Правило моментов физика кратко

Обновлено: 08.07.2024


О чем эта статья:

Сила: что это за величина

В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или замедляется, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причиной любого действия или взаимодействия является сила.

  • Сила — это физическая векторная величина, является мерой действия тела на другое тело.

Она измеряется в ньютонах — это единица измерения названа в честь Исаака Ньютона.

в чем измеряется сила

Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.

Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.

сила - векторная величина

Плечо силы

Для начала давайте разберемся, что такое плечо силы — оно нам сегодня очень пригодится.

Представьте человека. Совершенно обычного. Если он совершенно обычный, у него точно будут плечи — без них получится уже какой-то инопланетянин. Если мы прочертим прямую вдоль линии плеча, а потом еще одну — вдоль линии руки — мы получим две пересекающиеся прямые. Угол между такими прямыми будет равен 90 градусов, а значит эти линии перпендикулярны.

Как анатомическое плечо перпендикулярно руке, так и в физике плечо перпендикулярно, только уже линии действия силы.

пример рычага

То есть перпендикуляр, проведенный от точки опоры до линии, вдоль которой действует сила — это плечо силы.

Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!

Рычаг

В каждом дворе есть качели, для которых нужны два качающихся (если в вашем дворе таких нет, посмотрите в соседнем). Большая доска ставится посередине на точку опоры. По сути своей, качели — это рычаг.

Рычаг — простейший механизм, представляющий собой балку, вращающуюся вокруг точки опоры.

что такое рычаг

Хорошо, теперь давайте найдем плечо этой конструкции. Возьмем правую часть качелей. На качели действует сила тяжести правого качающегося, проведем перпендикуляр от линии действия силы до точки опоры. Получилась, что плечо совпадает с рычагом, разве что рычаг — это вся конструкция, а плечо — половина.

Давайте попробуем опустить качели справа, тогда что получим: рычаг остался тем же самым по длине, но вот сместился на некоторый угол, а вот плечо осталось на том же месте. Если направление действия силы не меняется, как и точка опоры, то перпендикуляр между ними невозможно изменить.

Как действует рычаг

Правило равновесия рычага

Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил.

F1, F2 — силы, действующие на рычаг

Момент силы

При решении задач на различные силы нам обычно хватало просто сил. Сила действует всегда линейно (ну в худшем случае под углом), поэтому очень удобно пользоваться законами Ньютона, приравнивать разные силы. Это работало с материальными точками, но не будет так просто применяться к телам, у которых есть форма и размер.

Вот мы приложили силу к краю палки, но при этом не можем сказать, что на другом ее конце будут то же самое ускорение и та же самая сила. Для этого мы вводим такое понятие, как момент силы.

Момент силы — это произведение силы на плечо. Для определения физического смысла можно сказать, что момент — это вращательное действие.

Момент силы

M = Fl

M — момент силы [Н*м]
F — сила [Н]
l — плечо [м]

Для примера представьте, что вы забыли, как открывать двери. Стоите перед дверью и раздумываете, как легче это сделать.

Для начала приложим силу к краю двери — туда, где самый длинный рычаг. Открылась!

А что если толкнуть дверь ближе к креплению — там, где плечо намного короче? Для этого придется приложить силу большего значения.

Вывод: чтобы повернуть дверь, нужен крутящий момент определенного значения. Чем больше плечо силы, тем меньше значение силы, которую нужно приложить — и наоборот. Поэтому нам легче толкать дверь там, где плечо силы больше.

чем больше момент, тем легче вращение

Похожая история с гаечным ключом. Чтобы закрутить гайку, нужно взяться за ручку подальше от гайки. За счет увеличения плеча мы уменьшаем значение силы, которую нужно приложить.

гаечный ключ - рычаг

Расчет момента силы

Сейчас рассмотрим несколько вариантов того, как момент может рассчитываться. По идее просто нужно умножить силу на плечо, но поскольку мы имеем дело с векторами, все не так просто.

Если сила расположена перпендикулярно оси стержня, мы просто умножаем модуль силы на плечо.

Расстояние между точками A и B — 3 метра.

расчет момента силы

Момент силы относительно точки A:

Если сила расположена под углом к оси стержня, умножаем проекцию силы на плечо.

Обратите внимание, что такие задания могут встретиться только у учеников не раньше 9 класса!

расчет момента силы рис 2

Момент силы относительно точки B:

Если известно самое короткое расстояние от точки до линии действия силы, момент рассчитывается как произведение силы на это расстояние (плечо).

расчет момента силы рис 3

Момент силы относительно точки B:

Правило моментов

Вернемся к нашим баранам качелям. Силы, с которыми мы действуем на разные стороны этих качелей могут быть разными, но вот моменты должны быть одинаковыми.

Правило моментов говорит о том, что если рычаг не вращается, то сумма моментов сил, поворачивающих рычаг против часовой стрелки, равна сумме моментов сил, поворачивающих рычаг по часовой стрелке.

Это условие выполняется относительно любой точки.

Правило моментов

M1 + M2 +. + Mn — сумма моментов сил, поворачивающих рычаг по часовой стрелке [Н*м]

M’1 + M’2 +. + M’n — сумма моментов сил, поворачивающих рычаг против часовой стрелке [Н*м]

Давайте рассмотрим этот закон на примере задач.

Задача 1

К левому концу невесомого стержня прикреплен груз массой 3 кг.

задача для самопроверки

Стержень расположили на опоре, отстоящей от его левого конца на 0,2 длины стержня. Чему равна масса груза, который надо подвесить к правому концу стержня, чтобы он находился в равновесии?

Решение:

Одним из условий равновесия стержня является то, что полный момент всех внешних сил относительно любой точки равен нулю. Рассмотрим моменты сил относительно точки опоры. Момент, создаваемый левым грузом равен он вращает стержень против часовой стрелки. Момент, создаваемый правым грузом: — он вращает по часовой.

решение задачи

Приравнивая моменты, получаем, что для равновесия к правому концу стержня необходимо подвесить груз массой

M = m : 4 = 3 : 4 = 0,75 кг

Ответ: для равновесия к правому концу стержня необходимо подвесить груз массой 0,75 кг

Задача 2

Путешественник несёт мешок с вещами на лёгкой палке. Чтобы удержать в равновесии груз весом 80 Н, он прикладывает к концу B палки вертикальную силу 30 Н. OB = 80 см. Чему равно OA?

задача рис 2

Решение:

По правилу рычага:

где FA и FB — силы, приложенные соответственно к точкам A и B. Выразим длину OA:

Ответ: расстояние ОА равно 30 см

Задача 3

Тело массой 0,2 кг подвешено к правому плечу невесомого рычага (см. рисунок). Груз какой массы надо подвесить ко второму делению левого плеча рычага для достижения равновесия?

решение задачи рис 2

Решение:

По правилу рычага

Ответ: Масса груза равна 0,3 кг

Задача 4 — a.k.a самая сложная задачка

Под действием силы тяжести mg груза и силы F рычаг, представленный на рисунке, находится в равновесии. Вектор силы F перпендикулярен рычагу, груз на плоскость не давит. Расстояния между точками приложения сил и точкой опоры, а также проекции этих расстояний на вертикальную и горизонтальную оси указаны на рисунке.

задача рис4

Если модуль силы F равен 120 Н, то каков модуль силы тяжести, действующей на груз?

Решение:

Одним из условий равновесия рычага является то, что полный момент всех внешних сил относительно любой точки равен нулю. Рассмотрим моменты сил относительно опоры рычага. Момент, создаваемый силой F, равен F*5 м и он вращает рычаг по часовой стрелке. Момент, создаваемый грузом относительно этой точки — mg*0,8 м, он вращает против часовой. Уточним, что 0,8 м — это расстояние от центра тяжести груза до опоры, т. е. перпендикуляр до оси вращения. Приравнивая моменты, получаем выражение для модуля силы тяжести

Ответ: модуль силы тяжести, действующей на груз равен 750 Н

M — момент силы. Единица измерения — Ньютон на метр (Н∙м). Направление вектора момента силы всегда совпадает с направлением вектора силы. d — плечо силы. Единица измерения — метр (м).


Плечо силы — кратчайшее расстояние между осью вращения и линией действия силы.

Пример №1. Стальной шар массой 2 кг колеблется на нити длиной 1 м. Чему равен момент силы тяжести относительно оси, проходящей через точку О перпендикулярно плоскости чертежа, в состоянии, представленном на рисунке?


Плечом силы тяжести, или кратчайшим путем от прямой, проходящей через точку О перпендикулярно плоскости чертежа, до линии действия силы тяжести, будет отрезок, равный максимальному отклонению шара от положения равновесия. Следовательно:

Момент силы может быть положительным и отрицательным.

Если сила вызывает вращение тела по часовой стрелке, то такой момент считают положительным:

Если сила вызывает вращение тела против часовой стрелки, то такой момент считают отрицательным:

Правило моментов

Тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

Иначе правило моментов можно сформулировать так:

Сумма моментов сил, вызывающих вращение тела по часовой стрелке, равна сумме моментов сил, вызывающих вращение тела против часовой стрелки.

∑ M п о ч а с . с т р . = ∑ M п р . ч а с . с т р .

Условия равновесия тел

∑ → F i = 0 ; → v o = 0

∑ → F i = 0 ; → v o = 0 и ∑ → F i = 0 ; → v o = 0

Простые механизмы

Простые механизмы — приспособления, служащие для преобразования силы. К ним относится рычаг, наклонная плоскость, блоки, клин и ворот.

Наклонная плоскость

Дает выигрыш в силе. Чтобы поднять груз на высоту h, нужно приложить силу, равную силе тяжести этого груза. Но, используя наклонную плоскость, можно приложить силу, равную произведению силы тяжести на синус угла уклона плоскости:

Рычаг

Дает выигрыш в силе, равный отношению плеча второй силы к плечу первой:

F 1 F 2 . . = d 2 d 1 . .

Неподвижный блок

Изменяет направление действия силы. Модули и плечи сил при этом равны:

Подвижный блок

Делит силу на две равные части, направление которых зависит от формы клина:

При использовании простых механизмов мы выигрываем в силе, но проигрываем в расстоянии. Поэтому выигрыша в работе простые механизмы не дают.


Задание EF22660 Мальчик взвесил рыбу на самодельных весах с коромыслом из лёгкой рейки (см. рисунок). В качестве гири он использовал батон хлеба массой 0,8 кг. Определите массу рыбы.

Алгоритм решения

Решение

Известна лишь масса батона: m1 = 0,8 кг. Но мы также можем выразить плечи для силы тяжести батона и хлеба. Для этого длину линейки примем за один. Так как линейка поделена на 10 секций, можем считать, что длина каждой равна 0,1. Тогда плечи сил тяжести батона и рыба соответственно равны:

Запишем правило моментов:

Сила тяжести равна произведению массы на ускорение свободного падения. Поэтому:

Отсюда масса рыбы равна:

m 2 = m 1 d 1 d 2 . . = 0 , 8 · 0 , 3 0 , 4 . . = 0 , 6 ( к г )

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

  1. Сформулировать определение плеча силы.
  2. Найти плечо силы трения и аргументировать ответ.

Решение

Плечом силы трения называют кратчайшее расстояние от оси вращения до линии, вдоль которой действует сила. Чтобы найти такое расстояние, нужно провести из точки равновесия перпендикуляр к линии действия силы трения. Отрезок, заключенный между этой точкой и линией, будет являться плечом силы трения. На рисунке этому отрезку соответствует отрезок О3В.

Рычаг состоит из перекладины и опоры.
Точка опоры делит перекладину рычага на два плеча рычага.

В зависимости от взаимного расположения точки опоры и нагрузки различают три вида рычагов.

Рычаг 1-го рода
Рычаг 1-го рода

Опора располагается между точками приложения сил Рычаг 1-го рода

Даёт выигрыш в силе
Рычаг 2-го рода
Рычаг 2-го рода

Точки приложения сил располагаются по одну сторону от опоры, нагрузка приложена между точкой опоры и точкой приложения силы Рычаг 1-го рода

Даёт выигрыш в силе
Рычаг 3-го рода
Рычаг 3-го рода
Рычаг 3-го рода

Точки приложения сил располагаются по одну сторону от опоры, усилие приложено между точкой опоры и нагрузкой. Проигрыш в силе – выигрыш в расстоянии

п.2. Момент силы

Плечо силы – это кратчайшее расстояние между точкой опоры и прямой, вдоль которой сила действует на рычаг.

Чтобы найти плечо силы, нужно из точки опоры провести перпендикуляр на линию действия силы.

Момент силы

На рисунке \(l_1\) – плечо силы \(F_1,\ l_2\) - плечо силы \(F_2\).

Силы вращают рычаг вокруг точки опоры – по часовой или против часовой стрелки.

Ось вращения проходит через точку опоры перпендикулярно плоскости вращения.

На рисунке сила \(F_1\) вращает рычаг против часовой стрелки, а сила \(F_2\) - по часовой стрелке.

Момент силы – это произведение силы, вращающей тело, на её плечо. $$ M=Fl $$ В системе СИ единица измерения момента силы - Н·м.

Момент силы определяется не для всего тела, а для некоторой его точки, удалённой от центра (оси) вращения. Эта величина имеет смысл только для вращающихся тел.

п.3. Правило моментов для двух сил

Правило моментов для двух сил
Рычаг находится в равновесии под действием двух сил, если момент силы, вращающей его по ходу часовой стрелки, равен моменту силы, вращающей его против хода часовой стрелки.

Правило моментов для двух сил
$$ F_1l_1=F_2l_2 $$

п.4. Правило моментов для нескольких сил

Правило моментов для нескольких сил
Рычаг находится в равновесии, если сумма моментов всех сил, вращающих его по ходу часовой стрелки, равен сумме моментов всех сил, вращающих его против хода часовой стрелки.

Правило моментов для нескольких сил
Силы \(F_1,\ F_2,\ F_3\) вращают рычаг против часовой стрелки, а сила \(F_4\) - по часовой стрелке. Поэтому: $$ F_1l_1+F_2l_2+F_3l_3=F_4l_4 $$

п.5. Применение рычагов в быту и технике

Рычаги первого рода

Весы

Весы
Предмет, вес которого нужно измерить, — это нагрузка, а гиря создает усилие. Они равны, так как находятся на одном расстоянии от точки опоры.
Рычажные весы

Рычажные весы
Точка опоры смещена относительно центра. Грузило передвигается по основанию, пока не уравновесит взвешиваемый объект.
Гвоздодёр

Гвоздодёр
Усилие ручки увеличивается плечом и вытаскивает гвоздь. Нагрузкой здесь является сопротивление гвоздя.
Ручная тележка

Ручная тележка
Небольшое усилие, прикладываемое к ручкам тележки, позволяет поднимать тяжелый груз.
Плоскогубцы

Плоскогубцы
Составной рычаг, пара простых рычагов, соединенных в точке опоры. Нагрузка — сопротивление предмета захвату инструментом.
Ножницы

Ножницы
Составной рычаг первого рода, развивают мощное режущее действие очень близко к месту крепления. Нагрузка — сопротивление материала лезвиям.

Рычаги второго рода

Тачка

Тачка
Небольшое усилие, приложенное к ручкам тачки, поднимает тяжелый груз, расположенный ближе к колесу.
Открывалка

Открывалка
Давление на ручку преодолевает сопротивление крышки бутылки.
Щипцы для орехов

Щипцы для орехов
Составной рычаг второго рода. Нагрузка — сопротивление скорлупы.

Рычаги третьего рода

Молоток

Молоток
Точка опоры — плечевой сустав (рука — продолжение рукоятки), а нагрузка — сопротивление дерева. Во время удара по гвоздю головка молотка двигается быстрее, чем рука с рукояткой.
Удочка

Удочка
Одна рука прикладывает усилие для движения удочки, вторая становится точкой опоры. Нагрузка — это вес рыбы, который поднимается на большую высоту легким движением руки.
Пинцет

Пинцет
Составной рычаг третьего рода. На кончиках пинцета усилие меньше, чем со стороны пальцев, так что можно захватывать хрупкие предметы. Нагрузка — сопротивление предмета.

п.6. Задачи

Задача 1

Задача 1. Для каждого положения тела укажите плечо силы.

При необходимости достраиваем линию действия силы и опускаем на неё перпендикуляр из точки опоры. Этот перпендикуляр и есть искомое плечо.

Задача 2. Грузы уравновешены на рычаге. Отношение плеч рычага 1:5. Масса большего груза 2,5 кг. Найдите массу меньшего груза.

Задача 2


По правилу моментов \begin F_1l_1=F_2l_2 \end На обоих концах рычага действуют силы тяжести: $$ F_1=m_1g,\ \ F_2=m_2g $$ Получаем: \begin m_1gl_1=m_2gl_2\\[7pt] m_2=\frac \end Подставляем: $$ m_2=2,5\cdot \frac 15=0,5\ (\text) $$ Ответ: 0,5 кг

Задача 3. На концах рычага действуют силы 15 Н и 60 Н, направленные вниз. Рычаг находится в равновесии. Расстояние между точками приложения сил 1 м. Где расположена точка опоры?

Задача 3


По правилу моментов \begin F_1l_1=F_2l_2. \end Получаем систему уравнений \begin \left\< \begin 15l_1=60l_2 \\ l_1+l_2=1 \end \right. \Rightarrow \left\< \begin l_1=4l_2 \\ l_1+l_2=1 \end \right. \Rightarrow \left\< \begin l_1=4l_2 \\ 4l_2+l_2=1 \end \right. \Rightarrow \\[7pt] \Rightarrow \left\< \begin l_1=4l_2 \\ 5l_2=1 \end \right. \Rightarrow \left\< \begin l_1=0,8 \\ l_2=0,2 \end \right. \end Ответ: 0,8 м от точки приложения первой силы и 0,2 м от точки приложения второй силы.

Задача 4*. К балке, расположенной на двух опорах А и В подвешен груз массой 500 кг. Расстояние от точки подвеса груза к одному из концов балки в 4 раза больше, чем к другому. С какой силой балка давит на каждую из опор? Примите \(g\approx 10\ \text^2\). Ответ запишите в килоньютонах.

Задача 4*


Сила тяжести \(F_>=mg\), направленная вниз, уравновешивается силами реакции опор \(F_A\) и \(F_B\), направленными вверх. \begin F_A+F_B=mg \end По правилу моментов при равновесии \begin F_A\cdot OA=F_B\cdot OB=F_B\cdot 4OA\Rightarrow F_A=4F_B \\[7pt] F_A+F_B=5F_B=mg\Rightarrow F_B=\frac \end Получаем: \begin F_B=\frac=1000\ \text=1\ \text,\ \ F_A=4\cdot 100=4000\ \text=4\ \text \end Ответ: 4 кН и 1 кН

п.7. Лабораторная работа №9. Проверка условия равновесия рычага

Цель работы
Исследовать условия равновесия рычага под действием двух параллельных сил.

Теоретические сведения

Рычаг – это твёрдое тело, которое может вращаться вокруг неподвижной опоры.

В работе используется рычаг 1-го рода, в котором опора располагается между точками приложения сил.

Плечо силы – это кратчайшее расстояние между точкой опоры и прямой, вдоль которой сила действует на рычаг. Чтобы найти плечо силы, нужно из точки опоры провести перпендикуляр на линию действия силы.

Момент силы – это произведение силы, вращающей тело, на её плечо: \(M=Fl\).

Правило моментов для двух сил
Рычаг находится в равновесии под действием двух сил, если момент силы, вращающей его по ходу часовой стрелки, равен моменту силы, вращающей его против хода часовой стрелки.

Правило моментов для двух сил
\begin M_1=M_2\\[7pt] F_1l_1=F_2l_2 \end

В работе используется лабораторный рычаг с отверстиями диаметром 4 мм, находящимися на расстоянии 5 см друг от друга. Отверстий нечетное количество; центральное отверстие (центр тяжести) используется для подвеса рычага на штативе в положении равновесия. Абсолютную погрешность определения плеча на данном рычаге принимаем равной половине диаметра отверстия $$ \Delta l=\frac D2=2\ \text $$

Для измерения веса груза используется динамометр с ценой деления $$ d=0,1\ \text. $$

Абсолютная погрешность определения веса $$ \Delta_F=\frac d2=0,05\ \text. $$

Относительные погрешности измерений: $$ \delta_l=\frac,\ \ \delta_F=\frac,\ \ \delta_M=\delta_l+\delta_F $$

Абсолютная погрешность определения момента силы $$ \Delta_M=M\cdot \delta_M $$

Приборы и материалы
Лабораторный рычаг, штатив, стержень, динамометр, набор грузов.


Ход работы

1. Закрепите стержень в штативе, наденьте на него рычаг. Если стержень проходит через центральное отверстие рычага, он находится в равновесии.
2. Подвесьте три груза на динамометре, запишите их вес \(F_1\).
3. Подвесьте грузы слева от оси вращения рычага на расстоянии 5 см.
4. С помощью динамометра определите, какую силу нужно приложить на расстоянии 15 см справа от оси вращения, чтобы удерживать рычаг в равновесии.
5. Как направлены в этом случае силы, действующие на рычаг? Запишите длину плеч этих сил.
6. Найдите моменты сил \(M_1\) и \(M_2\), их относительные и абсолютные погрешности.
7. Вычислите отношение сил \(\frac\) и плеч \(\frac\) для этого случая, погрешности их определения.
8. Сделайте выводы.

Результаты измерений и вычислений

\(F_1,\ \text\) \(l_1,\ \text\) \(F_2,\ \text\) \(l_2,\ \text\) \(F_1/F_2\) \(l_2/l_1\)
2,9 5 1,0 15 2,9 3,0

Погрешности прямых измерений: $$ \Delta_l=2\ \text=0,2\ \text,\ \ \Delta_F=0,05\ \text $$ Найдем моменты сил и погрешности вычислений: \begin M_1=F_1\cdot l_1=2,9\cdot 5=14,5\ (\text\cdot \text)\\[7pt] \delta_=\frac+\frac=\frac+\frac\approx 0,04+0,017=0,057=5,7\text \\[7pt] \Delta_=M_1\cdot \delta_=14,5\cdot 0,057\approx 0,8\ (\text\cdot \text)\\[7pt] M_1=(14,5\pm 0,8)\ \text\cdot \text\\[7pt] \\[7pt] M_2=F_2\cdot l_2=1,0\cdot 15=15,0\ (\text\cdot \text)\\[7pt] \delta_=\frac+\frac=\frac+\frac\approx 0,013+0,05=0,063=6,3 \text \\[7pt] \Delta_=M_2\cdot \delta_=15,0\cdot 0,063\approx 0,9\ (\text\cdot \text)\\[7pt] M_2=(15,0\pm 0,9)\ \text\cdot \text \end Таким образом, с учетом вычисленных погрешностей: $$ M_1=M_2 $$

Погрешность вычислений для \(\frac\) \begin \delta_=\frac+\frac=\frac+\frac\approx 0,04+0,013=0,053=5,3\text\\[7pt] \Delta_=\frac\cdot \delta_=3,0\cdot 0,053\approx 0,2\\[7pt] \frac=3,0\pm 0,2 \end Таким образом, с учетом вычисленных погрешностей: $$ \frac=\frac $$

Выводы
На основании проделанной работы можно сделать следующие выводы.

Моменты сил, приложенных слева и справа от оси вращения рычага, равны $$ M_1=(14,5\pm 0,8)\ \text\cdot \text,\ \ M_2=(15,0\pm 0,9)\ \text\cdot \text $$ Таким образом, с учетом вычисленных погрешностей, \(M_1=M_2\) - правило моментов выполняется.

Отношения сил и плечей равны \begin \frac=2,9\pm 0,2,\ \ \frac=3,0\pm 0,2 \end

Таким образом, с учетом вычисленных погрешностей \(\frac=\frac\) - правило отношений выполняется.

Момент силы относительно оси вращения - это физическая величина , которая равна произведению силы на ее плечо.

Момент силы относительно оси вращения - это физическая величина, которая равна произведению силы на ее плечо.

Момент силы вычисляют при помощи формулы:

Статика Момент силы

где F - сила, l — плечо силы.

Плечо силы – это самое короткое расстояние от линии действия силы до оси вращения тела. На рисунке ниже изображено твердое тело, которое может вращаться вокруг оси. Ось вращения этого тела является перпендикулярной к плоскости рисунка и проходит через точку, которая обозначена как буква О. Пле­чом силы Ft здесь оказывается расстояние l, от оси вращения до линии действия силы. Определяют его таким образом. Первым шагом проводят линию действия силы, далее из т. О, через которую проходит ось вращения тела, опускают на линию действия силы перпендикуляр. Длина этого перпендикуляра оказывается плечом данной силы.

Статика Момент силы

Момент силы характеризует вращающее действие силы. Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу необходимо приложить, чтобы получить желаемый результат, то есть один и тот же момент силы (см. рис. выше). Именно поэтому открыть дверь, толкая ее возле петель, намного сложнее, чем берясь за ручку, а гайку отвернуть намного легче длинным, чем коротким гаечным ключом.

За единицу момента силы в СИ принимается момент силы в 1 Н, плечо которой равно 1м — ньютон-метр (Н · м).

Правило моментов.

Твердое тело, которое может вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М1 вращающей его по часовой стрелке, равняется моменту силы М2, которая вращает его против часовой стрелки:

Статика Момент силы

Момент силы принято считать положительным, если тело вращается по часовой стрелке, и от­рицательным, если — против.

Правило моментов есть следствие одной из теорем механики, которая была сформулирована французским ученым П. Вариньоном в 1687 г.

Пара сил.

Если на тело действуют 2 равные и противоположно направленные силы, которые не лежат на одной прямой, то такое тело не находится в равновесии, так как результирующий момент этих сил относительно любой оси не равняется нулю, так как обе силы имеют моменты, направленные в одну сторону. Две такие силы, одновременно действующие на тело, называют парой сил. Если тело закреплено на оси, то под действием пары сил оно будет вращаться. Если пара сил приложена «свободному телу, то оно будет вращаться вокруг оси. проходящей через центр тяжести тела, рисунке б.

Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние l между силами, которое называется плечом пары, независимо от того, на какие отрезки l, и разделяет положение оси плечо пары:

Статика Момент силы

.

Момент нескольких сил, равнодействующая которых равна нулю, будет одинаковым относи­тельно всех осей, параллельных друг другу, поэтому действие всех этих сил на тело можно заме нить действием одной пары сил с тем же моментом.

Читайте также: