройство для хранения чисел, устройство, способное выполнять арифметические операции, и устройство, управляющее последовательностью действий машины г. Английский ученый Чарльз Бэббидж составил проект "аналитической" машины, в которую входили: устройства ввода и вывода информации, запоминающее устройство для хранения чисел, устройство, способное выполнять арифметические операции, и устройство, управляющее последовательностью действий машины.

9 ЭВМ первого поколения гг. ЭВМ первого поколения гг гг г. –в США построена первая ЭВМ ENIAK 1945 г. –в США построена первая ЭВМ ENIAK n Сконструированы электронные диод и триод

10 ЭВМ первого поколения 1950 г. – в СССР создана МЭСМ 1950 г. – в СССР создана МЭСМ

11 ЭВМ второго поколения ( на основе транзисторов) 1967 г. - БЭСМ

12 ЭВМ третьего поколения (на интегральных схемах)

15 Современные персональные компьютеры Самый дорогой… Самый первый Для автомобиля Современный ПК

История развития компьютерной техники Подготовил презентацию ученик 10 класса Пе

№ слайда 1

История развития компьютерной техники Подготовил презентацию ученик 10 класса Перепечко Егор г.Комсомольск-на-Амуре МОУ Сош №24 Проверил учитель информатики Чернышова Анна Сергеевна

1. Зачем нужно программировать? 2. История первого компьютера 3. ЭВМ первого пок

№ слайда 2

1. Зачем нужно программировать? 2. История первого компьютера 3. ЭВМ первого поколения 4. ЭВМ второго поколения 5. ЭВМ третьего поколения 6. ЭВМ четвертого поколения - Что такое Микропроцессор? 7. ЭВМ пятого поколения 8. Разработка компьютеров будущего - Молекулярные - биокомпьютеры - Квантовая компьютерная техника 9. Суперкомпьютеры

Зачем нужно программировать? Довольно распространенный вопрос среди тех, кто тол

№ слайда 3

Инструкцию для человека может написать каждый из нас, так как мы понимаем язык д

№ слайда 4

Инструкцию для человека может написать каждый из нас, так как мы понимаем язык друг друга. Так что программирование — это написание программ (инструкций) для исполнителя. В нашем примере исполнителем был человек. Но исполнителем может быть и компьютер. Ему тоже можно написать программу, которую он будет выполнять. Только тут не все так просто. Возникает проблема — компьютер не понимает инструкции, написанные на естественном языке. Компьютер вообще не понимает человеческий язык. Его язык — это электрические сигналы. А как же тогда написать программу для компьютера? Для этого созданы языки программирования. С помощью них можно писать программы для компьютера на языке, который похож на человеческий. Пример программы на языке Pascal

Языков программирования существует великое множество. Точную цифру назвать не по

№ слайда 5

Языков программирования существует великое множество. Точную цифру назвать не получится, так как постоянно появляются новые языки. Даже в школе возможно изучение нескольких языков программирования — это может быть Basic, Pascal, C++, Python и другие. А задача программиста — изучить язык программирования, чтобы писать программы и управлять компьютером. Можно сказать, что программист — переводчик с человеческого языка на язык машины. Программирование — сложный процесс. Итак, мы поняли, что программирование — это процесс создания программ для компьютера. Теперь разберемся зачем оно нужно. Вы хотите, например, написать реферат по биологии. Скорее всего, писать его вы будете на компьютере в каком-либо текстовом редакторе. А откуда взялся текстовый редактор? Конечно, его написали программисты. Вы будете искать информацию в интернете используя браузер, который тоже написали программисты. После того, как напишете реферат, вы захотите отдохнуть и поиграть в компьютерную игру, которую опять-таки написали программисты. Вообще, работа на компьютере невозможна без использования программ, которые пишут программисты. А значит, если бы не было программирования — не было бы и программ, а компьютер представлял бы собой кучу дорогого железа, ведь сделать что-то с помощью компьютера без программ невозможно.

Возникновение ЭВМ В конце XIX века Герман Холлерит в Америке изобрел счетно-перф

№ слайда 6

Возникновение ЭВМ В конце XIX века Герман Холлерит в Америке изобрел счетно-перфорационные машины. В них использовались перфокарты для хранения числовой информации. Каждая такая машина могла выполнять только одну определенную программу, манипулируя с перфокартами и числами, пробитыми на них. Счетно-перфорационные машины осуществляли перфорацию, сортировку, суммирование, вывод на печать числовых таблиц. На этих машинах удавалось решать многие типовые задачи статистической обработки, бухгалтерского учета и другие. Г. Холлерит основал фирму по выпуску счетно-перфорационных машин, которая затем была преобразована в фирму IBM — ныне самого известного в мире производителя компьютеров. Непосредственными предшественниками ЭВМ были релейные вычислительные машины. К 30-м годам XX века получила большое развитие релейная автоматика, которая позволяла кодировать информацию в двоичном виде. В процессе работы релейной машины происходят переключения тысяч реле из одного состояния в другое. В первой половине XX века бурно развивалась радиотехника. Основным элементом радиоприемников и радиопередатчиков в то время были электронно-вакуумные лампы. Электронные лампы стали технической основой для первых электронно-вычислительных машин ( ЭВМ).

Электронные лампы-основы первых ЭВМ

№ слайда 7

Электронные лампы-основы первых ЭВМ

Первая ЭВМ Первая ЭВМ — универсальная машина на электронных лампах построена в С

№ слайда 8


№ слайда 9

Первое поколение ЭВМ Это ламповые машины 50-х годов. Скорость счета самых быстры

№ слайда 10

Первое поколение ЭВМ Это ламповые машины 50-х годов. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду (ЭВМ М-20).Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт . Программы для таких машин составлялись на языках машинных команд. Это довольно трудоемкая работа. Поэтому программирование в те времена было доступно немногим. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. Транзисторы быстро внедрялись в радиотехнику.


№ слайда 11

Второе поколение ЭВМ В 60-х годах транзисторы стали элементной базой для ЭВМ вто

№ слайда 12

Второе поколение ЭВМ В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы. Такие системы связаны с необходимостью длительно хранить на магнитных носителях большие объемы информации. Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от модели машины, сделалось проще, понятнее, доступнее. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.


№ слайда 13

Третье поколение ЭВМ Третье поколение ЭВМ создавалось на новой элементной базе —

№ слайда 14

Третье поколение ЭВМ Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схемах. С помощью очень сложной технологии специалисты научились монтировать на маленькой пластине из полупроводникового материала, площадью менее 1 см, достаточно сложные электронные схемы. Их назвали интегральными схемами (ИС)Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.).Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС; затем появились сверхбольшие интегральные схемы — СБИСЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Это были машины на ИС. Немного позднее стали выпускаться машины серии IBM-370, построенные на БИС.В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ) по образцу IBM-360/370.Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом. Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств —магнитные диски. Как и на магнитных лентах, на дисках можно хранить неограниченное количество информации. Но накопители на магнитных дисках (НМД) работают гораздо быстрее, чем НМЛ. Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители. В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ).В 70-е годы получила мощное развитие линия малых (мини) ЭВМ. Своеобразным эталоном здесь стали машины американской фирмы DEC серии PDP-11.В нашей стране по этому образцу создавалась серия машин СМ ЭВМ (Система Малых ЭВМ). Они меньше, дешевле, надежнее больших машин. Машины этого типа хорошо приспособлены для целей управления различными техническими объектами: производственными установками, лабораторным оборудованием, транспортными средствами. По этой причине их называют управляющими машинами.Во второй половине 70-х годов производство мини-ЭВМ превысило производство больших машин.


№ слайда 15

Четвертое поколение ЭВМ Очередное революционное событие в электронике произошло

№ слайда 16

В аппаратном комплекте ПК используется : · цветной графический дисплей · манипул

№ слайда 17

ILLIAC-4 - Первая суперЭВМ четвертого поколения ПК Apple -1

№ слайда 18

ILLIAC-4 - Первая суперЭВМ четвертого поколения ПК Apple -1

Пятое поколение ЭВМ ЭВМ пятого поколения — это машины недалекого будущего. Основ

№ слайда 19

Молекулярные компьютеры В настоящее время, ряд ведущих производителей компьютерн

№ слайда 20

транзисторы. ДНК-компьютер

№ слайда 21

Биокомпьютеры Первые опыты по соединению в одно целое компьютера и живых клеток

№ слайда 22

Биокомпьютеры Первые опыты по соединению в одно целое компьютера и живых клеток стали революционными, привлекая к себе внимание ведущих мировых специалистов. В планах наиболее оптимистично настроенных ученых – создание компьютера размером с клетку живого организма, невидимую невооруженным глазом. В настоящее время, уже создана модель биокомпьютера, полностью рабочая, размеры которой составляют около 30см. Если же удастся добиться создания ее аналога на основе молекул, его размеры будут составлять миллионную долю миллиметра. Основная область применения, для которой ведутся работы, - это биомониторинг, изучение внутриклеточных процессов живых существ, расшифровка генной информации. Очень интересный опыт был проведен в одном из университетов США. Подсоединив нейроны пиявки к микродатчикам, ученым удалось выяснить, что они способны образовывать новые взаимосвязи. В отличие от используемых сегодня кремниевых устройств, нуждающихся в программировании извне, нейронные и нейроно подобные элементы обладают навыками само программирования, возможности использования которого на практике безграничны.

Бактерия компьютера Прототип биокомпьютера - живые клетки, которые общаются межд

№ слайда 23

Бактерия компьютера Прототип биокомпьютера - живые клетки, которые общаются между собой

Квантовая компьютерная техника Заменить атомы на элементарные частицы – под таки

№ слайда 24

Квантовая компьютерная техника Заменить атомы на элементарные частицы – под таким смелым девизом проходят исследования в области создания первых образцов квантовых ПК. Важное преимущество квантовых частиц – это способность находиться одновременно в нескольких состояниях. Так, 32 квантовых бита, при установлении прочной взаимосвязи между собой, способны образовывать до 4 млрд уникальных комбинаций. На квантовые компьютеры возлагаются особые надежды – специалисты утверждают, что такая техника способна обрабатывать информацию с исключительной степенью точности, где не будет места даже незначительным погрешностям или ошибкам. В настоящее время, перед специалистами, реализующими на практике квантовые компьютерные технологии, стоит задача создать рабочие элементы памяти и логики, заставив их тесно взаимодействовать друг с другом. После того как они будут успешно встроены в функциональные чипы, задачу создания квантовых компьютеров можно будет смело считать решенной.

Суперкомпьютеры Суперкомпью тер (с англ. Supercomputer), СверхЭВМ,СуперЭВМ, свер

№ слайда 25

Суперкомпьютеры Суперкомпью тер (с англ. Supercomputer), СверхЭВМ,СуперЭВМ, сверхвычисли тель) — специализированная вычислительная машина, значительно превосходящая по своим техническим параметрам и скорости вычислений большинство существующих в мире компьютеров. Как правило, современные суперкомпьютеры представляют собой большое число высокопроизводительных серверных компьютеров, соединённых друг с другом локальной высокоскоростной магистралью для достижения максимальной производительности в рамках подхода распараллеливания вычислительной задачи.

Конец Спасибо за внимание!

№ слайда 26

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Описание презентации по отдельным слайдам:

 Человеческое общество по мере своего развития овладевало не только веществ.

Человеческое общество по мере своего развития овладевало не только веществом и энергией, но и информацией. С появлением и массовым распространение компьютеров человек получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности. С этого момента (середина XX века) начался переход от индустриального общества к обществу информационному, в котором главным ресурсом становится информация. Введение

Возможность использования членами общества полной, своевременной и достоверно.

Возможность использования членами общества полной, своевременной и достоверной информации в значительной мере зависит от степени развития и освоения новых информационных технологий, основой которых являются компьютеры. Рассмотрим основные вехи в истории их развития. История развития вычислительной техники уходит корнями в глубокую древность. В древности использовались различные средства для счета и одними из них были китайские счеты суан-пан, в основе которой была пятерка, а не десятка. Это древнегреческий абак. суан-пан

1801год. Ткацкий станок Жаккарда. Разработанная Жозефом Мари Жаккардом, это б.

Чарльз Бэббидж (1791 — 1871) Чарльз Бэббидж родился в Лондоне в 1791 году. Им.

Чарльз Бэббидж (1791 — 1871) Чарльз Бэббидж родился в Лондоне в 1791 году. Именно этому английскому математику приписывают идею механического расчета математических таблиц, а также идею создания двух специальных машин, так что Чарльз Бэббидж может считаться одним из отцов-создателей компьютера.

1963 год. Мышка. Собранная Дугласом Энгельбартом и его командой из Стэнфорда.

1963 год. Мышка. Собранная Дугласом Энгельбартом и его командой из Стэнфорда, мышка (так названная потому, что шнур ее напоминал хвост) окажется необходимой для перемещения курсора. На фотографии: мышка на ранней стадии разработки.

Сергей Алексеевич Лебедев С.А. Лебедев внёс основополагающий вклад в станов.

Сергей Алексеевич Лебедев С.А. Лебедев внёс основополагающий вклад в становление и развитие вычислительных наук в бывшем СССР. Им разработаны главные принципы построения и структура универсальных электронных цифровых вычислительных машин, организована работа коллективов разработчиков высокопроизводительных ЭВМ, промышленное производство этих ЭВМ и их внедрение, подготовка кадров. С.А.Лебедева называют "отцом вычислительной техники" в СССР.

Первое поколение ЭВМ — ламповые машины 50-х годов. Это были довольно громоздк.

Первое поколение ЭВМ — ламповые машины 50-х годов. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Первое поколение ЭВМ

Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку.

Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Первое поколение ЭВМ

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий э.

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Второе поколение

Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схем.

Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схемах: на маленькой пластине из полупроводникового материала, площадью менее 1 см² монтировались сложные электронные схемы. Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители. В 70-е годы получила мощное развитие линия малых (мини) ЭВМ. Третье поколение

Очередное революционное событие в электронике произошло в 1971 году, когда а.

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора. Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера: микроЭВМ. МикроЭВМ относятся к машинам четвертого поколения. Первый ПК появился на свет в 1976 году в США. Машины серии получили название IBM PC. Именно ПК сделали компьютерную грамотность массовым явлением. Другая линия в развитии ЭВМ четвертого поколения, это — суперкомпьютер. Четвёртое поколение

Заключение Разработки в области вычислительной техники продолжаются. ЭВМ пято.

Краткая характеристика ЭВМ Характеристики Поколения ЭВМ I II III IV Годы прим.

Интернет-ресурсы: http://daypic.ru/internet/43409 http://kursymaster.ru/histo.

Краткое описание документа:

Человеческое общество по мере своего развития овладевало не только веществом и энергией, но и информацией. С появлением и массовым распространение компьютеров человек получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности. С этого момента (середина XX века) начался переход от индустриального общества к обществу информационному, в котором главным ресурсом становится информация. История развития вычислительной техники уходит корнями в глубокую древность. Для чего вообще нужна история? Для чего нужна история науки?
Информатика по другому ещё называется Computer Science, то есть "наука о компьютерах". У любой науки есть своя история. Конечно, сейчас для того, чтобы работать с новыми информационными технологиями совсем не обязательно знать историю науки.

Работу подготовил:
Ученик 7 класса А
МБОУ гимназии №33
Жиртуев Артём
Проверил:
Учитель информатики
Золотова О.В.

2. Оглавление

Введение
Начало эпохи ЭВМ
Первое поколение ЭВМ
Второе поколение ЭВМ
Третье поколение ЭВМ
Четвертое поколение ЭВМ
Первый персональный компьютер
Пятое поколение ЭВМ
Сравнительные характеристики поколений ЭВМ
Заключение
Список литературы и Интернет-ресурсов
2

3. Введение

Компьютер является неотъемлемой
частью повседневной жизни человека.
Ещё с давних времён люди создавали
приспособления для облегчения
вычислений, затем появились первые
вычислительные машины, но первый персональный
компьютер был создан только в середине ХХ века.
На заре эры компьютеров считалось, что основная их
функция – вычисление. Однако в настоящее время
полагают, что основная их функция – управление.
3

5. Начало эпохи ЭВМ

Первая ЭВМ
ENIAC (электронный цифровой интегратор и
вычислитель) была
создана в конце 1945 г. в США.
Конструкторами ЕNIАС были Дж. Моучли и Дж. Эккерт.
Вес — 27 тонн.
Объём памяти — 20 число-слов.
Вычислительная мощность —
357 операций умножения или
5000 операций сложения в
секунду.
ENIAC
5

С. А. Лебедев - разработчик первых вычислительных машин в
Советском Союзе и основатель советской компьютерной
индустрии.
С.А. Лебедев
(1902-1974)
ЭВМ М-20
БЭСМ-6
6

7. Первое поколение ЭВМ 1948 - 1958 г.г.

МЭСМ
Урал-1
Элементная база – электронно-вакуумные лампы.
Габариты – в виде шкафов и занимали машинные залы.
Быстродействие – 10 – 100 тыс. оп./с.
7

8. Второе поколение ЭВМ 1959 - 1967 г.г.

9. Третье поколение ЭВМ

IBM-360
ЕС-1010
• Элементная база – интегральные схемы, большие
интегральные схемы (ИС, БИС).
• Габариты – однотипные стойки, требующие машинный зал.
• Быстродействие – сотни тысяч –
миллионы оп./с.
9

10. Четвертое поколение ЭВМ 1975-1980 г.г.

Первые микропроцессоры
Искра-226
Mac - 1
• Элементная база – сверхбольшие интегральные схемы
(СБИС).
• Создание многопроцессорных вычислительных систем.
• Создание дешевых и компактных микроЭВМ и
персональных ЭВМ и на их базе вычислительных
сетей.
10

Первые персональные
компьютеры
IBM-PC 5150
В 1981 г. IBM Corporation (International Business
Machines)(США)
представила
первую
модель
персонального компьютера — IBM 5150, положившую
начало эпохи современных компьютеров.
11

12. Пятое поколение ЭВМ 1980 г. - наше время

23-дюймовый сенсорный
моноблок Acer Aspire U5 на
Intel Haswell
IPhone X
• Элементная база - сверхбольшая интегральная схема
(СБИС)
• Размеры - микроЭВМ, появление карманных компьютеров
• Быстродействие - более 100 млн. операций
в секунду
12

Сравнительные характеристики поколений ЭВМ
I
II
Поколения ЭВМ
III
1945-1954
1955-1964
1965-1974
Характеристики
Годы применения
Элементная база
компьютеры
на электронных
лампах
транзистор, впервые
впервые стали
появилось то, что
использоваться
сегодня называется
интегральные схемы (ИС)
операционной системой
Размеры
большие,
нередко
требовали для
себя отдельных
зданий
занимали меньше
места, чем ЭВМ 1
поколения
Количество ЭВМ
в мире
Быстродействие
Объём
оперативной памяти
десятки
10-20 тыс.
операций в
секунду
2 Кб
МЭСМ,
Типичные модели
БЭСМ-2
Носитель
информации
Перфокарта,
перфолента
тысячи
100-1000 тыс.
операций в секунду
2-32 Кб
БЭСМ-6, Минск-2
Магнитная лента
IV
1975-1980
V
1980- наше
время
совершенствовани
е интегральных схем
сверхбольша
(БИС) привело к
я интегральная
появлению
схема (СБИС)
микропроцессо
ров
микроЭВМ,
мини-ЭВМ, имели
микроЭВМ, стали появление
миниатюрный корпус, по
менее габаритными
карманных
сравнению с предыдущими
компьютеров
десятки тысяч
1-10 млн. операций в
секунду
64 Кб
IBM-360, IBM-370, ЕС
ЭВМ, СМ ЭВМ
Диск
миллионы
10-100 млн.
операций в секунду
2-64 Мб
IBM-PC, Apple
Гибкий и
лазерный диски
миллиарды
Более 100
млн. операций в
секунду
от 2000 Мб и
выше
"Pentium 2",
"Pentium 3",
"Pentium 4"
Гибкий и
лазерный диски,
флеш-карта
13

Заключение
В перспективы развития
ЭВМ в первую очередь
заложено обязательное
уменьшение размеров
компьютеров, неуклонное
увеличение их
быстродействия и объема
памяти.
По словам учёных и исследователей, в ближайшем
будущем персональные компьютеры кардинально
изменятся. Примерно в 2020-2025 годах должны
появиться молекулярные компьютеры, квантовые
компьютеры,
биокомпьютеры
и
оптические
компьютеры. Компьютер будущего должен облегчить и
упростить жизнь человека ещё в десятки раз!
14


Презентация рассматривает вопросы исторического развития компьютерной техники и перспективы развития компьютеров будущего.

Описание разработки

В презентации рассматриваются вопросы:

1. Зачем нужно программировать?

2. История первого компьютера

3. ЭВМ первого поколения

4. ЭВМ второго поколения

5. ЭВМ третьего поколения

6. ЭВМ четвертого поколения

- Что такое Микропроцессор?

7. ЭВМ пятого поколения

8. Разработка компьютеров будущего

Презентация по информатике История компьютерной техники

- Квантовая компьютерная техника

Зачем нужно программировать?

Довольно распространенный вопрос среди тех, кто только начинает изучать программирование — что это и зачем оно нужно. Попытаюсь ответить на вопрос доступным языком.

Содержимое разработки

История развития компьютерной техники Подготовил презентацию ученик 10 класса Перепечко Егор г.Комсомольск-на-Амуре МОУ Сош №24 Проверил учитель информатики Чернышова Анна Сергеевна

История развития компьютерной техники

ученик 10 класса Перепечко Егор

г.Комсомольск-на-Амуре МОУ Сош №24

Проверил учитель информатики

Чернышова Анна Сергеевна

1. Зачем нужно программировать? 2. История первого компьютера 3. ЭВМ первого поколения 4. ЭВМ второго поколения 5. ЭВМ третьего поколения 6. ЭВМ четвертого поколения - Что такое Микропроцессор? 7. ЭВМ пятого поколения 8. Разработка компьютеров будущего - Молекулярные - биокомпьютеры - Квантовая компьютерная техника 9. Суперкомпьютеры

1. Зачем нужно программировать? 2. История первого компьютера 3. ЭВМ первого поколения 4. ЭВМ второго поколения 5. ЭВМ третьего поколения 6. ЭВМ четвертого поколения - Что такое Микропроцессор? 7. ЭВМ пятого поколения 8. Разработка компьютеров будущего - Молекулярные - биокомпьютеры - Квантовая компьютерная техника 9. Суперкомпьютеры

Зачем нужно программировать?

Довольно распространенный вопрос среди тех, кто только начинает изучать программирование — что это и зачем оно нужно. Попытаюсь ответить на вопрос доступным языком.

Давайте забудем про компьютер и попробуем написать инструкцию для пожилого человека. Пусть это будет инструкция для совершения звонка на номер 55555. Так вот, эта инструкция может выглядеть так:

Эта простейшая инструкция и есть программа. Только выполнять ее будет не компьютер, а человек.

Инструкцию для человека может написать каждый из нас, так как мы понимаем язык друг друга. Так что программирование — это написание программ (инструкций) для исполнителя. В нашем примере исполнителем был человек. Но исполнителем может быть и компьютер. Ему тоже можно написать программу, которую он будет выполнять. Только тут не все так просто. Возникает проблема — компьютер не понимает инструкции, написанные на естественном языке. Компьютер вообще не понимает человеческий язык. Его язык — это электрические сигналы. А как же тогда написать программу для компьютера? Для этого созданы языки программирования. С помощью них можно писать программы для компьютера на языке, который похож на человеческий. Пример программы на языке Pascal

Инструкцию для человека может написать каждый из нас, так как мы понимаем язык друг друга. Так что программирование — это написание программ (инструкций) для исполнителя. В нашем примере исполнителем был человек. Но исполнителем может быть и компьютер. Ему тоже можно написать программу, которую он будет выполнять. Только тут не все так просто.

Возникает проблема — компьютер не понимает инструкции, написанные на естественном языке. Компьютер вообще не понимает человеческий язык. Его язык — это электрические сигналы. А как же тогда написать программу для компьютера? Для этого созданы языки программирования. С помощью них можно писать программы для компьютера на языке, который похож на человеческий.

Пример программы на языке Pascal

Языков программирования существует великое множество. Точную цифру назвать не получится, так как постоянно появляются новые языки. Даже в школе возможно изучение нескольких языков программирования — это может быть Basic, Pascal , C++, Python и другие. А задача программиста — изучить язык программирования, чтобы писать программы и управлять компьютером. Можно сказать, что программист — переводчик с человеческого языка на язык машины. Программирование — сложный процесс.

Итак, мы поняли, что программирование — это процесс создания программ для компьютера .

Теперь разберемся зачем оно нужно. Вы хотите, например, написать реферат по биологии. Скорее всего, писать его вы будете на компьютере в каком-либо текстовом редакторе. А откуда взялся текстовый редактор? Конечно, его написали программисты. Вы будете искать информацию в интернете используя браузер, который тоже написали программисты. После того, как напишете реферат, вы захотите отдохнуть и поиграть в компьютерную игру, которую опять-таки написали программисты. Вообще, работа на компьютере невозможна без использования программ, которые пишут программисты. А значит, если бы не было программирования — не было бы и программ, а компьютер представлял бы собой кучу дорогого железа, ведь сделать что-то с помощью компьютера без программ невозможно.

Возникновение ЭВМ

В конце XIX века Герман Холлерит в Америке изобрел счетно-перфорационные машины. В них использовались перфокарты для хранения числовой информации. Каждая такая машина могла выполнять только одну определенную программу, манипулируя с перфокартами и числами, пробитыми на них. Счетно-перфорационные машины осуществляли перфорацию, сортировку, суммирование, вывод на печать числовых таблиц. На этих машинах удавалось решать многие типовые задачи статистической обработки, бухгалтерского учета и другие. Г. Холлерит основал фирму по выпуску счетно-перфорационных машин, которая затем была преобразована в фирму IBM — ныне самого известного в мире производителя компьютеров. Непосредственными предшественниками ЭВМ были релейные вычислительные машины. К 30-м годам XX века получила большое развитие релейная автоматика, которая позволяла кодировать информацию в двоичном виде. В процессе работы релейной машины происходят переключения тысяч реле из одного состояния в другое. В первой половине XX века бурно развивалась радиотехника. Основным элементом радиоприемников и радиопередатчиков в то время были электронно-вакуумные лампы. Электронные лампы стали технической основой для первых электронно-вычислительных машин ( ЭВМ).

Электронные лампы-основы первых ЭВМ

Электронные лампы-основы первых ЭВМ


Первое поколение ЭВМ Это ламповые машины 50-х годов. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду (ЭВМ М-20).Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт . Программы для таких машин составлялись на языках машинных команд. Это довольно трудоемкая работа. Поэтому программирование в те времена было доступно немногим. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. Транзисторы быстро внедрялись в радиотехнику.

Первое поколение ЭВМ

Это ламповые машины 50-х годов. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду (ЭВМ М-20).Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт . Программы для таких машин составлялись на языках машинных команд. Это довольно трудоемкая работа. Поэтому программирование в те времена было доступно немногим. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. Транзисторы быстро внедрялись в радиотехнику.


Второе поколение ЭВМ

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы. Такие системы связаны с необходимостью длительно хранить на магнитных носителях большие объемы информации.

Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от модели машины, сделалось проще, понятнее, доступнее. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.


Третье поколение ЭВМ

Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схемах. С помощью очень сложной технологии специалисты научились монтировать на маленькой пластине из полупроводникового материала, площадью менее 1 см, достаточно сложные электронные схемы. Их назвали интегральными схемами (ИС)Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.).Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС; затем появились сверхбольшие интегральные схемы — СБИСЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Это были машины на ИС. Немного позднее стали выпускаться машины серии IBM-370, построенные на БИС.В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ) по образцу IBM-360/370.Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом. Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств —магнитные диски. Как и на магнитных лентах, на дисках можно хранить неограниченное количество информации. Но накопители на магнитных дисках (НМД) работают гораздо быстрее, чем НМЛ. Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители. В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ).В 70-е годы получила мощное развитие линия малых (мини) ЭВМ. Своеобразным эталоном здесь стали машины американской фирмы DEC серии PDP-11.В нашей стране по этому образцу создавалась серия машин СМ ЭВМ (Система Малых ЭВМ). Они меньше, дешевле, надежнее больших машин. Машины этого типа хорошо приспособлены для целей управления различными техническими объектами: производственными установками, лабораторным оборудованием, транспортными средствами. По этой причине их называют управляющими машинами.Во второй половине 70-х годов производство мини-ЭВМ превысило производство больших машин.


Четвертое поколение ЭВМ

В аппаратном комплекте ПК используется :

· цветной графический дисплей

· удобная клавиатура

ILLIAC-4 - Первая суперЭВМ четвертого поколения ПК Apple -1

ILLIAC-4 - Первая суперЭВМ четвертого поколения

Пятое поколение ЭВМ

Молекулярные компьютеры

транзисторы. ДНК- компьютер

транзисторы. ДНК- компьютер

Биокомпьютеры

Первые опыты по соединению в одно целое компьютера и живых клеток стали революционными, привлекая к себе внимание ведущих мировых специалистов. В планах наиболее оптимистично настроенных ученых – создание компьютера размером с клетку живого организма, невидимую невооруженным глазом. В настоящее время, уже создана модель биокомпьютера, полностью рабочая, размеры которой составляют около 30см. Если же удастся добиться создания ее аналога на основе молекул, его размеры будут составлять миллионную долю миллиметра. Основная область применения, для которой ведутся работы, - это биомониторинг, изучение внутриклеточных процессов живых существ, расшифровка генной информации. Очень интересный опыт был проведен в одном из университетов США. Подсоединив нейроны пиявки к микродатчикам, ученым удалось выяснить, что они способны образовывать новые взаимосвязи. В отличие от используемых сегодня кремниевых устройств, нуждающихся в программировании извне, нейронные и нейроно подобные элементы обладают навыками само программирования, возможности использования которого на практике безграничны .

Прототип биокомпьютера - живые клетки, которые общаются между собой Бактерия компьютера

Прототип биокомпьютера - живые клетки, которые общаются между собой

Бактерия компьютера

Квантовая компьютерная техника Заменить атомы на элементарные частицы – под таким смелым девизом проходят исследования в области создания первых образцов квантовых ПК. Важное преимущество квантовых частиц – это способность находиться одновременно в нескольких состояниях. Так, 32 квантовых бита, при установлении прочной взаимосвязи между собой, способны образовывать до 4 млрд уникальных комбинаций. На квантовые компьютеры возлагаются особые надежды – специалисты утверждают, что такая техника способна обрабатывать информацию с исключительной степенью точности, где не будет места даже незначительным погрешностям или ошибкам. В настоящее время, перед специалистами, реализующими на практике квантовые компьютерные технологии, стоит задача создать рабочие элементы памяти и логики, заставив их тесно взаимодействовать друг с другом. После того как они будут успешно встроены в функциональные чипы, задачу создания квантовых компьютеров можно будет смело считать решенной.

Квантовая компьютерная техника

Заменить атомы на элементарные частицы – под таким смелым девизом проходят исследования в области создания первых образцов квантовых ПК. Важное преимущество квантовых частиц – это способность находиться одновременно в нескольких состояниях. Так, 32 квантовых бита, при установлении прочной взаимосвязи между собой, способны образовывать до 4 млрд уникальных комбинаций. На квантовые компьютеры возлагаются особые надежды – специалисты утверждают, что такая техника способна обрабатывать информацию с исключительной степенью точности, где не будет места даже незначительным погрешностям или ошибкам. В настоящее время, перед специалистами, реализующими на практике квантовые компьютерные технологии, стоит задача создать рабочие элементы памяти и логики, заставив их тесно взаимодействовать друг с другом. После того как они будут успешно встроены в функциональные чипы, задачу создания квантовых компьютеров можно будет смело считать решенной.

Суперкомпьютеры Суперкомпью́тер (с англ. Supercomputer ), СверхЭВМ,СуперЭВМ, сверхвычисли́тель ) — специализированная вычислительная машина, значительно превосходящая по своим техническим параметрам и скорости вычислений большинство существующих в мире компьютеров. Как правило, современные суперкомпьютеры представляют собой большое число высокопроизводительных серверных компьютеров, соединённых друг с другом локальной высокоскоростной магистралью для достижения максимальной производительности в рамках подхода распараллеливания вычислительной задачи.

Суперкомпью́тер (с англ. Supercomputer ), СверхЭВМ,СуперЭВМ, сверхвычисли́тель ) — специализированная вычислительная машина, значительно превосходящая по своим техническим параметрам и скорости вычислений большинство существующих в мире компьютеров. Как правило, современные суперкомпьютеры представляют собой большое число высокопроизводительных серверных компьютеров, соединённых друг с другом локальной высокоскоростной магистралью для достижения максимальной производительности в рамках подхода распараллеливания вычислительной задачи.

Читайте также: