Понятие микроанализа и микроструктуры материалов кратко

Обновлено: 05.07.2024

Микроструктура – структура материала, выявленная методом микро структурного анализа (микроанализа). Микроанализ – способ изучения структуры материала с помощью металлографического микроскопа при увеличении до 3000 раз. Микроструктура показывает размер, форму и характер взаимного расположения фаз в металлах и сплавах. Фаза – однородная часть металла или сплава, имеющая одинаковый состав, строение, свойства, агрегатное состояние и отделённая от других частей поверхностью раздела. Микроанализ осуществляется на микрошлифах в режиме качественной и количественной оценок структуры металлов и сплавов.

При изучении микрошлифов решаются следующие задачи:

- выявление формы и определение величины зерна металлов и сплавов;

- определение загрязнённости металлов и сплавов неметаллическими включениями;

- выявление фазового состава и тонкой структуры металлов и сплавов в литом и деформированном состояниях, после различных видов термической и химико-термической обработки;

- выявление несплошностей металла в виде микропористости, микротрещин, раковин и т.д.;

- определение типа (иногда и марки) материала.

Методика подготовки микрошлифов включает следующие операции:

1. Вырезка образца в необходимом месте предпочтительно методом холодной механической обработки или отбор в качестве образца детали малых размеров. В качестве образцов обычно используются кубик с ребром 10 мм или цилиндр диаметром и высотой 10мм. В случае изготовления микрошлифов из очень мелких деталей (проволока, осколки) их зажимают в специальных струбцинах или запрессовывают в пластмассу.

2. Шлифование микрошлифа производится для удаления грубых рисок, оставшихся после вырезки образца. Шлифование производится с изменением направления движения образца на 90о на шлифовальной бумаге методом последовательного перехода от бумаг с большим к бумагам с меньшим зерном. Для удаления остатков абразива шлифы промывают водой и высушивают фильтровальной бумагой.

3. Полирование микрошлифа производится для окончательного удаления рисок и других мелких дефектов поверхности механическим, химико-механическим и электрохимическим способами. Наилучшие результаты даёт электрохимическая полировка, которая позволяет полностью избежать искажений структуры в поверхностном слое (слой Билби), появляющихся пришлифовке и механической полировке. Однако наибольшее распространение в практике получил механический способ полирования на полировальном круге, обтянутом фетром или сукном. Для полировки черных металлов наибольшее распространение получила паста ГОИ, в которой в качестве абразива используется окись хрома. Полирование на круге, вращающемся со скоростью порядка 600 мин-1, завершается получением зеркально гладкой поверхности при отсутствии видимых под микроскопом рисок и царапин. Отполированная поверхность промывается проточной водой, затем спиртом и сушится фильтровальной бумагой;

4. Травление микрошлифов необходимо для выявления структурных составляющих материала. Для выявления структуры необходимо создать рельеф поверхности и окрасить в различные цвета структурные составляющих материала. Поставленная цель достигается методами химического, электролитического, теплового, окислительного травления. Наибольшее распространение получил метод химического травления, который можно рассматривать как процесс электрохимической коррозии. Ввиду различной коррозионной стойкости фаз металла, границ зерен, анизотропных составляющих при травлении создаётся микрорельеф металла, состоящий из плоских участков металла и впадин.

Вследствие интерференции света впадины под микроскопом будут темными, а плоские участки микрошлифа – светлыми (pиc. 2.2).

Рис. 2.2. Схема отражения лучей от плоскости зерен и их границ

Технология травления включает: обработку полированной поверхности микрошлифа в реактиве до получения слегка матового оттенка, промывании водой, затем спиртом и сушку фильтровальной бумагой. В зависимости от химического состава материала, вида предшествующей обработки и цели исследования чаще всего используются реактивы в виде слабых водных или спиртовых растворов кислот и щелочей, а также смеси различных кислот. Составы наиболее распространенных реактивов представлены в таблице 2.2.

При качественном микроанализе исследование микрошлифа начинается сразу после полирования, т.е. в "натравленном" виде. В этом случае определяются качество приготовления шлифа, несплошности металла в виде микропористости, микротрещины, неметаллические включения в виде сульфидов, оксидов и т.д. На микрошлифе дефекты сплошности имеют темный цвет, неметаллическим включениям соответствуют темные участки или участки отличающиеся по цвету от светлого поля шлифа.

Более полное изучение структуры материала производится на микрошлифах после травления. В этом случае выявляются границы зерен, фазовое строение, характер предшествующей обработки, вид металлов и сплавов. На рис. 2.3. приведены микроструктуры отдельных сплавов и примеры их условных зарисовок.

Рис. 2.3. Микроструктура сплава (вверху) и ее условная зарисовка (внизу)

а – феррит(Ф) + перлит (П) (доэвтектоидная сталь);

б – перлит (эвтектоидная сталь); в – перлит + цементит (Ц) (заэвтектоидная сталь)

Величина зерна определяется следующими методами:

- визуального сравнения видимых под микроскопом зерен с эталонными шкалами;

- подсчета количества зерен, приходящихся на единицу поверхности шлифа;

- подсчета пересечений границ зерен отрезками прямых;

- измерения длин хорд. В методе визуального сравнения зерна с эталонными шкалами устанавливается полезное увеличение микроскопа 100х (допускаются увеличения 90-105х), просматривается вся площадь шлифа и несколько типичных мест сравниваются с эталонными шкалами, приведенными на рис.2 .4.

Рис. 2.4. Эталонная шкала для определения величины зерна:

1-8 – номер зерна; х100х

За однородную структуру принимается структура, соответствующая одному из эталонов шкалы, например, G2. Разнозернистой считается структура, в которой имеются зерна, отличающиеся от преобладающей структуры более чем на один номер и занимающие на шлифе площадь более 10 %. Такая структура оценивается двумя и более номерами, которые записываются в порядке уменьшения занимаемых ими площадей, например, G2, G4, G5.

Условно принято считать, что стали с зерном от первого до пятого номера относятся к крупнозернистым, с более высоким номером – к мелкозернистым. Метод визуального сравнения с эталонными шкалами широко используется для рядовых исследований в заводских лабораториях, при приемо-сдаточных испытаниях, выборе режимов термической обработки и т.д.

Для определения величины зерна в разнозернистой структуре используется метод измерения длин хорд-отрезков, отсекаемых в зернах прямыми линиями.

Поскольку осуществляется случайная выборка массива зерен из генеральной совокупности, в расчете используется исправленное выборочное среднеквадратичное отклонение. Чем меньше s, тем более однородная структура по размеру зерна.

Коэффициент вариации (d) характеризует рассеивание среднего условного диаметра и позволяет в первом приближении выбрать теоретический закон распределения случайной величины (зерна)

Под микроанализом понимают изучение строения металлов и сплавов с помощью металлографического микроскопа при увеличении в 50-2000 раз. Внутреннее строение, изучаемое при помощи мик­роскопа, называют микроструктурой или структурой.

При помощи микроанализа определяют:

1. Форму и размер кристаллических зерен, из которых состоят металлы и сплавы.

2. Изменение внутреннего строения сплава, происходящее под влиянием различных режимов термической и химической обработки, а также после внешних механических воздействий на сплав.

3. Микродефекты металла: микротрещины, раковины и т. д.

4. Неметаллические включения: сульфиды, окислы и др. Микроанализ включает приготовление микрошлифов и исследова­ние их с помощью металлографического микроскопа.

Методика приготовления микрошлифов. Микрошлифом называют образец металла или сплава, поверхность которого подготовлена для микроанализа.

При исследовании микроструктуры крупногабаритной детали из нее вырезают образец. Место вырезки образца зависит от цели ис­следования и формы детали. Удобными являются цилиндрические образцы с диаметром и высо­той по 10-12 мм (рис. 1а, б) или прямоугольные примерно тех же размеров. Образцы небольшого сечения (проволока, листы и др.) монтируют заливкой в специальные оправки или закрепляют в за­жимах (рис. 1в, г).

Поверхность образца, предназначенную для микроанализа, сна­чала выравнивают с помощью, например, наждачного точила, затем шлифуют и полируют.


Рисунок 1 – Металлографические образцы (а, б) и приспособления для монтирования образцов малого размера (в, г)

Шлифование поверхности образца. Шлифование поверхности об­разца производят на шлифовальной (наждачной) шкурке с зернами различных размеров (номеров) вручную на толстом стекле или с по­мощью специальных шлифовальных машин. Шлифование начинают на шкурке с более крупным абразивным зерном, затем постепенно переходят на шкурку с более мелким. Каждый раз при переходе к шкурке с более мелким зерном поверх­ность образца протирают салфеткой (или промывают), образец поворачи­вают на 90°, чтобы риски от предыдущего шлифования располагались перпендикулярно, и шлифуют до полного исчезновения рисок, полу­ченных от предыдущего шлифования. Нельзя переходить с крупнозернистой шлифовальной шкурки сра­зу на мелкозернистую, а также сильно нажимать на образец для ус­корения работы. Это не позволит получить шлиф хорошего качества и вызовет заметный нагрев шлифуемой поверхности, а также внедрение абразивных зерен в металл.

Полирование поверхности образца. Полирование проводят меха­ническим (химико-механическим) и электролитическим способами. Цель полирования – удалить риски после шлифования и получить блестя­щую зеркальную поверхность образца.

Механическое полирование производят на специальном полиро­вальном станке с вращающимся кругом, обтянутым сукном или фет­ром. При отсутствии полировочного станка полирование производят на толстом стекле, также обтянутом сукном или фетром. На сукно наносят тонкий слой пасты ГОИ; иногда сукно смачивают. Кроме пасты ГОИ возможно использование различных полировальных соста­вов. К вращающемуся кругу с сукном прижимают отшлифованную по­верхность образца и в процессе полирования образец поворачивают. Полируют до полного исчезновения рисок и получения зеркальной поверхности. Контролируют качество поверхности путем просмотра ее в металлографический микроскоп при небольшом (50. 100 раз) увеличении.

После полирования образец промывают водой; полированную по­верхность протирают салфеткой, смоченной спиртом, а затем просушива­ют прикладыванием фильтровальной бумаги.

Травление поверхности образца. По зеркальной поверхности об­разца после полирования нельзя судить о строении сплава. Только неметаллические включения (сульфиды, окислы, графит и т.д.), вследствие их окрашенности в различные цвета, резко выделяются на светлом фоне полированного микрошлифа. В связи с этим, для выявления микроструктуры полированную поверхность образца подвергают травлению, т. е. действию раство­ров кислот, щелочей, солей. При травлении неоднородные участки металла или сплава становятся видимыми под микроскопом.

Сущность процесса выявления структуры металлов и сплавов травлением заключается в различной степени растворения или окрашивания от­дельных структурных составляющих: зерен, твердых раст­воров, химических соединений.

Травление шлифа производят либо путем смачивания его травителем с помощью пипетки или ватки, смоченной в травителе, либо путем погружения полированной поверхности в травитель, налитый в фарфоровую чашечку. Продолжительность травления обычно состав­ляет несколько секунд.

Признаком протравливания является потускнение поверхности. После травления микрошлиф промывают водой, протирают ватой, смо­ченной спиртом, а затем просушивают прикладыванием фильтровальной бумаги, или слегка протирая сухой ватой. Качество травления кон­тролируют с помощью микроскопа. Если структура недостаточно вы­явлена, то микрошлиф травят повто­рно. Если структура получается слишком темная и разъеденная, то шлиф перетравлен; тогда его нужно снова полировать и травить.

Состав травителя зависит от материала образца и задачи исс­ледования. В таблице 1 представлены некоторые травители, применяе­мые при микроанализе углеродистых сталей и чугунов.

Таблица 1 – Травители, применяе­мые при микроанализе углеродистых сталей и чугунов

№ п/п Состав реактива Назначение
Раствор НNО3 (1. 5 мл) в этиловом спирте (100 мл) Для выявления перлита, границ зерен феррита, структуры мартенсита и троостита
Раствор НС1 (3 мл) или пикриновой кислоты (4 г) в воде (100 мл) Выявляет границы зерен в закаленной стали
3. Раствор пикриновой кислоты (4 г) в эти- ловом спирте (100 мл) Для выявления азотированного и цементированного слоя

Работа на металлографических микроскопах МИМ-7 и МИМ-8. Прежде чем приступить к работе на микроскопе, необходимо сначала ознакомиться с его оптической системой (по плакату) и конструкцией.

Конструкция микроскопа МИМ-7. Микроскоп МИМ-7 состоит из осветителя I, корпуса II и верхней части III (рис. 2). Осветитель соде­ржит фонарь 1, внутри кожуха которого нахо­дится лампа и центро­вочные винты 2, служа­щие для совмещения центра нити лампы с оптической осью кол­лектора.


Рисунок 2 – Металлографический микроскоп МИМ-7

Корпус микроско­па содержит узел апертурной диафрагмы, укрепленной под оправой осветительной лупы 3 и систему, позволяющую производить фотографи­рование микрострукту­ры на фотопластинку, помещенную в посадочное устройство 4. Верхняя часть микроскопа включает в себя: иллюминаторный тубус 5, в верхней части которого устанавливается объектив 6; визуальный тубус 7, в отверстие которого вставляется окуляр 8. Предметный столик 9 можно перемещать при помощи винтов 10 в двух взаимно перпендикулярных направлениях. В центре предметного сто­лика имеется отверстие для наблюдения микрошлифа. Макрометрический винт 11 служит для перемещения предметного столика 9 в вер­тикальном направлении и этим производится грубая наводка на фо­кус. Положение предметного столика, исключающее самопроизвольное его опускание, фиксируется специальным зажимным винтом, располо­женным на левой верхней части микроскопа (на рис. 2 не показа­но), Микрометрический винт 12 служит для перемещения объектива в вертикальном направлении и точной наводки на фокус.

Микроскоп МИМ-8 имеет аналогичное строение, однако системы подсветки и фотографирования у него расположены горизонтально.

Качество микроскопа характеризуется его разрешающей способностью. Разрешающая способность оптической системы обратно пропорциональна наименьшему расстоянию d между двумя точками, изображение которых в микроскопе получается раздельно:

где l – длина волны применяемого света;

А – числовая апертура объектива;

А = n . sinj, j – отверсный угол линзы.

Таким образом, разрешающая способность тем больше, чем меньше длина волны l и чем больше апертура.

Применение видимых лучей света позволяет получить разрешение не более 0,2 мкм и полезное увеличение не более чем в 2000 раз. Поэтому для больших увеличений применяются лучи с очень малой длиной волны. Например, в электронном микроскопе – электронный луч, дающий полезное увеличение в сотни тысяч раз.

Полезным считается увеличение микроскопа, превышение которого не приводит к получению дополнительной деформации. Увеличение металлографического микроскопа определяется как произведение увеличения объектива и окуляра.

Визуальное наблюдение микроструктуры.

1. Выбрать увеличение микроскопа (объектив и окуляр), пользуясь данными таблицы 3.2. Начинать надо с меньших увеличений, переходя к большим.

2. В отверстие визуального тубуса 7 (рис. 2) вставить окуляр 8.

3. Вращением макрометрического винта 11 поднять предметный столик 9 и вставить объектив 6 в посадочное отверстие, располо­женное в верхней части иллюминаторного тубуса 5. Предметный сто­лик опустить.

4. При помощи винтов 10 установить предметный столик 9 в таком положении, чтобы объектив был в центре отверстия предметного столика.

5. Поместить шлиф полированной и протравленной поверхностью вниз на предметный столик 9 над объективом 6 (шлиф должен быть просушен).

6. Наблюдая в окуляр 8, вращением макрометрического винта 11 произвести грубую наводку на фокус. Закрепить предметный столик в установленном положении зажимным винтом.

7. Наблюдая в окуляр 8, вращением макрометрического винта 12 произвести точную наводку на фокус.

8. Наблюдая в окуляр 8, при помощи винтов 10 передвигать предметный столик 9 и просматривать структуру в разных местах шлифа (водить шлифом по предметному столику нельзя).

Таблица 2 – Таблица увеличений микроскопов МИМ-7 и МИМ-8

Объективы Окуляры
8,6 (F = 23,20; A = 0,17) 14,4 (F = 13,89; A = 0,30) 24,5 (F = 8,16; A = 0,37) 32,5 (F = 6,16; A = 0,65)

Задание

1. Изучить устройство и принцип работы металлографического микроскопа МИМ-7.

2. Кратко описать методику приготовления микрошлифа.

3. Исследовать микроструктуру металлов и сплавов до и после травления.

4. Зарисовать наблюдаемую микроструктуру.

5. Написать отчет по работе в соответствии с пунктами 2, 4.

Контрольные вопросы

1. Что является объектом микроанализа?

2. Что называют микроанализом, микроструктурой, микрошлифом?

3. Каково назначение микроанализа?

4. Какова методика приготовления микрошлифа?

5. Для чего производят травление микрошлифа?

6. Приведите примеры травителей, используемых для выявления микроструктуры?

Иногда эти понятия путают. Бывает, что за макроструктуру принимают, например, крупнокристаллическую структуру, сформированную литьем. На рисунке 1 показана такая структура, полученная направленной кристаллизацией. Но это не макроструктура. Это просто крупные зерна, т.е. фактически это микроструктура. Размер таких зерен 1000 мкм и более. Микроструктура того же образца, зафиксированная через металлографический микроскоп, показана на рисунке 2. Размер зерен тот, же и у структуры на рисунке 1. Т.е., в данном случае нельзя говорить о макроструктуре. На рисунках 1 и 2 есть только микроструктура, зафиксированная разными способами.

Литая медь; непрерывное литье

Рисунок 1. Структура литой меди; фото сделано цифровым ф/а, х3,6

Медь литая
Cu-micro2
а б

Рисунок 2. Микроструктура литой меди; а – край отливки, б – центр отливки; х50.

Иной случай показан на рисунках 3 и 4. На рис.3 показан прессованный полуфабрикат из титана. На фотографии хорошо видны различные зоны, характер кромки. отдельные гранулы (обведено красным), из которых и было спрессовано изделие, а также поры между гранулами. Все вместе это и составляет макроструктуру. Строение самих гранул при этом не выявляется. Если сделать шлиф, то без травления можно увидеть структуру пор отдельной гранулы. Это уже микроструктура.

губчатый титан

Рисунок 3. Макроструктура образца титана.

Пористость в губчатом титане

Рисунок 4. Микроструктура образца губчатого титана; фотография сделана на оптическом микроскопе.

Ниже приведен один из самых наглядных примеров соотношения макро- и микроструктуры. На рис.5 показан макрошлиф. Микроструктура здесь не видна. Видны различно травящиеся участки, которые соответствуют участкам разного состава и разной структуры.

macro-

Рисунок 5. Шлиф сварного шва после травления на макроструктуру; фото через сканер.

На рисунке 6а показан стык трех зон металла (белый кружок на рис.5) , сформированный сваркой. Эти 3 зоны тоже представляют собой макроструктуру сварного шва. Микроструктура внутри этих зон вытравилась, но при этом увеличении (2 х ) неразличима. На рисунке 6,б показан фрагмент (он выделен рамкой) рисунка 6,а при увеличении 20 х . Уже различимы детали самого сварного шва и зон около него. Микроструктура в зона 3 показана на рисунке 6в при увеличении 500 х . Микроструктура в зоне шва (внутри окружности) показана на рисунке 6 г.

macro1
macro2
а б
macro3
macro4
в г

Рисунок 6. Соотношение макро- (а,б) и микроструктуры (в,г) в зоне сварного шва.

macro5

Рисунок 7. Микроструктура в зоне 1.

Итак, структура на рисунках 5 и 6 (а,б) – макро, на рисунках 5 в,г – микро. На рисунке 7 показана микроструктура в зоне 1.

структура доэвтектоидной стали
macro7
а б

Рисунок 8. Структура доэвтектоидной стали (а) и маска для определения размера зерна (б).

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

hello_html_m7ba9c766.jpg

Рис.1.12. Общий вид микроскопа МИМ-7: 1 — основание; 2 — корпус; 3 — фотокамера; 4 — микрометрический винт; 5 — визуальный тубус с окуляром; 6 — рукоятка иллюминатора; 7 — иллюминатор; 8 — предметный столик; 9 — клеммы; 10 — винты перемещения столика; 11 — макрометрический винт; 12 — осветитель; 13 — рукоятка светофильтров; 14 — стопорное устройство осветителя; 15 — рамка с матовым стеклом Для выявления структуры сталей и чугунов, в том числе после термической и химико- термической обработки, а также сплавов магния на практике используют раствор 1-5 мл азотной кислоты в 100 мл этилового спирта. Феррит в этом случае окрашивается в цвет светлой соломы, перлит (Ф + Ц) — темный с перламутровым оттенком, цементит — светло-голубой блестящий, графит — тусклый чернокоричневый, границы зерен обычно черные. Рекомендуются два способа травления: 1) поверхность образца погружается в реактив, 2) поверхность протирается тампоном, смоченным реактивом. Время травления подбирается. В настоящее время используется много марок металлографических микроскопов: МИМ-6; МИМ-7, ММР-2Р, ММР-4, ММУ-3, МИМ-8М, МИМ-9, Neophot-21 и др. Однако все микроскопы для микроструктурного анализа сконструированы по одному базовому принципу: освещение объекта и изучение его в отраженном свете. Отличаются они друг от друга расположением в пространстве оптической оси (вертикальные МИМ-7 и др., горизонтальные МИМ-9 и др.); расположением изучаемого объекта (сверху, снизу); кратностью увеличения (МИМ-7 от 60 до 1440, ММР-4 от 50 до 1600); числом сервисных операций (МИМ-7 снабжен одним предметным столиком с ручным перемещением, ММР-4 — двумя — с ручным и автоматическим перемещением с помощью специального программного устройства) и др. На рис.1.12 показан общий вид микроскопа МИМ-7. Он состоит из следующих основных систем: оптической, осветительной с фотографической аппаратурой и механической. Оптическая система микроскопа включает объектив и окуляр, от которых зависит увеличение микроскопа, и ряд вспомогательных элементов: призмы, зеркала, линзы, диафрагмы. Они смонтированы в корпусе и нужны чтобы сложный, рассеянный луч белого цвета превратить в прямолинейный и сфокусировать его в одной точке. Объектив, представляющий собой сочетание линз, дает реальное увеличенное, но обратное изображение микроструктуры. Окуляр состоит из нескольких линз и предназначен для увеличения изображения, полученного объективом, и преобразования его из обратного в прямое. Окуляр и объектив имеют собственные увеличения υок и υоб. Общее увеличение микроскопа υм при визуальном рассмотрении микроструктуры равно υм = υок · υоб Четкость изображения достигается при правильном подборе (комбинации) объектива и окуляра. В табл. 1.9 содержатся характеристики объективов и окуляров МИМ-7. Их сочетание для необходимого увеличения подбирается по этой таблице. Таблица 1.9 Увеличении микроскопа МИМ-7

hello_html_47b82a15.jpg

Примечание: А — числовая апертура (мера светосилы объектива); F —фокусное расстояние. В осветительную систему микроскопа входят источник света, серия линз, светофильтров и диафрагм. Источником света является электрическая лампа (17 В), включаемая в сеть через понижающий трансформатор. Механическая система включает устройства для макро- и микрофокусировки. Макрофокусировка осуществляется с помощью винта, ручки которого располагаются слева и справа на боковых поверхностях корпуса микроскопа, и стопора с рукояткой (слева). Микрофокусировка производится винтом, расположенным справа, ниже макровинта. Перемещение предметного столика в горизонтальных направлениях для просмотра всей поверхности шлифа про-водится двумя винтами, расположенными на его боковой поверхности. Около этих винтов на столике нанесены шкалы отсчета с ценой деления 1 мм. Порядок работы на микроскопе следующий. По табл. 1.9 подбирают объектив и окуляр для необходимого увеличения и устанавливают их в гнездо объектива и окулярный тубус. На предметный столик помещают образец, обращенный исследуемой поверхностью к объективу. Включают микроскоп в электросеть, устанавливают с помощью блока питания необходимый накал лампы освещения. Отпустив рукоятку стопора, плавным вращением макровинта опускают столик, проводят фокусирование до появления в окуляре структуры поверхности. Держа правой рукой макровинт, левой стопорят его. Точное фокусирование проводят вращением микровинта. Перемещая предметный столик в горизонтальной плоскости в двух взаимно перпендикулярных направлениях, с помощью винтов просматривают всю поверхность шлифа, выбирая характерные ее участки. Микроструктура анализируется и зарисовывается (фотографируется). Если в задачу изучения микроструктуры входит определение размера зерна, то рекомендуется использовать метод визуального сравнения зерен изучаемой микроструктуры при увеличении х100 со стандартной шкалой размеров зерна по ГОСТ 65-39-82) (рис. 1.13). Устанавливается номер (балл) зерна, затем по номеру, используя табл.1.10, определяется поперечный размер зерна, мм, его площадь, мм2, и количество зерен на площади шлифа в 1 мм2. Сплавы, имеющие мелкое зерно, обладают более высоким комплексом механических свойств, чем крупнозернистые. Таблица 1.10 Характеристика оценки зерна в зависимости от его номера Продолжение таблицы 1.10 Рис.1.13. Шкала размеров зерна конструкционной стали (цифры под каждым рисунком — балл зерна): х100 Если размер зерна выходит за пределы номеров зерен 1-10, пользуются другими увеличениями, пересчитывая их по табл. 1.11. Таблица 1.11 Пересчет номера зерна на стандартное увеличение (xlOO) Продолжение таблицы 1.11 Для более точной оценки величины зерна используют статистические методы (метод случайной секущей или метод площадей). По величине зерна можно судить о температуре нагрева сплава при термической обработке и скорости его охлаждения. Чем выше температура нагрева и медленнее охлаждение (тонкая отливка), тем крупнее формируются зерна. Форма зерна (округлая, вытянутая) свидетельствует о том, был ли металл подвергнут холодной пластической деформации, направленной кристаллизации (вытянутые зерна) или термической обработке с умеренными скоростями охлаждения — с печью (отжиг), на воздухе — (нормализация). Микроанализ позволяет выявить наличие диффузионных слоев на поверхности металла при химико-термической обработке оценить их толщину, изменение структуры в результате насыщения, и др. Если необходимо определить толщину диффузионного слоя, то следует прежде всего установить, на какую глубину (до какой структуры) от насыщаемой поверхности распространяется слой. Затем замерить его с помощью объект-микрометра и окуляр- микрометра. Объект-микрометр —это эталонная линейка, каждое из 100 делений которой соответствует 0,01 мм (10- 5 м). Окуляр-микрометр — это окуляр с увеличением х7 со вставленной в него измерительной линейкой или сеткой, цена делений которой зависит от увеличения микроскопа. Для определения цены деления окуляр-микрометра на предметный столик устанавливается объект-микрометр шкалой вниз. После наводки на резкость поворотом окуляра в тубусе его шкала устанавливается параллельно шкале объект-микрометра. Затем движением предметного столика крайние деления обеих шкал совмещаются (рис. 1.14) и определяется число делений шкалы объект-микрометра А, совпавших с делениями

Рис.1.14. Схема определения цены деления окуляра: а — шкала объект- микрометра; б — шкала окуляр-микрометра шкалы окуляр-микрометра В. Цена деления шкалы окуляр- микрометра (Цок) определяется по формуле: Цок = А·Цоб/В, где Цоб —цена деления шкалы объект-микрометра, 0,01 мм. После этого шлиф устанавливается на предметном столике таким образом, чтобы диффузионный слой перекрывался окулярной линейкой. Тогда толщина слоя равна числу делений, умноженных на их цену. Таким способом можно определять протяженность всех элементов микроструктуры, в том числе и длину поперечного сечения зерен. Порядок проведения работы Изучить устройство металлографического микроскопа. Усвоить приемы работы на нем. Изучить процесс изготовления шлифа, приготовить шлиф. Определить цену деления окуляр-микрометра. Определить размеры зерна по микрошлифу методом визуального сравнения с эталонными шкалами. Определить глубину диффузионного слоя. Сделать выводы.

Макроскопический анализ

Макроанализ заключается в определении строения металла путем просмотра его излома или специально подготовленной поверхности невооруженным глазом или через лупу при небольших увеличениях — до 30 раз. Это позволяет наблюдать одновременно большую поверхность и получить представление об общем строении металла и о наличии в нем определенных дефектов.

1. Нарушение сплошности металла: усадочную рыхлость, газовые пузыри и раковины, пустоты, образовавшиеся в литом металле, трещины, возникшие при горячей механической или термической обработке, флокены, дефекты сварки (в виде непровара, газовых пузырей, пустот);

2. Дендритное строение и зону транскристаллизации в литом металле;

3. Химическую неоднородность сплава (ликвацию);

4. Неоднородность строения сплава, вызванную обработкой давлением: полосчатость, а также линии скольжения (сдвигов) в наклепанном металле;

5. Неоднородность, созданную термической или химико-термической обработкой.

Поверхность, подлежащую макроанализу, изучают непосредственно (по виду излома) или шлифуют и подвергают травлению специально подготовленными реактивами. На шлифованной поверх­ности не должно быть загрязнений, следов масла и т. п., поэтому ее перед травлением протирают ватой, смоченной в спирте. Подготовленный образец называют макрошлифом.

Большое значение для успешного выполнения макроанализа имеет правильный выбор наиболее характерного для изучаемой детали сечения или излома (см. ниже).

Способы макроанализа различны в зависимоcти от состава сплава и задач, поставленных в исследовании.

1. Для выявления дефектов, нарушающих сплошность металла, флокенов, строения литой стали, волокон катаной стали применяют реактивы как глубокого, так и поверхностного травления. Состав некоторых реактивов для глубокого травления указан в таблице 2.1.

После травления макрошлиф приобретает рельефную поверхность с отчетливо видимыми осями дендритов (литая сталь), ликвационной зоной и трещинами (если они были в изломе или если в металле обнаружились флокены). Для этих целей чаще применяют поперечные макрошлифы (темплеты).

Травление производят в вытяжном шкафу; макрошлифы вынимают из реактива щипцами или рукой, защищенной резиновой перчаткой.

Для поверхностного травления чаще всего применяют реактив Гейна, содержащий (на 1000 мл воды) 53 г хлористого аммония NH 4 Cl и 85 г хлористой меди CuCl 2 .

При погружении макрошлифа в реактив (на 30–60 с) происходит обменная реакция: железо вытесняет медь из водного раствора, и она оседает на поверхности шлифа; на участках, недостаточно защищенных медью (поры, трещины, неметаллические включения), происходит травление. Затем макрошлиф вынимают, слой осевшей меди снимают ватой под струей воды и протирают макрошлиф досуха, чтобы предохранить его от быстрого окисления на воздухе.

Таблица 2.1

Наиболее употребительные реактивы для глубокого травления

Состав реактива, мл

Количество воды, мл

Режим травления при
температуре 60–70 °С

Углеродистая, марганцовистая, хро­мистая, хромомолибденовая, хромованадиевая

Читайте также: