Популяционные законы в экологии кратко

Обновлено: 05.07.2024

За более чем 100-летний период разностороннего изучения популяций и сообществ накоплено огромное количество фактов. Среди них - большое число, отражающих случайные или нерегулярные явления и процессы. Но не меньше и таких, которые после их систематизации обнаруживают проявления устойчивого порядка в существовании популяций и их взаимодействии с внешними процессами и явлениями. Отдельные аспекты таких высокоупорядоченных связей, отношений и процессов, отражающих внешнюю и внутреннюю информацию популяций, формализованы в правила и принципы популяционной экологии - "популяционные законы", отмеченные авторством соответственно приоритетам. Н.Ф.Реймерс насчитывает более 20 таких законов, хотя универсальных и несводимых друг к другу среди них не более десятка.

Некоторые из законов действительно являются отражением порядка, предопределяющего устойчивость популяций в экосистемах. Другие же отражают устойчивость динамических характеристик как бы "задним числом".

Правило объединения в популяции (С.С.Четвериков, 1903): индивиды любого вида живого всегда представлены не изолированными отдельностями, а их определенным образом организованными совокупностями. Формулировка правила, данная Реймерсом, не вполне соответствует содержанию явления, охарактеризованного Четвериковым. Популяция как совокупность, как множество формируется не объединением разрозненных особей, а в процессе воспроизводства пространственно дисперсного видового живого вещества.

Правило колебаний численности: никакая популяция не находится в состоянии уравновешенности числа особей; обязательно помимо сезонных изменений численности возникают периодические флуктуации, обусловленные внешними по отношению к популяции факторами, и осцилляциями, связанные с собственными (внутренними) динамическими изменениями популяции. Правило сформулировано на эмпирическом материале и не требует дополнительных пояснений.

Принцип минимального размера популяций. В связи с тем, что любая популяция обладает строго определенной генетической, фенотипической, половозрастной и другой структурой, она не может состоять из меньшего числа индивидов, чем необходимо для стабильной реализации этой структуры и устойчивости популяции к факторам внешней среды. Минимальный размер представляет собой видоспецифичную константу, а часто - популяционно-специфичную. Снижение численности за этот предел ведет к инбридингу, нарушению механизмов воспроизводства, другим структурным и функциональным аномалиям и в итоге - к вымиранию популяции. Восстановление популяции естественным путем возможно от значений численности выше пороговой, а при численности ниже пороговой это возможно лишь искусственным путем и при условии сохранения типичного сообщества, в которое входила популяция.

Правило популяционного максимума Ю.Одума. Основывается не только на логической посылке, но также на сочетании стремления популяционного живого вещества к максимальной экспансии, встречном давлении смежных популяций и распространения условий, в которых существование популяции является не только возможным, но и необходимым. Численно популяционный максимум равен произведению верхней пороговой величины плотности (за которой начинаются процессы, порождаемые ресурсной недостаточностью) и потенциально пригодной для существования популяции среды как комплекса абиотических и биотических факторов. Полагая, что популяция стремится максимально заполнить доступную среду, хотя никогда не достигает видоспецифичного репродуктивного потенциала, в качестве механизма этого популяционного давления выделим Принцип максимального воспроизводства. Его содержательная сторона состоит в том, что любой популяции присуще внутреннее стремление произвести больше потомков, чем допустимо в реальном сообществе. За счет этого создается как бы слабое давление на смежные популяции, позволяющее до предела заполнить среду, занимаемую живым сообществом.

Численность реальных естественных популяций, не испытывающих сильных или устойчивых отрицательных или положительных антропогенных воздействий, колеблется между порогами максимума и минимума и если достигает этих значений, то лишь на короткое время и при нарушении биоценотических механизмов регуляции.

Принцип минимума и правило максимума получают объяснение в теории Х.Г.Андерварты - Л.К.Бирча (1954), а сама эта теория в расширенном толковании может быть представлена как Правило лимитов популяционной численности: диапазон колебаний численности в нормальных условиях не выходит за нижний порог, нарушающий механизмы воспроизводства, и верхний порог, приводящий к истощению доступных ресурсов и условий для размножения. Правило лимитов имеет и другие формулировки (Н.Ф.Реймерс): "Правило количественной константности популяционного населения" и "Правило максимума размера колебаний плотности популяционного населения". Раскрывая содержательную сторону предлагаемых правил, Реймерс обращает внимание на приведенные в работе Ю.Одума примеры характерных для различных животных порядковых значений плотности популяции. Учитывая их, можно несколько расширить толкование "Правила лимитов" добавлением: . при этом существуют видоспецифичные значения уровней пороговых величин плотности популяции.", что делает правило универсальным.

Принцип К.Фридерихса (1927) экосистемной регуляции численности популяции: регуляция численности популяции есть результат комплекса воздействий абиотической и биотической среды в местообитании вида. Реймерс поясняет, что экосистема формирует потенцию роста численности популяции, заложенную генетически, но сама экосистема может в определенных обстоятельствах давать сбои и тогда численность популяции дает вспышки (взрывной рост). С таким комментарием нельзя согласиться полностью. Если мы понимаем экосистему как живую систему некоторого уровня, включающую биотические и абиотические элементы в их разнокачественных состояниях, то определение "нормативного" и "сверхнормативного" минимума и максимума связано с нашими представлениями об устройстве и функционировании экосистемы на основе регулярно повторяющихся явлений и процессов. Но, в случае взрывного роста, популяция, тем не менее, остается частью этой же самой экосистемы, и частью неотделимой. Здесь невозможно абсолютно разделить внутрипопуляционные, межпопуляционные - внутриэкосистемные биотические и внутриэкосистемные абиотические факторы. Поэтому там, где мы находим якобы нарушения экосистемных механизмов регуляции, лежит лишь очередной пороговый переход на более жесткие экосистемные механизмы регуляции, так или иначе приводящие уровень численности популяции к среднеисчисляемым значениям.

Правило пищевой корреляции (В.Уини-Эдвардс): в ходе эволюции сохраняются только те популяции, скорость размножения которых скоррелирована с количеством пищевых ресурсов среды обитания. Это правило представляет частный случай предыдущего и сводимо к нему, поскольку зависимость от пищи - есть лишь один из аспектов зависимости популяции от экосистемы и отражает один из механизмов регуляции численности популяции внешними факторами. Комментируя это правило, Реймерс подчеркивает, что скорость размножения всегда ниже максимально возможной и поэтому популяция всегда имеет запас пищевых ресурсов. Он относит такое явление к эволюционно выработанной преадаптации более низкой плотности популяции, чем допускают наличные кормовые возможности. К сказанному можно добавить, что в пищевых цепях каждое последующее звено в норме "снимает" только избыточную биомассу, продуцируемую предыдущим звеном, оставляя основную производящую часть биомассы. Таким образом, в процессе эволюции должна вырабатываться не односторонняя преадаптация популяции к общему наличному запасу корма, а двусторонняя взаимоадаптация смежных в пищевой цепи популяций, выражающаяся в соответствии избыточно продуцируемой и потребляемой биомассы. Данный вывод имеет непосредственный выход на Правило пирамиды энергий, или Правило 10% Р.Линдемана: с одного трофического уровня экологической пирамиды переходит на другой, более высокий ее уровень, в среднем, около 10% поступившей на предыдущий уровень экологической пирамиды энергии.

Принцип Д.Лэка (1954): среднее количество яиц, откладываемых птицами, эволюционно ограничено возможностями выращивания выведшихся из них птенцов. Этот принцип полностью идентичен по содержанию Правилу пищевой корреляции, но уже его по форме.

Теория Дж.Кристиана - Д.Дейвиса (1950-68) объясняет регуляцию численности популяции социальными механизмами, то есть внутренними механизмами, в которых задействованы эндокринные реакции особей. Частным проявлением этой теории является Правило стрессогенного увеличения надпочечников у высших позвоночных животных: в условиях перенаселенности у них увеличиваются надпочечники, что ведет к повышению агрессивности, снижению репродуктивного потенциала, устойчивости к заболеваниям и другим последствиям. Одновременно данное правило объясняется Теорией общего адаптационного синдрома Г.Селье.

Правило сохранения видовой среды обитания (В.Уини-Эд-вардс, Н.Ф.Реймерс, 1950-е - 1960-е) является суммарным производным от правил популяционного максимума и пищевой корреляции. Его формулировка: - животные в норме не могут абсолютно разрушительно действовать на среду своего обитания, поскольку такое разрушение лишает их собственной основы жизни. В то же время, популяция может осуществлять компенсаторную количественную реакцию на изменения во внешней среде, ослабляя или усиливая воздействие на нее, и тем самым участвуя в экосистемных механизмах ее стабилизации. Содержательно это положение соответствует Принципу А.Николсона.

Для каждого вида характерен свой особенный тип онтогенеза, включающего последовательность различных возрастных и фазовых состояний, жизненных форм. Отдельные видовые популяции, входя в конкретные биогеоценозы, отличающиеся хотя бы по некоторым параметрам, приобретают более или менее явные компенсаторные изменения, которые могут быть выражены и в особенностях строения, и в наличии и длительности отдельных возрастных состояний. Развитие одноименных особей в популяции может проходить синхронно и асинхронно. Среди них, обычно, существует более или менее устойчивое разделение на половые типы с их особенностями онтогенеза и способа жизнедеятельности. Все это создает в популяции некоторую, закономерно изменяющуюся во времени мозаику из определенных половозрастных групп. Отсюда вытекает "Принцип сохранения специфического типа динамики половозрастной структуры популяции".

На известных принципах "территориальности" и "скопления особей", определяющих, с одной стороны, наличие индивидуальных и групповых территорий, а с другой стороны, агрегацию в стаи, стада, колонии, повышающих выживание групп особей по сравнению с одиночными особями, устанавливается более общее Правило топографического, или популяционного кружева ареала. Оно заключается в том, что популяция заселяет пространство неравномерно, оставляя "пустые" места, которые непригодны для ее жизни, и, распадаясь на экологически разнородные микропопуляции, каждая из которых приурочена к определенному местообитанию.

Принцип стабилизации экологических ниш, или Принцип биоценотической коэволюции: эволюция популяций внутри сообщества и эволюция этого сообщества скоррелированы таким образом, что каждый вид устойчиво сохраняет в этой природной системе свое функциональное место (то есть экологическую нишу) до тех пор, пока внешние силы (воздействия надсистем или аналогичных систем) не изменят существующего баланса. Даже небольшое устойчивое в длительности изменение соотношения между (биотическими, абиотическими) элементами вызывает образование "пустот" между частично перекрывающимися эконишами - основы для внедрения или образования новых элементов. В других случаях может происходить разделение емкой экониши на две или более субниши, позволяющее более эффективно и полно использовать имеющиеся экосистемные ресурсы. Это положение известно как Принцип В.Людвига и его можно рассматривать в качестве частного случая "принципа стабилизации".

Под численностью популяции понимают эффективную величину численности, т.е. число размножающихся животных, которое всегда меньше общего числа особей, составляющих популяцию. Численность популяции не произвольна даже при постоянной средней продолжительности жизни, а изменяется в пределах определенного диапазона.

В соответствии с правилом максимума размера колебаний плотности популяционного населения Ю. Одума существуют определенные верхние и нижние пределы для размеров плотности (численности) популяции, которые соблюдаются в природе или которые теоретически могли бы существовать в течение сколь угодно длительного отрезка времени в условиях стабильности среды обитания.

Численность популяций может резко меняться по сезонам и годам. Известно массовое размножение в некоторые годы леммингов (мелких грызунов), саранчи, болезнетворных микробов, божьих коровок. У видов животных и растений с большой продолжительностью жизни и малой плодовитостью численность популяции более устойчива. У насекомых и мелких растений на открытых пространствах она нередко составляет сотни тысяч и миллионы особей. Размеры популяции возрастают в результате иммиграции из соседних популяций и (или) за счет размножения особей. Общая численность и плотность населения популяций регулируется правилом максимальной рождаемости (воспроизводства): в популяции имеется тенденция к образованию теоретически максимально возможного количества новых особей.

К. Фридерихсом (1927) была сформулирована теория биоценотической регуляции численности популяции: регулирование численности популяции есть результат комплекса воздействий абиотической и биотической среды в местообитании вида.

Максимальную рождаемость достигают в идеальных условиях, когда отсутствуют лимитирующие экологические факторы и размножение ограничено лишь физиологическими особенностями вида. Обычно существует экологическая или реализуемая рождаемость, возникающая в обычных или специфических условиях среды.

С другой стороны, размеры популяции уменьшаются в результате эмиграции и (или) смертности таким образом, что

ИЗМЕНЕНИЕ ЧИСЛЕННОСТИ ПОПУЛЯЦИИ = (РОЖДАЕМОСТЬ + ИММИГРАЦИЯ) – (СМЕРТНОСТЬ + ЭМИГРАЦИЯ)

Для стабильных популяций справедливо утверждение, что в них рождаемость уравновешена смертностью. Один из основных факторов, влияющих на размеры популяции, — это процент особей, погибающих до достижения половозрелого возраста.

Число сформулированных биоэкологами популяционных закономерностей очень высоко — до 20, а быть может, значительно больше*. Это понятно — все живые существа так или иначе входят в популяционные объединения. Если эти объединения рассматривать не только как функциональные, но и пространственные образования, т. е. биогеографически, то, пожалуй, число закономерностей возрастет еще больше. Поэтому есть смысл разделить собственно популяционные и биогеографические обобщения.
Кроме того, часть закономерностей, обычно относимых к популяционным, рассмотрены в разделе о функционировании сообществ (3.8) или освещены ранее (разд. 3.4) при разборе эколого-организменных взаимосвязей (например, принцип внезапного усиления патогенности) и взаимодействий в системах организм — среда (разд. 3.5). Вообще разделение подобных групп закономерностей весьма условно: популяция состоит из особей и не существует изолированно от среды; то же утверждение относится к любым другим образованиям с участием живого.
Вероятно, наиболее общим правилом является то, что индивиды любого вида живого всегда представлены не изолированными отдельностями, а их определенным образом организованными совокупностями. Это правило получило имя С. С. Четверикова, сформулировавшего его в 1903 г. Его можно назвать правилом объединения в популяции. В связи с тем, что любая популяция обладает строго определенной генетической, фенотипической, половозрастной и другой структурой, она не может состоять из меньшего числа индивидов, чем необходимо для обеспечения стабильной реализации этой структуры и устойчивости популяции к факторам внешней среды. Именно в этом состоит принцип минимального размера популяций. Такой размер не есть константа для любых видов, он строго специфичен для каждой популяции. Выход за пределы минимума чреват для популяции гибелью: она уже не будет в состоянии самовозобновиться. Однако ее возможно восстановить искусственно, поскольку каждый индивид содержит в себе хотя и обедненное, но все же весьма значительное число генетических задатков вида, к которому он принадлежит.

* Одум Ю. Основы экологии. М.: Мир, 1975. С. 255. ** Асимптота — прямая линия, к которой неограниченно близко стремятся точки некоторой кривой по мере того, как эти точки удаляются в бесконечность; асимптотический — неограниченно приближающийся.




* В более обобщенном виде вопрос о репродуктивных ограничениях сформулирован в виде правила максимальной рождаемости (воспроизводства) — см. ниже этот же раздел. ** Некоторые культуры исторически выработали механизмы самоограничения, например, тибетцы. Был широко распространен инфантицид, особенно девочек. У северных народов эволюционно сниженная плодовитость, но основная масса народов мира не имеет механизмов демографического самоограничения, и регуляция шла главным образом за счет повышенной смертности. При сверхплотном населении городов у женщин не происходит спонтанного рассасывания эмбрионов и других процессов, характерных для животных. Впрочем, и эти процессы не предохраняют многие виды (например, лосей) от сверхразмножения с полным уничтожением кормовой базы. Демографическое регулирование у людей может основываться лишь на специальных мероприятиях. К этому вопросу мы вернемся в последних главах книги.

* Тут следует сослаться на огромное число работ, опубликованных исследователями из морфофизиологической школы С. С. Шварца. Перечислить эти работы нет никакой физической возможности.

* Для социальной агрегации, образования человеческих общностей, а затем и поселений, достигающих в наши дни размера мегаполисов, существуют аналоговые закономерности, рассматриваемые в теории населенных мест, относящейся к экономической и социальной географии. Но первичный толчок и для человека был по происхождению биоэкологическим. Изначальная агрегация людей в группы с социализацией приобрела другие масштабы и стала развиваться по .особым путям. ** Реймерс Н. Ф., Воронов Г. А. Насекомоядные и грызуны верхней Лены. Иркутск: 1963. 191 с.

  • Правило объединения в популяции С. С. Четверикова
  • Принцип минимального размера популяций
  • Закон (правило) популяционного максимума Ю. Одума
  • Теория лимитов популяционной численности, или теория X. Андреварты — Л. Бирча
  • Теория (принцип) биогеоценотической (экосистемной) регуляции численности популяции К. Фридерихса
  • Правило пищевой корреляции В. Уини-Эдвардса Теория (принцип) Д. Лэка
  • Правило стрессогенного увеличения надпочечников Я. Кристиана
  • Теория общего адаптационного синдрома Г. Селье
  • Теория Дж. Кристиана — Д. Дейвиса
  • Правило сохранения видовой среды обитания
  • Правило колебаний (цикличности) численности
  • Правило максимума размеров колебаний плотности популяционного населения, или закон количественной константности популяционного населения
  • Правило максимальной рождаемости (воспроизводства)
  • Правило стабильности половозрастной структуры популяции
  • Принцип территориальности
  • Принцип скопления (агрегации) особей В. Олли
  • Правило топографического, или популяционного, кружева ареала
  • Принцип стабилизации экологической ниши, или принцип биоценотической коэволюции
  • Принцип, или теорема В. Людвига
  • Теория (принцип) А. Николсона

Число сформулированных биоэкологами популяционных закономерностей очень высоко — до 20, а быть может, значительно больше*. Это понятно — все живые существа так или иначе входят в популяционные объединения. Если эти объединения рассматривать не только как функциональные, но и пространственные образования, т. е. биогеографически, то, пожалуй, число закономерностей возрастет еще больше. Поэтому есть смысл разделить собственно популяционные и биогеографические обобщения.
Кроме того, часть закономерностей, обычно относимых к популяционным, рассмотрены в разделе о функционировании сообществ (3.8) или освещены ранее (разд. 3.4) при разборе эколого-организменных взаимосвязей (например, принцип внезапного усиления патогенности) и взаимодействий в системах организм — среда (разд. 3.5). Вообще разделение подобных групп закономерностей весьма условно: популяция состоит из особей и не существует изолированно от среды; то же утверждение относится к любым другим образованиям с участием живого.
Вероятно, наиболее общим правилом является то, что индивиды любого вида живого всегда представлены не изолированными отдельностями, а их определенным образом организованными совокупностями. Это правило получило имя С. С. Четверикова, сформулировавшего его в 1903 г. Его можно назвать правилом объединения в популяции. В связи с тем, что любая популяция обладает строго определенной генетической, фенотипической, половозрастной и другой структурой, она не может состоять из меньшего числа индивидов, чем необходимо для обеспечения стабильной реализации этой структуры и устойчивости популяции к факторам внешней среды. Именно в этом состоит принцип минимального размера популяций. Такой размер не есть константа для любых видов, он строго специфичен для каждой популяции. Выход за пределы минимума чреват для популяции гибелью: она уже не будет в состоянии самовозобновиться. Однако ее возможно восстановить искусственно, поскольку каждый индивид содержит в себе хотя и обедненное, но все же весьма значительное число генетических задатков вида, к которому он принадлежит.

* Одум Ю. Основы экологии. М.: Мир, 1975. С. 255. ** Асимптота — прямая линия, к которой неограниченно близко стремятся точки некоторой кривой по мере того, как эти точки удаляются в бесконечность; асимптотический — неограниченно приближающийся.

* В более обобщенном виде вопрос о репродуктивных ограничениях сформулирован в виде правила максимальной рождаемости (воспроизводства) — см. ниже этот же раздел. ** Некоторые культуры исторически выработали механизмы самоограничения, например, тибетцы. Был широко распространен инфантицид, особенно девочек. У северных народов эволюционно сниженная плодовитость, но основная масса народов мира не имеет механизмов демографического самоограничения, и регуляция шла главным образом за счет повышенной смертности. При сверхплотном населении городов у женщин не происходит спонтанного рассасывания эмбрионов и других процессов, характерных для животных. Впрочем, и эти процессы не предохраняют многие виды (например, лосей) от сверхразмножения с полным уничтожением кормовой базы. Демографическое регулирование у людей может основываться лишь на специальных мероприятиях. К этому вопросу мы вернемся в последних главах книги.

* Тут следует сослаться на огромное число работ, опубликованных исследователями из морфофизиологической школы С. С. Шварца. Перечислить эти работы нет никакой физической возможности.

* Для социальной агрегации, образования человеческих общностей, а затем и поселений, достигающих в наши дни размера мегаполисов, существуют аналоговые закономерности, рассматриваемые в теории населенных мест, относящейся к экономической и социальной географии. Но первичный толчок и для человека был по происхождению биоэкологическим. Изначальная агрегация людей в группы с социализацией приобрела другие масштабы и стала развиваться по .особым путям. ** Реймерс Н. Ф., Воронов Г. А. Насекомоядные и грызуны верхней Лены. Иркутск: 1963. 191 с.

Популяцией в экологии называют группу особей одного вида, находящихся во взаимодействии между собой и совместно населяющих общую территорию.

Члены одной популяции оказывают друг на друга не меньшее воздействие, чем физические факторы среды или другие обитающие совместно виды организмов. В популяциях проявляются в той или иной степени все формы связей, характерные для межвидовых отношений, но наиболее ярко выражены мутуалистические (взаимно полезные) и конкурентные. Специфические внутривидовые взаимосвязи– это отношения, связанные с воспроизводством: между особями разных полов и между родительским и дочерним поколениями.

При половом размножении обмен генами превращает популяцию в относительно целостную генетическую систему. Если перекрестное оплодотворение отсутствует и преобладает вегетативное, партеногенетическое или другие способы размножения, генетические связи слабее и популяция представляет собой систему клонов, или чистых линий, совместно использующих среду. Такие популяции объединены в основном экологическими связями. Во всех случаях в популяциях действуют законы, позволяющие таким образом использовать ограниченные ресурсы среды, чтобы обеспечить оставление потомства. Достигается это в основном через количественные изменения населения. Популяции многих видов обладают свойствами, позволяющими им регулировать свою численность.

Поддержание оптимальной в данных условиях численности называют гомеостазом популяции. Гомеостатические возможности популяций по-разному выражены у различных видов. Осуществляются они также через взаимоотношения особей.

Таким образом, популяции, как групповые объединения, обладают рядом специфических свойств, которые не присущи каждой отдельно взятой особи.

Основные характеристики популяций:

1) численность– общее количество особей на выделяемой территории;

2) плотность популяции – среднее число особей на единицу площади или объема занимаемого популяцией пространства; плотность популяции можно выражать также через массу членов популяции в единице пространства;

3) рождаемость– число новых особей, появившихся за единицу времени в результате размножения;

4) смертность – показатель, отражающий количество погибших в популяции особей за определенный отрезок времени;

5) прирост популяции– разница между рождаемостью и смертностью; прирост может быть как положительным, так и отрицательным;

6) темп роста – средний прирост за единицу времени.

Популяции свойственна определенная организация. Распределение особей по территории, соотношения групп по полу, возрасту, морфологическим, физиологическим, поведенческим и генетическим особенностям отражают структуру популяции. Она формируется, с одной стороны, на основе общих биологических свойств вида, а с другой – под влиянием абиотических факторов среды и популяций других видов. Структура популяций имеет, следовательно, приспособительный характер. Разные популяции одного вида обладают как сходными особенностями структуры, так и отличительными, характеризующими специфику экологических условий в местах их обитания.

Таким образом, кроме адаптивных возможностей отдельных особей, население вида на определенной территории характеризуется еще и приспособительными чертами групповой организации, которые являются свойствами популяции как надиндивидуальной системы. Адаптивные возможности вида в целом как системы популяций значительно шире приспособительных особенностей каждой конкретной особи.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

2.5. Основной закон экологии

2.5. Основной закон экологии Одним из главных достижений экологии стало открытие, что развиваются не только организмы и виды, но и экосистемы. Последовательность сообществ, сменяющих друг друга в данном районе, называется сукцессией. Сукцессия происходит в результате

14 Популяции

14 Популяции Плодитесь и размножайтесь, и наполняйте землю, и обладайте ею, и владычествуйте над рыбами морскими, и над птицами небесными, и над всяким животным, пресмыкающимся по земле. Бытие Хотя голод и болезни — эти извечные враги человечества — косили людей с

Растущие популяции

Растущие популяции Если мы рассмотрим теперь влияние рождаемости и смертности на численность населения, то обнаружим любопытную тенденцию: население земного шара постоянно увеличивается. При сохранении современных темпов роста к 1980 г. население Земли достигнет 4

Уменьшающиеся популяции?

Популяции будущего

Популяции будущего Каждую популяцию можно рассматривать как состояние в ряду изменений, зависящих от соотношения между собою рождаемости и смертности. Поэтому демографическая политика страны должна строиться с учетом состояния в данное время возможных изменений в

Глава 8. ПОПУЛЯЦИИ

8.6.6. Математическое моделирование в экологии

8.6.6. Математическое моделирование в экологии Надорганизменные системы, которые изучает экология – популяции, биоценозы, экосистемы, – чрезвычайно сложны. В них возникает множество взаимосвязей, сила и постоянство которых непрерывно меняются. Одни и те же внешние

8.3. Законы экологии и их следствия

8.3. Законы экологии и их следствия Огромное биоразнообразие флоры и фауны, которое сохраняется на протяжении многих веков было бы немыслимо без его подчинения законам экологии. Как известно, законом называют наличие внутренней причинно-устойчивой связи между явлениями

МАСШТАБ В ЭКОЛОГИИ

МАСШТАБ В ЭКОЛОГИИ Много различных экологических процессов действует в рамках гораздо большей (или меньшей) пространственной и временной шкалы, чем та, которая привычна для нашего восприятия. Пространство в экологии измеряется величинами от микроскопических до

МОДЕЛИ В ЭКОЛОГИИ

МОДЕЛИ В ЭКОЛОГИИ Роль моделей в экологии всегда была спорным вопросом. Приверженцы моделей утверждают, что без теоретического обоснования экологи обречены собирать разрозненную информацию, они не способны связать ее воедино и осознать общую картину. Практики же

ОБОБЩЕНИЯ В ЭКОЛОГИИ

ОБОБЩЕНИЯ В ЭКОЛОГИИ Любая наука ищет в многообразии окружающего мира какие — то закономерности и объяснение этих закономерностей. В экологии тоже актуален вопрос о том, насколько реально выделить общие закономерности и до какой степени правомерно применять теории,

РЕГУЛИРОВАНИЕ ЧИСЛЕННОСТИ ПОПУЛЯЦИИ

РЕГУЛИРОВАНИЕ ЧИСЛЕННОСТИ ПОПУЛЯЦИИ Некоторые популяции демонстрируют удивительное постоянство численности в течение долгих периодов, численность других же колеблется довольно сильно. Но при этом они не вымирают и не размножаются беспредельно, несмотря на все

РОСТ ПОПУЛЯЦИИ

РОСТ ПОПУЛЯЦИИ В каком-то из изданий было сказано, что если бы человеческая популяция продолжала расти с нынешней скоростью, то через 200 лет огромная масса людей устремилась бы в космос со скоростью света. Этого, конечно, не произойдет; это всего лишь шутка, показывающая,

Соотношение полов в популяции

Соотношение полов в популяции Как показывают исследования зоологов, для большинства видов животных типичным является соотношение самцов и самок в популяции близкое 1:1. В норме у человека на 100 новорожденных девочек приходится 106 мальчиков. Так что и у человека

Основные экологические законы существования организмов и популяций.docx

Основные экологические законы существования организмов и популяций.

Популяцией называют группу особей одного вида, обладающих способностью свободно скрещиваться и неограниченно долго поддерживать свое существование в данном местообитании.

Устойчивое существование различных видов животных и растений требует наличия определенных экологических условий и подходящих ресурсов. При перемещении организма из одной местности в другую условия и ресурсы могут меняться, причем несогласованно. Некоторые факторы могут меняться плавно (например, температура при продвижении с юга на север), вовсе не меняться (например, содержание диоксида углерода в воздухе) или меняться вдруг, скачкообразно (как это, например, происходит с изменениями состава и структуры почв).

Границы между популяциями могут быть четкими у видов, заселяющих острова или водоемы, либо размытыми у видов, имеющих широкое географическое распространение и обитающих в наземно-воздушной среде.

Важнейшее свойство популяций — самовоспроизводств о. Даже несмотря на пространственную разобщенность, популяции способны неограниченно долго поддерживать свое существование в данном местообитании. Они являются устойчивыми во времени и пространстве группировками особей одного вида.

Популяции, обитающие на различных участках видового ареала (общей области распространения вида), не живут изолированно. Они взаимодействуют с популяциями других видов, образуя вместе с ними биотические сообщества — целостные системы еще более высокого уровня организации. В каждом сообществе какая-либо популяция играет отведенную ей роль, занимая определенную экологическую нишу и совместно с популяциями других видов обеспечивая его устойчивое функционирование.

Популяции обладают не только биологическими свойствами составляющих их организмов, но и собственными, которые присущи только группе особей в целом.

Составляющие популяцию организмы связаны друг с другом различными взаимоотношениями: они совместно участвуют в размножении, могут конкурировать друг с другом за те или иные виды ресурсов, поедать друг друга или вместе обороняться от хищников. Внутренние взаимоотношения в популяциях очень сложны. Поэтому реакции отдельных особей на изменения тех или иных экологических факторов и по-пуляционные реакции часто не совпадают. Гибель отдельных организмов (например, от хищников) может улучшить качественный состав популяции, повысить ее способность к самоподдержанию численности (подробнее — в главе 3).

Такие популяционные характеристики, как обилие, рождаемость, смертность, возрастной состав, называются демографическими показателями. Их знание очень важно для понимания законов, управляющих жизнью популяций, и предугадывания происходящих в них постоянных изменений. Изучение демографических показателей имеет большое практическое значение.

Наилучшим образом популяцию как группу организмов характеризует обилие. Мерой обилия может быть общая численность организмов в популяции или их общая биомасса. Однако измерение этих показателей применительно ко многим животным связано с большими трудностями.

При оценке популяционного обилия наиболее часто используется такой показатель, как плотность, — это численность, или биомасса, особей, приходящаяся на единицу площади или объема жизненного пространства. Примерами плотности популяции могут быть: 500 деревьев на 1 га леса; 5 млн экз. хлореллы на 1 м воды; 200 кг рыбы на 1 га поверхности водоема.

Мерой обилия могут также являться и показатели, отнесенные не к единице пространства, а к единице времени, например, число птиц, отмеченных в течение часа, или число рыб, выловленных за сутки. По сути, эти показатели отличаются от плотности лишь размерностью. И те и другие являются относительными показателями и называются индексами численности.

Плотности популяций, например, разных представителей млекопитающих, могут различаться в десятки тысяч раз. В целом, чем более удалена популяция от первичного источника органической пищи, тем ниже ее плотность.

Рождаемость и смертность

Рождаемость — это показатель, характеризующий скорость увеличения численности популяции в результате размножения, или просто скорость размножения. Как и любой показатель скорости, он имеет временную размерность. Так, если среднемесячный приплод популяции полевки составляет 100 особей, то месячная рождаемость также составит 100 особей в месяц, а летняя (за 3 летних месяца) — 300 особей.

Таким образом, рождаемость — число новых особей (также яиц, семян), родившихся (вылупившихся, отложенных) популяцией за определенный промежуток времени.

Рождаемость можно выразить в относительных показателях, например, измерять ее числом народившихся за единицу времени особей, отнесенных к общей численности популяции в начале сезона размножения. Если общая численность популяции полевок к началу лета составляла 1000 особей, то относительная, или удельная, рождаемость за 1 месяц составит 100/1000 = 0,1, или 10%, а за сезон — 300/1000 = 0,3, или 30%.

Удельные показатели полезны для сравнения между собой рождаемости в популяциях разной численности. Они более точно характеризуют интенсивность процессов размножения организмов.

Когда жизнь популяции протекает в благоприятных условиях, рождаемость повышается, достигая максимума. Величина максимальной рождаемости определяется лишь числом самок в популяции и их способностью производить определенное число детенышей в единицу времени (то есть физиологической плодовитостью).

Обычно рождаемость ниже максимальной и соответствует сложившимся экологическим условиям и называется экологической.

Экологическая рождаемость дает представление о скорости размножения популяции при фактически сложившихся условиях жизни. В общем, для видов, которые не заботятся о потомстве, характерна высокая потенциальная и низкая экологическая рождаемость. Например, взрослая самка трески выметывает миллионы икринок, из которых в среднем доживают до взрослого состояния лишь 2 особи.

Смертность — это показатель, характеризующий скорость процесса снижения численности популяции. Так, если прослеживать судьбу некоторой группы особей, родившихся в одно и то же время, легко обнаружить, что их численность в течение жизни непрерывно снижается в результате отмирания части особей.

Смертность организмов проявляется даже тогда, когда условия жизни вполне благоприятны. В этих случаях говорят о минимальной смертности, природа которой связана с дефектами физиологического развития, приводящими к гибели отдельных организмов. В конкретных экологических условиях смертность, как правило, выше минимального уровня, так как под влиянием внешних факторов (хищничества, отсутствия достаточного количества пищи, загрязненности среды и других) создаются дополнительные причины гибели организмов.

У большинства организмов интенсивность смертности меняется в течение жизни. Обычно она высока на ранних стадиях развития, затем снижается и вновь возрастает к старости.

Как и рождаемость, смертность оказывает большое влияние на численность популяции и изменение ее хода. При одной и той же рождаемости чем выше смертность, тем ниже численность популяции, и наоборот. Кроме того, смертность влияет на продолжительность жизни организмов в популяции и тем самым на ее возрастной состав.

Обратимся к простому примеру и проследим за изменением продолжительности жизни группы особей общим числом 1000, появившихся на свет в одно и то же время. Рассмотрим два случая: в первом смертность составляет 50% в год, во втором — 70%. В первом случае изменения численности нашей группы по мере увеличения возраста особей будут выражаться следующими величинами: 1-й год — 1000, 2-й — 1000 х (1 - 0,5) = 500, 3-й — 500 х (1 - 0,5) = 250, 4-й — 250 х (1 - 0,5) = 125 и т. д.

Если полученные по таблице данные представить графически, можно получить кривые выживания, характеризующие возрастные изменения численности рассматриваемой группы. Кривые выживания подразделяются на три общих типа.

Сильно выпуклая кривая характерна для видов, у которых смертность резко повышается лишь к концу жизни, а до этого она остается низкой. Этот тип кривой характерен для многих видов крупных животных и, конечно, для человека.

Другой тип — сильно вогнутая кривая. Она получается, если смертность очень высока на ранних стадиях жизни. Хорошей иллюстрацией этого типа служат устрицы или другие двустворчатые моллюски, а также рыбы, дубы. Смертность очень велика у свободно плавающих личинок моллюсков и прорастающих желудей, но как только особи хорошо приживаются на подходящем субстрате, их смертность резко снижается.

К промежуточному типу относятся кривые выживания таких видов, у которых смертность мало изменяется с возрастом и остается более или менее одинаковой в течение всей жизни данной группы.

Форма кривой выживания связана со степенью заботы о потомстве и другими способами защиты молоди. Так, кривые выживания пчел и дроздов (которые заботятся о потомстве) значительно менее вогнуты, чем у кузнечиков или сардин (которые не заботятся о потомстве). Отсутствие заботы о потомстве у рыб или других животных компенсируется значительно большим числом откладываемых яиц.

Читайте также: