Плазматическая мембрана это в биологии 5 класс определение кратко

Обновлено: 05.07.2024

Клеточная мембрана, которую также называют плазмалемма, цитолемма или же плазматическая мембрана — является молекулярной структурой, эластичной по своей природе, которая состоит из различных белков и липидов. Она отделяет содержание любой клетки от внешней среды, тем самым регулируя ее защитные свойства, а также обеспечивает обмен между внешней средой и непосредственно внутренним содержимым клетки.

Плазматическая мембрана

Плазмалемма — это перегородка, находящаяся внутри, непосредственно за оболочкой. Она делит клетку на определенные отсеки, которые направлены на компартменты или же органеллы. В них содержатся специализированные условия среды. Клеточная стенка полностью закрывает всю клеточную мембрану. Она выглядит как двойной слой молекул.

Основные сведения

Состав плазмалеммы — это фосфолипиды или же, как их еще называют, сложные липиды. Фосфолипиды имеют несколько частей: хвост и головку. Специалисты называют гидрофобные и гидрофильные части: в зависимости от строения животной или растительной клетки. Участки, которые именуются головкой — обращены внутрь клетки, а хвосты — наружу. Плазмалеммы по структуре являются инвариабельными и очень похожи у различных организмов; чаще всего исключение могут составить археи, у которых перегородки состоят из различных спиртов и глицерина.

Толщина плазмалеммы приблизительно 10 нм.

В малом содержании в состав биологической мембраны входят некоторые виды белков. Например, белки которые пронизывают всю мембрану насквозь, их называют интегральными. Мембраны, которые входят в состав и внешнего, и во внутреннего слоя (слой чаще всего бывает липидным), называются полуинтегральными.

Строение клетки

Существуют перегородки, которые находятся на внешней стороне или же снаружи части, вплотную прилегающей к мембране — их называют поверхностными. Некоторые виды белка могут быть своеобразными контактными точками для клеточной мембраны и оболочки. Внутри клетки находится цитоскелет и наружная стенка. Определенные виды интегрального белка могут быть использованы как каналы в ионных транспортных рецепторах (параллельно с нервными окончаниями).

Если использовать электронный микроскоп, то можно получить данные, на основе которых можно построить схему строения всех частей клетки, а также основных составляющих и оболочек. Верхний аппарат будет состоять из трех субсистем:

  • комплексное надмембранное включение;
  • плазматическая мембрана;
  • опорно-сократительный аппарат цитоплазмы, который будет иметь субмембранную часть.

К данному аппарату можно отнести цитоскелет клетки. Цитоплазма с органоидами и ядром называется — ядерный аппарат. Цитоплазматическая или, по-другому, плазматическая клеточная мембрана, находится под клеточной оболочкой.

Элементы чаще всего структурные, такие как:

  • митохондрии;
  • лизосомы;
  • пластиды;
  • перегородки.

плазматическая мембрана

В начале семидесятых годов XX века было открыто множество данных, на основании которых в 1972 году ученые из Австралии предложили новую мозаично-жидкостную модель строения клеток.

Строение плазматической мембраны

Молекулы белков связаны с липидным бислоем и пронизывают всю мембрану полностью — интегральные белки (одно из общепринятых названий — это трансмембранные белки).

Оболочка в составе имеет различные углеводные компоненты, которые будут выглядеть как полисахаридная или сахаридная цепь. Цепь, в свою очередь, будет соединена липидами и белком. Соединенные молекулами белка цепи называются гликопротеинами, а молекулами липидов — гликозидами. Углеводы находятся на внешней стороне мембраны и выполняют функции рецепторов в клетках животного происхождения.

Гликопротеин — представляют собой комплекс надмембранных функций. Его еще называют гликокаликс (от греческих слов глик и каликс, что в переводе означает "сладкий" и "чашка"). Комплекс способствует адгезии клеток.

плазматическая мембрана

Функции плазматической мембраны

Барьерная

Помогает отделить внутренние составляющие клеточной массы от тех веществ, которые находятся извне. Предохраняет организм от попадания различных веществ, которые будут являться для него чужеродными, и помогает поддерживать внутриклеточный баланс.

Транспортная

  • эндоцитоз;
  • экзоцитоз;
  • натриевый и калиевый обмен.

На внешней стороне мембраны находится рецептор, на участке которого происходит смешивание гормонов и различных регуляторных молекул.

Строение клетки

Пассивный транспорт — процесс, при котором вещество проходит через мембрану, при этом энергия не затрачивается. Иными словами, вещество доставляется из области клетки с высокой концентрацией, в ту сторону, где концентрация будет более низкая.

Существует два вида:

  • Простая диффузия — присуща маленьким нейтральным молекулам H2O, CO2 и О2 и некоторыми гидрофобным органическим веществам с низкой молекулярной массой и соответственно без проблем проходят через фосфолипиды мембраны. Эти молекулы могут проникать через мембрану вплоть до того времени, пока градиент концентрации будет стабилен и неизменен.
  • Облегченная диффузия — характерна для различных молекул гидрофильного типа. Они также могут проходить через мембрану согласно градиенту концентрации. Однако, процесс будет осуществляться с помощью различных белков, которые будут образовывать специфические каналы ионных соединений в мембране.

Активный транспорт — это перемещение различных составляющих через стенку мембраны в противовес градиенту. Такое перенесение требует значительных затрат энергетических ресурсов в клетке. Чаще всего именно активный транспорт является основным источником потребления энергии.

Выделяют несколько разновидностей активного транспорта при участии белков-переносчиков:

  • Натриево-калиевый насос. Получение клеткой необходимых минералов и микроэлементов.
  • Эндоцитоз — процесс, при котором происходит захват клеткой твердых частиц (фагоцитоз) или же различных капель любой жидкости (пиноцитоз).
  • Экзоцитоз — процесс, при котором происходит выделение из клетки определенных частиц во внешнюю окружающую среду. Процесс является противовесом эндоцитоза.

Термин "эндоцитоз" произошел от греческих слов "энда" (изнутри) и "кетоз" (чаша, вместилище). Процесс характеризует захват внешнего состава клеткой и осуществляется при производстве мембранных пузырьков. Этот термин был предложен в 1965 году профессором цитологии из Бельгии Кристианом Бэйлсом, он изучал поглощение различных веществ клетками млекопитающих, а также фагоцитоз и пиноцитоз.

Как протекает процесс

Фагоцитоз

Происходит при захвате клеткой определенных твердых частиц или же живых клеток. А пиноцитоз — это процесс, при котором капли жидкости захватываются клеткой. Фагоцитоз (от греческих слов "пожиратель" и "вместилище") — процесс при котором очень маленькие объекты живой природы захватываются и поглощаются, так же как и твердые части различных одноклеточных организмов.

Открытие процесса принадлежит физиологу из России — Вячеславу Ивановичу Мечникову, который определил непосредственно процесс, при этом он проводил различные испытания с морскими звездами и крошечными дафниями.

В основе питания одноклеточных гетеротрофных организмов лежит их способность переваривать, а также захватывать различные частицы.

Мечников описал алгоритм поглощения бактерии амебой и общий принцип фагоцитоза:

  • адгезия — прилипание бактерий к мембране клетки;
  • поглощение;
  • образование пузырька с бактериальной клеткой;
  • откупоривание пузырька.

Исходя из этого, процесс фагоцитоза состоит из таких этапов:

  1. Поглощаемая частица крепится к мембране.
  2. Окружение поглощаемой частицы мембраной.
  3. Образование мембранного пузырька (фагосома).
  4. Открепление мембранного пузырька (фагосомы) во внутреннюю часть клетки.
  5. Объединение фагосомы и лизосомы (переваривание), а также внутреннее перемещение частиц.

Как выгляди клетка под микроскопом

Можно наблюдать полное или частичное переваривание.

В случае частичного переваривания чаще всего образуется остаточное тельце, которое будет находиться внутри клетки некоторое время. Те остатки, которые будут непереварены, изымаются (эвакуируются) из клетки путем экзоцитоза. В процессе эволюции эта функция предрасположенности к фагоцитозу постепенно отделилась и перешла от различных одноклеточных к специализированным клеткам (таким как пищеварительная у кишечнополостных и губок), а после к особым клеткам у млекопитающих и человека.

К фагоцитозу предрасположены лимфоциты и лейкоциты в крови. Сам процесс фагоцитоза нуждается в больших затратах энергии и напрямую объединен с активностью внешней клеточной мембраны и лизосомы, при которых находятся пищеварительные ферменты.

Пиноцитоз

Пиноцитоз — это захват поверхностью клетки какой-либо жидкости, в которой находятся различные вещества. Открытие явления пиноцитоза принадлежит ученому Фицджеральду Льюису. Произошло это событие в 1932 году.

Пиноцитоз — это один из основных механизмов, при котором в клетку попадают высокомолекулярные соединения, например, различные гликопротеины или же растворимые белки. Пиноцитозная активность, в свою очередь, невозможна без физиологического состояния клетки и зависит от ее состава и состава окружающей среды. Самый активный пиноцитоз мы можем наблюдать у амебы.

У человека пиноцитоз наблюдается в клетках кишечника, в сосудах, почечных канальцах, а также в растущих ооцитах. Для того чтобы изобразить процесс пиноцитоза, которой будет осуществляться с помощью лейкоцитов человека, можно сделать выпячивание плазматической мембраны. При этом части будут отшнуровываться и отделяться. Процесс пиноцитоза нуждается в затрате энергии.

Этапы процесса пиноцитоза:

  1. На наружной клеточной плазмалемме появляются тонкие наросты, которые окружают капли жидкости.
  2. Этот участок внешней оболочки становится тоньше.
  3. Образование мембранного пузырька.
  4. Стенка прорывается (проваливается).
  5. Пузырек перемещается в цитоплазме и может слиться с различными пузырьками и органоидами.

Схемa строения плaзмaтической мембраны

Экзоцитоз

Термин произошел от греческих слов "экзо" — наружный, внешний и "цитоз" — сосуд, чаша. Процесс заключается в выделении клеточной частью определенных частиц во внешнюю среду. Процесс экзоцитоза является противоположным пиноцитозу.

В процессе экоцитоза из клетки выходят пузырьки внутриклеточной жидкости и переходят на внешнюю мембрану клетки. Содержимое внутри пузырьков может выделяться наружу, а мембрана клетки сливается с оболочкой пузырьков. Таким образом, большинство макромолекулярных соединений будет происходить именно этим способом.

Экзоцитоз выполняет ряд задач:

  • доставка молекул на внешнюю клеточную мембрану;
  • транспортировка по всей клетке веществ, которые будут нужны для роста и увеличения площади мембраны, например, определенных белков или же фосфолипидов;
  • освобождение или соединение различных частей;
  • выведение вредных и токсических продуктов, которые появляются при метаболизме, например, соляной кислоты секретируемой клетками слизистой оболочки желудка;
  • транспортировка пепсиногена, а также сигнальных молекул, гормонов или нейромедиаторов.

Специфические функции биологических мембран:

  • генерация импульса, происходящего на нервном уровне, внутри мембраны нейрона;
  • синтез полипептидов, а также липидов и углеводов шероховатой и гладкой сети эндоплазматической сетки;
  • изменение световой энергии и ее преобразование в энергию химическую.

Видео

Из нашего видео вы узнаете много интересного и полезного о строении клетки.

Поставь лайк, это важно для наших авторов, подпишись на наш канал в Яндекс.Дзен и вступай в группу Вконтакте

(клеточная мембрана, плазмалемма), биологическая мембрана, окружающая протоплазму растительных и животных клеток. Участвует в регуляции обмена веществ между клеткой и окружающей её средой.

Энциклопедический словарь . 2009 .

Полезное

Смотреть что такое "плазматическая мембрана" в других словарях:

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА — (клеточная мембрана плазмалемма), биологическая мембрана, окружающая протоплазму растительных и животных клеток. Участвует в регуляции обмена веществ между клеткой и окружающей ее средой … Большой Энциклопедический словарь

плазматическая мембрана — Plasma Membrane Плазматическая мембрана (цитолемма, плазмолемма) См. клеточная мембрана … Толковый англо-русский словарь по нанотехнологии. - М.

плазматическая мембрана — plazmalema statusas T sritis augalininkystė apibrėžtis Paviršinė citoplazmos membrana, reguliuojanti medžiagų patekimą į ląstelę. atitikmenys: angl. plasma membrane; plasmalemma rus. плазмалемма; плазматическая мембрана … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА — (клеточная мембрана, плазмалемма), биол. мембрана, окружающая протоплазму растит. и животных клеток. Участвует в регуляции обмена в в между клеткой и окружающей её средой … Естествознание. Энциклопедический словарь

плазматическая мембрана — (см. плазма) иначе плазмалемма мембрана, окружающая протоплазму растительных, а также животных клеток; у многих клеток п ая мембрана является единственной структурой, служащей оболочкой (клетки крови, кожи и т. п.), у нек рых других (в частности… … Словарь иностранных слов русского языка

Плазматическая мембрана — плазмалемма (от греч. plásma, буквально вылепленное, оформленное и lémma оболочка, кожица), мембрана, окружающая протоплазму растительных и животных клеток (См. Клетка). У последних П. м. является внутренним (обязательным) компонентом… … Большая советская энциклопедия

плазматическая мембрана — см. Клеточная оболочка … Большой медицинский словарь

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА — наружный слой цитоплазмы клетки более плотной консистенции. Представляет собой функционирующую часть клетки, играющую чрезвычайно важную роль в регулировании состава клеточного содержимого. Все питательные вещества, поступающие в клетку, и все… … Словарь ботанических терминов

Большинство живых организмов на планете состоит из клеток. Каждая клетка имеет несколько частей, включений, стенок. Однако наиболее важное значение имеет плазматическая мембрана. Ее также называют клеточной или цитоплазматической, цитолеммой или плазмалеммой. Для того чтобы понять ее необходимость, стоит изучить химический состав и основные функции.

  • История изучения
  • Химический состав
  • Основные функции
  • Другие возможности
  • Структура цитолеммы
  • Значение клеточной оболочки

Плазматическая мембрана

История изучения

  • ацетон не помогает выделить абсолютно все жиры из цитоплазматической мембраны;
  • площадь цитолеммы была определена неправильно, поскольку мембраны были сухими.

История изучения клеток

Несмотря на эти нарушения, случайным образом результат оказался верным, что позволило открыть двойной слой или бислой. Далее исследования специалистов продолжились. Они обратили внимание на натяжение выделенных пленок. Мембраны не могли быть такими жесткими, поэтому появилась теория, что они содержат белки, позволяющие сохранять упругость и эластичность. В 1935 году американские ученые пришли к выводу, что схема строения плазматической мембраны напоминает сандвич, то есть имеется липидный бислой, с двух сторон окруженный белковыми прослойками.

В 1950-х годах теория была подтверждена во время первых микроскопических исследований. В 1960 году Дж. Робертсон сформулировал теорию строения биологической мембраны, которая утверждала, что все оболочки в клетках состоят из трех слоев. Однако теория сандвича или бутерброда была опровергнута, поскольку появились другие факты.

Первым из них стали сведения о глобулярности мембраны. Помимо этого, специалисты определили, что во время микроскопического исследования структура пленки во многом зависит от способа ее фиксации. Следующим открытием, опровергающим теорию сандвича, было изучение сперматозоида, во время которого появилось подтверждение, что даже в одной клетке структура мембраны на разных участках отличается.

Последним опровержением стало выявление белков непосредственно внутри мембраны, тогда как теория бутерброда предполагала их нахождение за ее пределами. Подобные выводы в 1972 году использовал Сингер и Николсон, создавая мозаичную модель строения цитолеммы. На ней было отчетливо видно, что внутри пленки имеется большое количество белков, но молекулы встречаются и за пределами бислоя.

Химический состав

Плазмалемма или клеточная мембрана представляет собой молекулярную эластическую структуру, состоящую из большого количества липидов, а также белков. Она позволяет отделить клетку от других жидкостей в организме, предотвратить ее повреждение, принимает участие в метаболических процессах. Помимо этого, цитолемма помогает разделить камеры клетки для обеспечения ее нормального функционирования.

Химический состав плазматический мембраны в основном представлен фосфолипидами, но присутствуют и другие молекулы. Этот вид липидов относится к сложным, поэтому специалисты долгое время не могли точно определить состав цитолеммы. Каждый фосфолипид имеет гидрофильную часть и гидрофобную. Первая представляет собой голову молекулы и обращена наружу, вторая — хвост и обращена внутрь.

Плазмалемма или клеточная мембрана

У большинства живых организмов на планете химический состав мембраны очень похож, как и ее структура. Однако существуют исключения. У некоторых организмов она образована глицерином и другими спиртами. Белки внутри биологической оболочки могут быть разными. Наиболее часто встречаются следующие:

  1. Интегральные протеины пронизывают пленку насквозь, поэтому могут быть внутри и снаружи клетки. Их количество в составе наибольшее.
  2. Полуинтегральные белки могут быть погружены одной частью во внешний или внутренний слой, выполняют функцию соединения мембраны с цитоскелетом.
  3. Поверхностные располагаются на пленке или ее внутреннем слое, не погружаются в него.

Наиболее важными считаются интегральные, ведь они могут выполнять роль транспортных включений и рецепторов. Иногда такие протеины выступают в роли ионных каналов, поддерживают постоянство внешней и внутренней среды.

В первые годы изучения цитолеммы специалисты не разделяли протеины на разные группы, считая их одинаково необходимыми и выполняющими одни и те же функции. Однако сегодня, благодаря развитию технологий и появлению современных микроскопов, можно с уверенностью сказать, что строение мембраны довольно сложное, даже у простых растительных клеток.

Основные функции

Основным свойством плазматической мембраны является элементарное поддержание постоянства внутренней среды клетки и обеспечение ее бесперебойного функционирования. Помимо этого, она выполняет и другие функции:

Основные функции Плазматической мембраны

  1. Барьерная. Обеспечивает активные обменные процессы и безопасное контактирование с внешней средой. Некоторые оболочки защищают клетку от опасных компонентов, которые могут ее повредить или уничтожить. Дополнительно барьер обеспечивает избирательную проницаемость, то есть попадание за пленку каких-либо атомов будет зависеть от их размера и толщины цитолеммы. Благодаря этому, возможно сохранение целостности наружной ткани, поверхности самой пленки.
  2. Транспортная. Имеет важное значение, ведь благодаря ей осуществляется транспорт разных веществ в клетку и выделяются продукты распада из нее. Помимо этого, способность переносить конкретные компоненты осуществляет поддержание оптимального кислотно-щелочного равновесия, а также ионного состава. Последнее важно для обработки некоторых ферментов. Транспорт может быть пассивным и активным. Первый не требует затрат энергии, происходит медленно, второй сопровождается значительными энергетическими потерями, но протекает быстро.
  3. Энергетическая. Также играет важную роль. Структурные особенности клетки не имеют значения, поскольку в каждой плазмалемме имеются белки, отвечающие за перенос энергии и входящие в состав специальных систем для обеспечения этого процесса. При снижении их концентрации происходит нарушение метаболизма, провоцирующее другие отрицательные изменения.
  4. Рецепторная. Во многом зависит от количества интегральных белков в оболочке. Если их недостаточно, клетка не в состоянии воспринимать сигналы, теряется способность узнавания того или иного импульса, а также главная особенность — реакция, возникающая в ответ на изменения на поверхности мембраны.

В отличие от других способностей оболочки, рецепторная играет определяющую роль. Многие гормоны, циркулирующие в крови человека, животного и других организмов, способны воздействовать только на те частицы, в которых имеются специальные белки, выполняющие рецепторную функцию. Если в плазмолемме их нет, все процессы нарушаются. Дополнительно такие протеины могут участвовать в проведении нервного импульса, связываясь с нейромедиаторами.

Другие возможности

Помимо основных функций цитоплазматической мембраны, имеются дополнительные, которые изучены не так подробно, но играют важную роль. Матричная обеспечивает взаимодействие всех протеинов для более эффективного метаболизма в клетке и оболочке. Это позволяет построить новую пленку в случае ее повреждения.

Функция цитоплазматической мембраны

Механическая функция также важна. Она позволяет обеспечить автономность клетки и всех ее структур разного типа, поддержать связь между разными единицами тканей и предотвратить их разрыв. Клеточные стенки играют определяющую роль в обеспечении механической защиты. У животных эту работу выполняет межклеточное вещество.

Ферментативная функция осуществляется не в каждой цитолемме, поскольку некоторые клетки лишены специальных веществ. Однако в эпителиальных единицах тонкого кишечника человека и других млекопитающих содержится довольно большое количество пищеварительных ферментов, принимающих непосредственное участие в процессе переработки пищи.

Генерация и проведение потенциалов играет важную роль. Благодаря наличию цитолеммы, в клетке постоянно поддерживается определенное количество ионов калия и натрия. Первых в клетке гораздо больше, чем снаружи, вторых больше за пределами единицы и меньше внутри. Если изучить характеристику этих ионов в сравнительной таблице, можно увидеть, что они выполняют важнейшие функции, а при изменении концентрации наблюдается расстройство метаболических процессов.

Маркировка клетки

Маркировка клетки также осуществляется с участием цитоплазматической мембраны. На каждой из них во время микроскопического исследования можно увидеть антигены, выполняющие роль ярлыков или антенн. Благодаря этому, клетки с одинаковой маркировкой могут узнавать друг друга и действовать сообща при возникновении такой необходимости. Именно антенны позволяют клеткам иммунной системы распознавать чужеродные антигены и действовать против них для обеспечения защиты организма.

Благодаря дополнительным возможностям плазмоллемы, возможно существование всех клеток внутри одного организма и их постоянное взаимодействие.

Структура цитолеммы

Структура цитолеммы

Существуют более жесткие оболочки и эластичные, мягкие, в которых количество холестерола снижено. Помимо этого, вещество служит барьером, препятствуя переходу из клетки в клетку полярных молекул. Состав и ориентация протеинов в каждой мембране отличается, но специалисты определили, что без них пленка существовать не может.

В структуру плазмалеммы также входят аннулярные жиры, располагающиеся в непосредственной близости от протеинов и выделяющиеся вместе с ними из клетки. Без этих липидов протеины оболочки не могут выполнять свои функции. В большинстве случаев плазматическая мембрана асимметрична, то есть в разных ее частях количество липидов и протеинов отличается.

Каждая оболочка имеет органеллы. Они представляют собой участки цитоплазмы, связанные между собой. Наиболее часто встречаются следующие органеллы:

  • комплекс Гольджи;
  • вакуоли;
  • эндоплазматическая сеть; .

Разные клетки обладают индивидуальным составом органелл, но некоторые из них присутствуют в подавляющем большинстве единиц ткани. Благодаря своей структуре, мембраны способны к избирательной проницаемости. Некоторые вещества проходят через них свободно, другие — нет. Процесс регулируется самой оболочкой. Он может быть пассивным и активным. В первом случае в реакцию вступают интегральные белки, во втором требуются значительные энергетические затраты.

Значение клеточной оболочки

Если внимательно изучить строение и функции плазматической оболочки, можно понять ее роль и значение в нормальном функционировании всего организма. После получения точных сведений о работе мембраны ученые смогли подтвердить ее необходимость и первостепенную роль в организме.

Все органы животных и человека состоят из клеток

Все органы животных и человека состоят из клеток, поэтому палазмалемма имеет наиболее важное значение для всего организма. При ее повреждении клетка неспособна нормально существовать, нарушается целая цепь процессов. Именно поэтому специалисты и сегодня изучают цитоплазматическую мембрану, ее функции и процессы, в которых она принимает участие.

Плазматическая мембрана клетка представляет собой сеть липидов и белков, которая образует границу между содержимым клетки и наружной частью клетки. Это также просто называется клеточная мембрана, Основной функцией плазматической мембраны является защита клетки от окружающей ее среды. Он является полупроницаемым и регулирует материалы, которые входят и выходят из ячейки. Клетки всего живого имеют плазматические мембраны.

Функции плазменной мембраны

Физический барьер

Плазматическая мембрана окружает все клетки и физически отделяет цитоплазма, который является материалом, из которого состоит клетка, из внеклеточной жидкости вне клетки. Это защищает все компоненты клетки от внешней среды и позволяет отдельным действиям происходить внутри и снаружи клетки.

Плазматическая мембрана обеспечивает структурную поддержку клетки. Это привязывает цитоскелет, которая представляет собой сеть белковых нитей внутри клетки, которые удерживают все части клетки на месте. Это придает клетке форму. Некоторые организмы, такие как растения и грибы иметь клеточная стенка в дополнение к мембране. Клеточная стенка состоит из таких молекул, как целлюлоза. Это обеспечивает дополнительную поддержку ячейке, и именно поэтому растение клетки не лопаются, как клетки животных, если в них диффундирует слишком много воды.

Селективная проницаемость

Плазматические мембраны избирательно проницаемы (или полупроницаемы), что означает, что через них могут проходить только определенные молекулы. Вода, кислород и углекислый газ могут легко проходить через мембрану. Обычно ионы (например, натрий, калий) и полярные молекулы не могут проходить через мембрану; они должны проходить через определенные каналы или поры в мембране, а не проходить сквозь них. Таким образом, мембрана может контролировать скорость, с которой определенные молекулы могут входить и выходить из клетки.

Эндоцитоз и экзоцитоз

Эндоцитоз это когда клетка поглощает относительно большее содержимое, чем отдельные ионы или молекулы, которые проходят через каналы. Через эндоцитоз клетка может принимать большое количество молекул или даже целых бактерии из внеклеточной жидкости. Экзоцитоз – это когда клетка высвобождает эти материалы. Клеточная мембрана играет важную роль в обоих этих процессах. Форма самой мембраны изменяется, чтобы позволить молекулам входить или выходить из клетки. Он также образует вакуоли, маленькие пузырьки мембраны, которые могут транспортировать много молекул одновременно, чтобы транспортировать материалы в разные места клетки.

Сотовая Сигнализация

Структура плазменной мембраны


Белки

Белки вклиниваются между липидами, которые составляют мембрану, и эти трансмембранные белки позволяют молекулам, которые иначе не могли бы проникнуть в клетку, образовать каналы, поры или ворота. Таким образом, клетка контролирует поток этих молекул, когда они входят и выходят. Белки в клеточной мембране играют роль во многих других функциях, таких как клеточная сигнализация, распознавание клеток и активность ферментов.

углеводы

Углеводы также находятся в плазматической мембране; в частности, большинство углеводов в мембране являются частью гликопротеинов, которые образуются, когда углевод присоединяется к белку. Гликопротеины играют роль во взаимодействиях между клетками, включая клетки адгезия процесс, посредством которого клетки прикрепляются друг к другу.

Жидкая мозаичная модель

Технически клеточная мембрана представляет собой жидкость. При комнатной температуре он имеет примерно такую ​​же консистенцию, что и растительное масло. Липиды, белки и углеводы в плазматической мембране могут свободно диффундировать через клеточную мембрану; они по существу плавают по всей его поверхности. Это известно как модель жидкой мозаики, который был придуман S.J. Певец и Г. Л. Николсон в 1972 году.

  • Клеточная стенка – Структура, которая окружает плазматическую мембрану клеток растений и грибов и обеспечивает дополнительную поддержку этим клеткам.
  • фосфолипидов – а молекула который образует характерный двойной слой плазматической мембраны.
  • Полупроницаемые – пропускание только определенных молекул из-за химических свойств мембраны.
  • Жидкая мозаичная модель – модель, которая описывает состав плазматической мембраны и то, как фосфолипиды, белки и углеводы свободно перемещаются в ней.

викторина

1. Какой тип молекулы образует двойной слой плазматической мембраны?A. ФосфолипидыB. Ионные КаналыC. РибосомыD. Дезоксирибонуклеиновая кислота

Ответ на вопрос № 1

верно. Фосфолипиды образуют двойной слой плазматической мембраны, самопроизвольно располагаясь таким образом, когда они находятся в воде (воде). решение, Ионные каналы также находятся в мембране, но они не ответственны за формирование двойного слоя. Рибосомы и дезоксирибонуклеиновая кислота находятся внутри клетки; рибосомы образуют белки, а дезоксирибонуклеиновая кислота – это ДНК, генетический материал.

Ответ на вопрос № 2

D верно. Модель Fluid Mosaic описывает жидкоподобное движение липидов, белков и углеводов, которые составляют плазматическую мембрану. Эти компоненты свободно перемещаются по его поверхности.

3. Что НЕ является функцией плазматической мембраны?A. Для генерации энергии для питания клетокB. Для защиты клетки от окружающей средыC. Для облегчения сотовой связиD. Чтобы контролировать скорость определенных молекул, входящих и выходящих из клетки

Ответ на вопрос № 3

верно. Варианты B, C и D являются функциями плазматической мембраны. митохондрия является частью клетки, которая генерирует энергию.


Клеточная мембрана – это плоскостная структура, из которой построена клетка. Она присутствует у всех организмов. Её уникальные свойства обеспечивают жизнедеятельность клеток.

Виды мембран

Можно выделить три вида клеточных мембран:

  • наружная;
  • ядерная;
  • мембраны органоидов.

Наружная цитоплазматическая мембрана создаёт границы клетки. Её не надо путать с клеточной стенкой или оболочкой, имеющейся у растений, грибов и бактерий.

Отличие клеточной стенки от клеточной мембраны в значительно большей толщине и преобладании защитной функции над обменной. Мембрана располагается под клеточной стенкой.

Ядерная мембрана отделяет от цитоплазмы содержимое ядра.

которые читают вместе с этой





Среди органоидов клетки есть такие, форма которых образована одной или двумя мембранами:

  • митохондрии;
  • пластиды;
  • вакуоли;
  • комплекс Гольджи;
  • лизосомы;
  • эндоплазматическая сеть (ЭПС).

Строение мембраны

По современным представлениям структура клеточной мембраны описывается с помощью жидкостномозаичной модели. Основу мембраны составляет билипидный слой – два уровня молекул липидов, образующих плоскость. С обеих сторон на билипидном слое расположены молекулы белков. Некоторые белки погружены в билипидный слой, некоторые проходят через него.

Клеточная мембрана

Рис. 1. Клеточная мембрана.

Животные клетки на поверхности мембраны имеют комплекс углеводов. При изучении клетки под микроскопом отмечено, что мембрана находится в постоянном движении и неоднородна по строению.

Мембрана является мозаикой и в морфологическом, и в функциональном смысле, т. к. её различные участки содержат различные вещества и имеют разные физиологические свойства.

Свойства и функции

Любая пограничная структура осуществляет защитные и обменные функции. Это касается и всех видов мембран.

Осуществлению данных функций способствуют такие свойства, как:

  • пластичность;
  • высокая способность к восстановлению;
  • полупроницаемость.

Свойство полупроницаемости заключается в том, что одни вещества не пропускаются мембраной, а другие пропускаются свободно. Так осуществляется контролирующая функция мембраны.

Также наружная мембрана обеспечивает связь между клетками за счёт многочисленных выростов и выделения клеящего вещества, заполняющего межклеточное пространство.

Транспорт веществ через мембрану

Поступление веществ через наружную мембрану идёт следующими путями:

  • через поры с помощью ферментов;
  • через мембрану непосредственно;
  • пиноцитозом;
  • фагоцитозом.

Первыми двумя способами транспортируются ионы и мелкие молекулы. Крупные молекулы поступают в клетку путём пиноцитоза (в жидком состоянии) и фагоцитоза (в твёрдом виде).

Схема пино- и фагоцитоза

Рис. 2. Схема пино- и фагоцитоза.

Мембрана обхватывает пищевую частицу и замыкает её в пищеварительную вакуоль.

Вода и ионы проходят в клетку без затрат энергии, пассивным транспортом. Крупные молекулы перемещаются активным транспортом, с затратой энергетических ресурсов.

Внутриклеточный транспорт

От 30 % до 50 % объёма клетки занимает эндоплазматическая сеть. Это своеобразная система полостей и каналов, связывающая все части клетки и обеспечивающая упорядоченную внутриклеточную транспортировку веществ.

Рисунок ЭПС

Рис. 3. Рисунок ЭПС.

Таким образом, в ЭПС сосредоточена значительная масса клеточных мембран.

Что мы узнали?

Мы выяснили что такое клеточная мембрана в биологии. Это структура, на основе которой построены все живые клетки. Её значение в клетке заключается в: отграничении пространства органоидов, ядра и клетки в целом, обеспечении избирательного поступления веществ в клетку и ядро. В состав мембраны входят молекулы липидов и белков.

Читайте также: