Показать связь между скоростью и формой орбиты по которой двигается космический корабль кратко

Обновлено: 05.07.2024

нет, не является. докажем, что получившееся число чётное.

перепишем исходное выражение в виде

2011^2013 + ((2011+1)^2013)*2012 и разложим скобку по биному ньютона.

вынесем из этой суммы первый и последний члены; оставшиеся члены в сумме составляют 2012 слагаемых, в каждое из которых входит 2011 в какой-то степени.обозначу устаток за а.

итак, исходное выражение в итоге равно:

2011^2013(1+2012) + 2012*a+ 2012

2011^2013 * (1+2012) чётное

а представляет собой сумму вида с1*2011^2010+ c2*2011^2009+ + c2012*2011

т.е. чётных и нечётных слагаемых поровну, следовательно, а чётное.

2012 чётное, их сумма тоже чётное число.

пишу сразу решение:

(9/7х - 1/3) * 21 = 2 (перевел 1 2/7 х в непр. дробь)

189/7х - 21/3 = 42 (умножил все части ур-я на 21)

27х = 42 + 7 (перенес 7 в др сторону с противопол знаком)

156-87=69 микроавтобусов было в автопарку

87-76=11 легковых авто в автопарку

Чтобы преодо­леть силу земного тяготения и превратиться в искусственный спутник земли, двигающийся вокруг неё по круговой орбите, корабль должен развить первую космическую скорость: v1 = 7,9 км/с. при дальней­шем увеличении скорости орбита движения приобретает всё более и более вытянутый, эллиптический характер вплоть до достижения вто­рой космической скорости: v2 = 11,2 км/с. она позволяет космическо­му кораблю преодолеть земное тяготение, уйти на орбиту движения вокруг солнца в его гравитационном поле, т. е. превратиться в миниа­тюрную планету солнечной системы. при старте с ещё большей скоро­стью параболическая траектория превращается в гиперболу.

Другие вопросы по Математике

Брат и сестра собирали марки. у них вместе на 20 марок больше, чем убрата, и на 12 марок больше, чем у сестры. сколько марок у каждого и сколько у них вместе.

Чтобы преодолеть силу земного тяготения и перевоплотиться в искусственный спутник Земли, двигающийся вокруг неё по круговой орбите, корабль обязан развить первую галлактическую скорость: v1 = 7,9 км/с.
При дальнейшем увеличении скорости орбита движения приобретает всё более и более вытянутый, эллиптический нрав вплоть до заслуги второй галлактической скорости: v2 = 11,2 км/с. Она дозволяет космическому кораблю преодолеть земное тяготение, уйти на орбиту движения вокруг Солнца в его гравитационном поле, т. е. перевоплотиться в миниатюрную планетку Солнечной системы. При старте с ещё большей скоростью параболическая линия движения превращается в гиперболу.

Орбита небесного тела − это траектория, по которой движется в космическом пространстве космические тела: Солнце, звезды, планеты, кометы, космические корабли, спутники, межпланетные станции и др.

Применительно к искусственным космическим аппаратам понятие “орбита” используется для тех участков траекторий, на которых они перемещаются с отключенной двигательной установкой.

Форма орбиты небесных тел. Космическая скорость

Форма орбит и скорость, с которой по ним передвигаются небесные тела, зависят, в первую очередь, от силы всемирного тяготения. При анализе передвижения небесных тел Солнечной системы во многих случаях пренебрегают их формой и строением, то есть они выступают в качестве материальных точек. Это допустимо из-за того, что расстояние между телами, как правило, во множество раз превышает своих размеров. Если принять небесное тело за материальную точку, то при анализе его перемещения применяется закон всемирного тяготения. Также зачастую рассматривают лишь 2 притягивающихся тела, опуская влияние других.

Предыдущие упрощения позволили прийти к задаче 2 -х тел. Одно из решений данной задачи предложил И. Кеплер. А полное решение сформулировал И. Ньютон, доказавший, что одно из притягивающихся небесных тел обращается вокруг другого по орбите в форме эллипса (или окружности, частного случая эллипса), параболы либо гиперболы. В фокусе данной кривой лежит 2 -я точка.

На форму орбиты влияют следующие параметры:

  • масса рассматриваемого тела;
  • расстояние между ними;
  • скорость, с которой одно тело движется по отношению к другому.

Если тело массой m 1 ( к г ) расположено на расстоянии r ( м ) от тела массой m 0 ( к г ) и передвигается в данный момент времени со скоростью υ ( м / с ) , тогда орбита задается постоянной:

Постоянная тяготения f = 6 , 673 · 10 - 11 м 3 к г - 1 с - 2 . Если h 0 − по гиперболической орбите.

Вторая космическая скорость − это наименьшая начальная скорость, которую необходимо сообщить телу, чтобы оно начало движение около поверхности Земли, преодолело земное притяжение и навсегда покинуло планету по параболической орбите. Она равняется 11 , 2 к м / с .

Первой космической скоростью называют наименьшую начальную скорость, которую необходимо сообщить телу, чтобы оно стало искусственным спутником планеты Земля. Она равняется 7 , 91 к м / с .

Большинство тел Солнечной системы перемещается по эллиптическим траекториям движения. Только лишь некоторые маленькие тела Солнечной системы такие, как кометы, вероятно перемещаются по параболическим или гиперболическим траекториям. Таким образом, межпланетные станции отправляются по гиперболической орбите по отношению к Земле; потом они перемещаются по эллиптическим траекториям по отношению к Солнцу в направлении к точке назначения.

Характеристики движения небесных тел

Элементы орбиты − величины, с помощью которых определяются размеры, форма, положение, ориентация орбиты в пространстве и расположение небесного тела на ней.

У некоторых характерных точек орбит небесных тел есть собственные наименования.

Ближайшая к Солнцу точка орбиты небесного тела, передвигающегося вокруг Солнца, называется Перигелий (рисунок 1 ).

А самая удаленная − Афелий.

Ближайшая точка орбиты к планете Земля − Перигей, а самая дальняя − Апогей.

В более обобщенных задачах, в которых под притягивающим центром подразумевают различные небесные тела, употребляется название ближайшей к центру Земли точки орбиты − перицентр и самой отдаленной от центра точки орбиты − апоцентр.

Характеристики движения небесных тел

Рисунок 1 . Точки орбиты небесных тел по отношению к Солнцу и Земле

Случай с 2 -мя небесными телами является самым простым и практически не встречается (хотя есть множество случаев, когда притяжением 3 -го, 4 -го и т.д. тел пренебрегают). На самом деле картина гораздо сложнее: каждое небесное тело находится под влиянием многих сил. При передвижении планеты притягиваются не только к Солнцу, но и друг к другу. В звездных скоплениях звезды притягиваются между собой.

Движение искусственных спутников находится под влиянием таких сил, как несферичность фигуры Земли и сопротивление земной атмосферы, а также притяжение Солнца и Луны. Данные дополнительные силы называются возмущающими. А эффекты, которые они создают при движении небесных тел, именуются возмущениями. Вследствие действия возмущений орбиты небесных тел постоянно медленно меняются.

Небесная механика − раздел в астрономии, который занимается изучением движения небесных тел с учетом возмущений.

С помощью методов небесной механики можно с высокой точностью и на много лет наперед определить расположение небесных тел в Солнечной системе. Более сложные вычислительные методы применяются при изучении траектории движения искусственных небесных тел. Точное решение подобных задач в виде математических формул получить очень трудно. Поэтому для решения сложных уравнений используют быстродействующие электронно-вычислительные машины. Для этого необходимо знание понятия сферы действия планеты.

Сфера действия планеты − это область околопланетного (окололунного) пространства, в которой при расчете возмущений в движении тела (спутника, кометы или межпланетного космического корабля) в качестве центрального тела принимается не Солнце, а эта планета (Луна).

Вычисления упрощаются из-за того, что внутри сферы действия возмущения от влияния солнечного притяжения по сравнению с планетным притяжением меньше, чем возмущение от планеты по сравнению с солнечным притяжением. Однако, не нужно забывать, что внутри сферы действия планеты и за ее пределами на тело оказывают влияние силы солнечного притяжения, а также планет и других небесных тел в той или иной степени.

Радиус сферы действия вычисляется исходя из расстояния между Солнцем и планетой. Орбиты небесных тел внутри сферы рассчитываются на основании задачи 2 -х тел. Если тело покидает планету, тогда его движение внутри сферы действия осуществляется по гиперболической орбите. Радиус сферы действия планеты Земля равняется примерно 1 м л н . к м . ; сфера действия Луны по отношению к Земле имеет радиус примерно 63 т ы с я ч и к м .

Способ определения орбиты небесного тела с помощью сферы действия является одним из методов приближенного определения орбит. Если известны приближенные величины элементов орбиты, тогда можно при помощи других методов получить более высокоточные значения элементов орбиты. Поэтапное улучшение определяемой орбиты − типичный прием, который позволяет вычислить параметры орбиты с большой точностью. Круг современных задач по определению орбит существенно увеличился, что объясняется стремительным развитием ракетной и космической техники.

Необходимо определить, во сколько раз масса Солнца превышает массу Земли, если известен период обращения Луны вокруг Земли 27 , 2 с у т . , а среднее расстояние ее от Земли 384 000 к м .

Дано: T = 27 , 2 с у т . , a = 3 , 84 · 10 5 к м .

Найти: m с m з - ?

Решение

Приведенные выше упрощения сводят нас к задаче 2 -х тел. Одно из решений данной задачи предложил И. Кеплер, а полное решение сформулировал И. Ньютон. Воспользуемся данными решениями.

T з = 365 с у т − период обращения Земли вокруг Солнца.

a з = 1 , 5 · 10 8 к м − среднее расстояние от Земли до Солнца.

При решении будем руководствоваться формулой закона И. Кеплера с учетом 2 -го закона И. Ньютона:

m с + m з m з + m · T 3 2 T 2 = a 3 3 a 3 .

Зная, что масса Земли по сравнению с массой Солнца и масса Луны по сравнению с массой Земли очень малы, запишем формулу в виде:

Любой предмет, будучи подброшенным вверх, рано или поздно оказывается на земной поверхности, будь то камень, лист бумаги или простое перышко. В то же время, спутник, запущенный в космос полвека назад, космическая станция или Луна продолжают вращаться по своим орбитам, словно на них вовсе не действует сила притяжения нашей планеты. Почему так происходит?

На нашей Земле всемирное тяготение воздействует на любое материальное тело. Тогда логично будет предположить, что есть некая сила, нейтрализующая действие гравитации. Эту силу принято называть центробежной.

Центробежную силу легко ощутить привязав на один конец нитки небольшой груз и раскрутив его по окружности. При этом чем больше скорость вращения тем сильнее натяжение нити, а чем медленнее вращаем мы груз тем больше вероятность, что он упадет вниз.


Траектория полета космических кораблей

Это также значит, что космическая скорость есть у каждого объекта, который движется по орбите. Размер и форма орбиты космического объекта зависят от величины и направления скорости, которую данный объект получил на момент выключения двигателей, и высоты, на которой произошло данное событие.

Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении сможет:

  • v1 — стать спутником небесного тела (то есть способность вращаться по орбите вокруг небесного тела и не падать на его поверхность);
  • v2 — преодолеть гравитационное притяжение небесного тела и начать двигаться по параболической орбите;
  • v3 — покинуть при запуске планету, преодолев притяжение Звезды;
  • v4 — при запуске из планетной системы объект покинул Галактику.

Космические скорости могут быть рассчитаны для любого удаления от центра Земли. Однако в космонавтике часто используются величины, рассчитанные конкретно для поверхности шаровой однородной модели Земли радиусом 6371 км.

Первая космическая скорость


Первая космическая скорость или Круговая скорость V1 — скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты.

Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Формула

где G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем

7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения —


Вторая космическая скорость

Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела.

Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).


Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой:

  • для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца.
  • для Солнца вторая космическая скорость составляет 617,7 км/с.
  • для Луны скорость убегания равна 2,4 км/с , несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.

Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.

Формула

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния .


Третья космическая скорость

Третья космическая скорость минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы.


Только на космических кораблях, которым доступны такие скорости, принципиально могут быть осуществлены пилотируемые межзвёздные перелёты к планетным системам других звёзд.

Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с.

Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует). Если к тому же учесть притяжение других планет, которое может как ускорить, так и притормозить аппарат, то диапазон возможных значений 3-й космической скорости станет еще больше.

При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу.

Четвёртая и пятая космическая скорости

Четвёртая космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Она используется довольно редко.


Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы.

Для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра.

По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса.

Видео

+

2 Смотреть ответы Добавь ответ +10 баллов


Ответы 2

+

Чтобы преодо­леть силу земного тяготения и превратиться в искусственный спутник Земли, двигающийся вокруг неё по круговой орбите, корабль должен развить первую космическую скорость: v1 = 7,9 км/с.
При дальней­шем увеличении скорости орбита движения приобретает всё более и более вытянутый, эллиптический характер вплоть до достижения вто­рой космической скорости: v2 = 11,2 км/с. Она позволяет космическо­му кораблю преодолеть земное тяготение, уйти на орбиту движения вокруг Солнца в его гравитационном поле, т. е. превратиться в миниа­тюрную планету Солнечной системы. При старте с ещё большей скоро­стью параболическая траектория превращается в гиперболу.

Читайте также: