Первый закон термодинамики энтальпия кратко

Обновлено: 07.07.2024

Первое начало термодинамики, или закон сохранения энергии, утверждает: приращение внутренней энергии системы (DU) не зависит от пути, по которому система перешла из начального состояния в конечное, т. е. не зависит от того, с помощью какого именно процесса из множества возможных произошел этот переход.

Энтальпи́я, — термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц. Величина H=U+p⋅V называется энтальпией или теплосодержанием системы.

Энтальпия, в отличие от внутренней энергии, учитывает работу расширения или

сжатия газа. Если в ходе процесса тепло выделяется (Qp>0, экзотермический

Закон Гесса: Тепловой эффект реакции не зависит от промежуточных стадий и определяется только начальным и конечным состоянием системы.

Следствия: 1. Тепловой эффект разложения какого-либо соединения равен, но противоположен по знаку тепловому эффекту образования этого соединения. 2. Если две реакции имеют одинаковое начальное состояние и разные конечные, то разность их тепловых эффектов равна тепловому эффекту перехода из одного конечного состояния в другое. 3. Если две реакции из различных начальных состояний приходят к одному конечному, то разность их тепловых эффектов равна тепловому эффекту перехода из одного начальное состояние в другое. 4. Тепловой эффект реакции равен алгебраической сумме теплот образования продуктов реакции минус алгебраическая сумма теплот образования исходных веществ.

Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях.

Факторы, определяющие направление самопроизвольного протекания химических процессов (энергетический и энтропийный ).Энтропия. Второе и третье начала термодинамики. Определение изменения энтропии в ходе реакции.

Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ΔH), и энтропийным T ΔS, обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж): ΔG = ΔH – T ΔS

Энтропи́я — мера беспорядка системы, состоящей из многих элементов. Изменение общего количества тепла ΔQ к величине абсолютной температуры T (то есть изменение тепла при постоянной температуре):

Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому. Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая невозможность перехода всей внутренней энергии системы в полезную работу. Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения. A = Q1 – Q2

Третье начало термодинамики, тепловой закон Нернста, закон термодинамики, согласно которому энтропия S любой системы стремится к конечному для неё пределу, не зависящему от давления, плотности или фазы, при стремлении температуры (Т) к абсолютному нулю. Т. н. т. позволяет находить абсолютное значения энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики)

Вычисление изменения энтропии: N2(г) +3H2 = 2NH3(г) ;;ΔS = 2*S(NH3) - S(N2) - 3*S(H2) , Дж/(моль*К)

Энергия Гиббса. Соотношение между энергией Гиббса ,энтальпией и энтропией. Стандартная энергия Гиббса образования вещества. Изменение энергии Гиббса в ходе реакции и направление самопроизвольного протекания реакции.

Энергия Гиббса— это термодинамический потенциал следующего вида:

G = U+PV-TS, где U — внутренняя энергия, P — давление, V — объем, T — абсолютная температура, S — энтропия.

Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)

Энергия Гиббса определяется через энтальпию Н и энтропию S с помощью соотношений: G = H – S, ΔG = ΔH – ΔS

Стандартной энергией Гиббса образования вещества называют стандартную энергию Гиббса реакции образования 1 моль данного соединения из простых веществ, находящихся в термодинамически устойчивых модификациях, которая проведена в стандартных термодинамических условиях.

Характер изменения энергии Гиббса позволяет судить о принципиальной возможности осуществления процесса. При ΔG 0 процесс протекать не может (иными словами, если энергия Гиббса в исходном состоянии системы больше, чем в конечном, то процесс принципиально может протекать, если наоборот — то не может). Если же ΔG = 0, то система находится в состоянии химического равновесия.

Существует полезное соотношение, связывающее изменение свободной энергии Гиббса в ходе химической реакции с её константой равновесия K :

Вообще говоря, любая реакция может быть рассмотрена как обратимая (даже если на практике она таковой не является). При этом константа равновесия определяется как

где k — константа скорости прямой реакции, k-1 — константа скорости обратной реакции.

Скорость химической реакции. Гомогенные и гетерогенные реакции. Факторы, определяющие скорость химических реакций. Закон действия масс. Константа скорости реакции. Влияние температуры на скорость химических реакций. Энергия активации, активированный комплекс. Энергетическая диаграмма и тепловой эффект реакции. Уравнение Аррениуса.

Скорость химической реакции — изменение количества вещества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым понятием химической кинетики. Скорость химической реакции — величина всегда положительная

Гомогенные реакции протекают в пределах одной фазы, например, в смеси газов или в растворе.

Гетерогенные реакции протекают на границе раздела фаз, например, твердой и жидкой, твердой и газообразной

Факторы :1) Влияние концентраций реагирующих веществ. Чтобы осуществлялось химическое взаимодействие веществ А и В, их молекулы (частицы) должны столкнуться. Чем больше столкновений, тем быстрее протекает реакция. 2) Влияние температуры . Зависимость скорости реакции от температуры определяется правилом Вант-Гоффа: При повышении температуры на каждые 10 о скорость большинства реакций увеличивается в 2-4 раза. 3) Катализатор 4) Природа реагирующих веществ.

Действия масс закон — устанавливает соотношение между массами реагирующих веществ в химических реакциях при равновесии.

Константа скорости реакции— коэффициент пропорциональности в кинетическом уравнении. Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции при концентрации каждого из реагирующих веществ равной 1 моль/л. Константа скорости реакции зависит от температуры, от природы реагирующих веществ, но не зависит от их концентрации.

Энергия активации — минимальное количество энергии, которое требуется сообщить системе (выражается в джоулях на моль), чтобы произошла реакция.

Активированный комплекс, группировка атомов в решающий момент элементарного акта химической реакции. Понятием об активированном комплексе широко пользуются в теории скоростей химических реакций.

Тепловой эффект химической реакции

— отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Уравне́ние Арре́ниуса устанавливает зависимость константы скорости химической реакции k от температуры T

Здесь A характеризует частоту столкновений реагирующих молекул, R — универсальная газовая постоянная.

В рамках теории активных соударений A зависит от температуры, но эта зависимость достаточно медленная:

В рамках теории активированного комплекса получаются другие зависимости A от температуры, но во всех случаях более слабые, чем экспонента.

Термодинамика — раздел физики, в котором изучаются процессы изменения и превращения внутренней энергии тел, а также способы использования внутренней энергии тел в двигателях.

1. Определение первого закона термодинамики

Термодинамика — раздел физики, в котором изучаются процессы изменения и превращения внутренней энергии тел, а также способы использования внутренней энергии тел в двигателях. Собственно, именно с анализа принципов первых тепловых машин, паровых двигателей и их эффективности и зародилась термодинамика. Можно сказать, что этот раздел физики начинается с небольшой, но очень важно работы молодого французского физика Николя Сади Карно.

Самым важным законом, лежащим в основе термодинамики является первый закон или первое начало термодинамики. Чтобы понять суть этого закона, для начала, вспомним что называется внутренней энергией. ВНУТРЕННЯЯ ЭНЕРГИЯ тела — это энергия движения и взаимодействия частиц, из которых оно состоит. Нам хорошо известно, что внутреннюю энергию тела можно изменить, изменив температуру тела. А изменять температуру тела можно двумя способами:

  1. совершая работу (либо само тело совершает работу, либо над телом совершают работу внешние силы);
  2. осуществляя теплообмен — передачу внутренней энергии от одного тела к другому без совершения работы.

Нам, также известно, что работа, совершаемая газом, обозначается Аг, а количество переданной или полученной внутренней энергии при теплообмене называется количеством теплоты и обозначается Q. Внутреннюю энергию газа или любого тела принято обозначать буквой U, а её изменение, как и изменение любой физической величины, обозначается с дополнительным знаком Δ, то есть ΔU.

Физика. 10 класс. Базовый уровень. Учебник

Большое количество красочных иллюстраций, графиков и схем, разнообразные вопросы и задания, а также дополнительные сведения и любопытные факты способствуют эффективному усвоению учебного материала.

Сформулируем ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ для газа. Но, прежде всего, отметим, что когда газ получает некоторое количество теплоты от какого-либо тела, то его внутренняя энергия увеличивается, а когда газ совершает некоторую работу, то его внутренняя энергия уменьшается. Именно поэтому первый закон термодинамики имеет вид:

Так как работа газа и работа внешних сил над газом равны по модулю и противоположны по знаку, то первый закон термодинамики можно записать в виде:

Понять суть этого закона довольно просто, ведь изменить внутреннюю энергию газа можно двумя способами: либо заставить его совершить работу или совершить над ним работу, либо передать ему некоторое количество теплоты или отвести от него некоторое количество теплоты.

2. Первый закон термодинамики в процессах

Применительно к изопроцессам первый закон термодинамики может быть записан несколько иначе, учитывая особенности этих процессов. Рассмотрим три основных изопроцесса и покажем, как будет выглядеть формула первого закона термодинамики в каждом из них.

  1. Изотермический процесс — это процесс, происходящий при постоянной температуре. С учётом того, что количество газа также неизменно, становится ясно, что так как внутренняя энергия зависит от температуры и количества газа, то в этом процессе она не изменяется, то есть U = const, а значит ΔU = 0, тогда первый закон термодинамики будет иметь вид: Q = Aг.
  2. Изохорный процесс — это процесс, происходящий при постоянном объёме. То есть в этом процессе газ не расширяется и не сжимается, а значит не совершается работа ни газом, ни над газом, тогда Аг = 0 и первый закон термодинамики приобретает вид: ΔU = Q.
  3. Изобарный процесс — это процесс, при котором давление газа неизменно, но и температура, и объём изменяются, поэтому первый закон термодинамики имеет самый общий вид: ΔU = QАг.
  4. Адиабатный процесс — это процесс, при котором теплообмен газа с окружающей средой отсутствует (либо газ находится в теплоизолированном сосуде, либо процесс его расширения или сжатия происходит очень быстро). То есть в таком процессе газ не получает и не отдаёт количества теплоты и Q = 0. Тогда первый закон термодинамики будет иметь вид: ΔU = —Аг.

3. Применение

Первое начало термодинамики (первый закон) имеет огромное значение в этой науке. Вообще понятие внутренней энергии вывело теоретическую физику 19 века на принципиально новый уровень. Появились такие понятия как термодинамическая система, термодинамическое равновесие, энтропия, энтальпия. Кроме того, появилась возможность количественного определения внутренней энергии и её изменения, что в итоге привело учёных к пониманию самой природы теплоты, как формы энергии.

Ну, а если говорить о применении первого закона термодинамики в каких-либо задачах, то для этого необходимо знать два важных факта. Во-первых, внутренняя энергия идеального одноатомного газа равна: а во-вторых, работа газа численно равна площади фигуры под графиком данного процесса, изображённого в координатах pV. Учитывая это, можно вычислять изменение внутренней энергии, полученное или отданное газом количество теплоты и работу, совершённую газом или над газом в любом процессе. Можно также определять коэффициент полезного действия двигателя, зная какие процессы в нём происходят.

Мерой внутренней энергии хаотического теплового (Броун) движения частиц в теле служит температура. Если тело А, вступая в контакт с телом В, отдает ему теплоту, то тело А имеет более высокую температуру, чем тело В. В тоже время нулевое начало термодинамики утверждает, что если тело А находится в тепловом равновесии (имеет одинаковую температуру) с телом В и телом С, то температура тел В и С также одинакова. Это начало лежит в основе измерения температуры при помощи термометра. При тепловом равновесии дальнейший обмен тепловой энергией невозможен.

Первое начало термодинамики, или закон сохранения энергии, гласит, что энергия не может возникать из ничего и исчезать, а только переходит из одной формы в другую. Например, внутренняя энергия, содержащаяся в веществе, может превращаться в тепловую, световую (пламя), электрическую (химический аккумулятор) и т.д.

Например, сообщим системе некоторое количество тепловой энергии Q, которая расходуется на совершение работы A и на изменение состояния внутренней энергии системы ΔU:

Теплота, выделяемая системой, и теплота, поглощаемая ею, имеют противоположные знаки. Если система поглощает теплоту в данном процессе, то Q положительна, если выделяет – отрицательна. Работа (А) положительна, если она совершается системой над окружающей средой; если же работа совершается над системой, то А отрицательна.

Энтальпия: функция состояния системы, приращение которой равно теплоте, полученной системой в изобарном процессе.

Тепловой эффект реакции, протекающей в изобарическом режиме, равен разности между суммой энтальпий продуктов реакции и суммой энтальпий исходных веществ.

Qр=Нпрод – Нисх = ΔН

Для экзотермической реакции ΔН 0.

Стандартная энтальпия образования вещества (ΔH ° обр) – тепловой эффект реакции образования 1 моль вещества из простых веществ, при условии, что все участники реакции находятся в стандартном состоянии.

Стандартная энтальпия сгорания вещества (ΔH°сгор) – тепловой эффект реакции окисления (сгорания) 1 моля вещества достаточным количеством кислорода с образованием обычных продуктов полного окисления при стандартных условиях.

ΔH°сгор вещества, содержащего С, Н, О и N, - тепловой эффект реакции окисления 1 моля этого вещества кислородом с образованием СО2, жидкой Н2О и N2.

Калорийность продуктов питания – суммарное количество энергии, выделяющееся при полном окислении 1 г продукта питания (определяется в калориметре). Калорийность продуктов питания: углеводы – 4 ккал/г, белки – 4 ккал/г, жиры – 9 ккал/г. Зная эти величины и %-е содержание белков, жиров и углеводов в каком-либо продукте питания, можно рассчитать его калорийность, что является важным при составлении диет при разных заболеваниях.

Стандартная энтальпия реакции - это разность между суммой энтальпий образования продуктов реакции и суммой энтальпий образования реагентов с учетом стехиометрических количеств веществ:

ΔH = ∑(nΔH)продукты - ∑(nΔH)реагенты

Для некоторой реакции: nAA + nBB = nCC + nDD

стандартная энтальпия реакции равна:

Пример. Стандартная энтальпия следующей реакции:

Закон Гесса. Применение первого начала термодинамики

К биосистемам

Закон Гесса (1836 г.): изменение энтальпии (тепловой эффект) не зависит от пути реакции, а определяется только свойствами реагентов и продуктов.

Покажем это на следующем примере:

С (графит) + 1/2 O2(г.) = CO(г.); ΔH2 = –110,5 кДж

Здесь энтальпия образования CO2 не зависит от того, протекает ли реакция в одну стадию или в две, с промежуточным образованием CO (ΔH1 = ΔH2 + ΔH3). Или иными словами сумма энтальпий химических реакций в цикле равна нулю.

Закон Гесса позволяет вычислить тепловые эффекты тех реакций, для которых прямое измерение невозможно. Например, рассмотрим реакцию:

Экспериментально легко измерить следующие тепловые эффекты:

Пользуясь этими значениями, можно получить:

Следствия из закона Гесса:

1. Тепловой эффект кругового процесса равен нулю. Круговой процесс - система, выйдя из начального состояния, в него же и возвращается.

2. Тепловой эффект реакции равен сумме теплот образования продуктов реакции за вычетом суммы теплот образования начальных (исходных) веществ.

ΔH°х.р. = ΣΔH°обр. прод. – ΣΔH°обр. исх.

3. Тепловой эффект реакции равен сумме теплот сгорания исходных веществ за вычетом суммы теплот сгорания конечных продуктов.

Определение первого закона термодинамики (4 формулировки):

Энергия не может быть создана или уничтожена (закон сохранения энергии), она лишь переходит из одного вида в другой в различных физических процессах. Отсюда следует, что внутренняя энергия изолированной системы остается неизменной.

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы против внешних сил.

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданной системе и не зависит от способа, которым осуществляется этот переход.

Изменение внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты, переданной системе, и работой, совершенной системой над внешними силами.

Первый закон термодинамики в математическом виде:

\[ \Delta Q=\Delta U+A\ \qquad (1), \]

где \( \Delta Q \) – количество теплоты, которое получает термодинамическая система; \( \Delta U \) – изменение внутренней энергии рассматриваемой системы; A – работа, которую выполняет система над внешними телами (против внешних сил).

Первый закон термодинамики в дифференциальном виде:

\[ \delta Q=dU+\delta A\ \qquad (2), \]

где \( \delta Q \) – элемент количества теплоты, который получает система; \( \delta A \) – бесконечно малая работа, которую выполняет термодинамическая система; dU – элементарное изменение внутренней энергии, рассматриваемой системы. Следует обратить внимание на то, что в формуле (2) dU – элементарное изменение внутренней энергии является полным дифференциалом, в отличие от \( \delta Q \) и \( \delta A \) .

Количество теплоты считают положительным, если система тепло получает и отрицательным, если тепло отводится от термодинамической системы. Работа будет больше нуля, если ее совершает система, и работа будет считаться отрицательной, если она совершается над системой внешними силами.

В то случае, если система вернулась в первоначальное состояние, то изменение ее внутренней энергии будет равно нулю:

\[\Delta U=0\ \qquad (3)\]

В таком случае в соответствии с первым законом термодинамики мы имеем:

\[\Delta Q=A\ \qquad (4)\]

Выражение (4) означает, что невозможен вечный двигатель первого рода. То есть, принципиально нельзя создать периодически действующую систему (тепловой двигатель), совершающую работу, которая была бы больше, чем количество теплоты, полученное системой извне. Положение о невозможности вечного двигателя первого рода, также является одним из вариантов формулировки первого закона термодинамики.

Первый закон термодинами гласит, что энергия не может быть создана или уничтожена . Таким образом, энергия системы (замкнутой) - постоянна. Тем не менее, энергия может быть передана от одного элемента системы другому. Рассмотрим замкнутую систему, изолированную от остальных.

Передача энергии между различными подсистемами в ней может быть описана как :

где: E1 = начальная энергия, E2 = конечная энергия

Внутрення энергия включает :

  • Кинетическую энергию движения атомов
  • Потенциальную энергию хранящуюся в химических связях
  • Гравитационную энергию системы

Первый закон является основой для термодинамической науки и инженерного анализа.

Базируется на возможных типах обмена (энергии), ниже приведены 3 типа систем:

  • пред - изолированные системы (isolated systems): отсутствует обмен элементами системы или энергией
  • закрытые системы (closed systems): отсутствует обмен элементами системы, но присутствует некоторый обмен энергией
  • открытые системы (open systems): возможен обмен как элементами системы, так и энергией

Первый закон термодинамики помогает использовать ключевые концепции внутренней энергии (internal energy), тепла (heat), и работы системы (system work). которые широко используются в описании тепловых систем (heat engines).

  • Внутренняя энергия ( Internal Energy) - Внутренняя энергия определяется как энергия случайных, находящихся в неупорядченном движении молекул. Энергия молекул находится в диапазоне от высокой, необходимой для движения, до заметной лишь с помощью микроскопа энергии на молекулярном или атомном уровне. Например, у стакана с водой комнатной температы, стоящего на столе нет, на первый взгляд, никакой энергии: ни кинетической, ни потенциальной относительно стола. Но, с помощью микроскопа становится заметна "бурлящая" масса быстро двигающихся молекул. Если выплеснуть воду из стакана, эта микроскопическая энергия не обязательно заметно изменится, когда мы усредним добавленную кинетическую энергию на все молекулы воды.
  • Тепло - Тепло может быть определено, как энергия, передаваемая от объекта с более высокой температурой к объекту с менее высокой температурой. Сам по себе объект не обладает "теплом"; соответствующий термин для микроскопической энергии объекта - внутренняя энергия. Внутренняя энергия может увеличиваться путем переноса энергии к объекту от объекта, имеющего температуру выше - этот процесс называется нагревом.
  • Работа - Когда работа совершается термодинамической системой (чаще всего это газ, который совершает работу), то работа совершенная газом при постоянном давлении определяется как : W = p dV, где W - работа, p - давление, а dV -изменение объема.
    В случаях когда давление не является постоянным, работа может быть представлена интегральным образом, как площадь поверхности под кривой в координатах давление, объем, которые представляют происходящий процесс.

Изменение внутренней энергии системы равно теплу (добавленному системе) минус работа, совершенная системой

где: dE - изменение внутренней энергии, Q - добавленное тепло, W - работа системы

1й закон не дает информации о характере процесса и не определяет конечного состояния равновесия. Интуитивно мы понимаем, что энергия переходит от объекта с более высокой температурой к объекту с менее высокой температурой. Таким образом, 2й закон нам нужен для получения информации о характере процесса.

Энтальпия

Энтальпия это термодинамический потенциал, используемый в химической термодинамике реакций и не циклических процессов, однозначная функция состояния термодинамической системы при независимых параметрах энтропии и давления, связана с внутренней энергией соотношением, приведенным ниже. Это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия определяется как:

где: H - энтальпия, U - внутренняя энергия, P - давление, V - объем системы

При постоянном давлении изменение энтальпии равно количеству теплоты, подведенной к системе, поэтому энтальпию часто называют тепловой функцией или теплосодержанием. В состоянии термодинамического равновесия энтальпия системы минимальна.

Энтальпия является точно измеряемым параметром, когда определены способы выражения трех других поддающихся точному определению параметров формулы выше.

Энтропия

Термин "энтропия" - величина, характеризующая степень неопределенности системы.

Однако, в термодинамике это понятие используется для определения связанной энергии системы. Энтропия определяет способность одной системы влиять на другую. Когда объекты пересекают нижнюю границу энергетического уровня необходимого для воздействия на окружающую среду, энтропия возрастает.Энтропия связана со вторым законом термодинамики.

Энтропия (обычно обозначается S ), функция состояния термодинамической системы, изменение которой dS в равновесном процессе равно отношению количества теплоты dQ , сообщенного системе или отведенного от нее, к термодинамической температуре Т системы.

в символьном виде записывается, как

где: dS - изменение термодинамической системы, dQ - количество теплоты, сообщенное системе, T - термодинамическая температура системы

Неравновесные процессы в изолированной системе сопровождаются ростом энтропии, они приближают систему к состоянию равновесия, в котором S максимальна (закон неубывания энтропии).

Читайте также: