Основные компоненты видеокарты кратко

Обновлено: 30.06.2024

Считается, что прадедушкой современной видеокарты (также известной как графическая плата, видеоадаптер, графический адаптер, видеоакселератор) является адаптер MDA (Monochrome Display Adapter), представленный в 1981 году для IBM PC. Видеокарта того времени имела 4Кбайт видеопамяти, работала только с текстовой информацией и с разрешением 720х350 точек (80х25 символов), а цвет букв зависел от типа монитора: белые, изумрудные или янтарные. Дальнейшее развитие MDA было выпущено в 1982 году известной компанией Hercules и называлось Hercules Graphics Controller (HGC), но и эта видеокарта не позволяла работать с графикой. Стоит заметить, что длина карты HGC была более 30 см.

Hercules Graphics Controller длиной 33,5 см

Hercules Graphics Controller длиной 33,5 см

И только с выходом видеоадаптера CGA (Color Graphics Adapter), который стал основой для последующих стандартов, появилась возможность работать с цветной графической информацией в разрешении 320х200 (16 цветов) и 640х200 (монохромный режим – то есть чёрно-белый), при этом объём памяти видеокарты уже равнялся 16 Кбайт. Следующий стандарт для видеокарт – Enhanced Graphics Adapter (EGA), разработанный в 1984 году, позволял при разрешении 640x350 работать с 16 цветами из 64-цветной палитры одновременно. Ёмкость видеопамяти составляла всё те же 16 Кбайт, а также была заявлена совместимость с CGA и MDA.

Все описанные выше видеокарты подключались к монитору через 9-контактный разъём и передавали информацию в цифровом виде. Только с выходом адаптера стандарта MCGA (Multicolor Graphics Adapter – многоцветный графический адаптер) произошёл переход на аналоговый сигнал, так как палитра была увеличена до 262144 цветов (по 64 оттенка на каждый из базовых цветов Red/Green/Blue). Разрешение экрана, выдаваемое MCGA при работе с текстом, было 640х400 с 256 одновременно отображаемыми цветами, для графических приложений – 320х200 точек. Разъём для подключения к монитору приобретает привычный для нас вид – 15-контактный D-Sub. Следующим витком эволюции компьютерной видеоподсистемы является VGA (Video Graphics Array – графический видеомассив), который появился в 1987 году. Адаптеры VGA уже поддерживали разрешение 640х480 и 256 цветов (из палитры в 262144 цвета), объём памяти составлял 256 Кбайт, а соотношение сторон экрана равнялось привычным сейчас 4:3. Именно с этого стандарта пошло множество знакомых сейчас простонародных названий: VGA'шный монитор, VGA'шный разъём и так далее. Более того, именно из этой аббревиатуры развились сокращённые названия разрешений (например, теперь считается, что VGA – это 640х480 точек, SVGA – 800х600, XGA – 1024х768 и так далее).

И наконец, в 1991 году появляются первые адаптеры SVGA (Super VGA), позволяющие работать при разрешении 800х600 и 1024х768 точек, количество отображаемых цветов увеличилось до 65536 (High Color) и 16,7 млн (True Color). Также появляется возможность пользователю задать частоту обновления экрана монитора – до этого момента она была жёстко привязана к определённому значению. Память видеоадаптеров SVGA была уже более 1 Мбайт.

Для связи с видеокартой и передачи необходимых данных в самом начале эры IBM PC использовался интерфейс XT-Bus, потом на смену ему пришла шина ISA (Industry Standard Architecture – архитектура промышленного стандарта). Но и ISA уже не хватало для относительно большого потока данных. Тогда она была дополнена интерфейсом VLB (или VESA), который в итоге был заменён шиной PCI (Periferal Component Interconnect – объединение внешних компонентов). PCI является более универсальной шиной, через которую можно было подключать множество других контроллеров, не только видеоадаптеры, к тому же она способна работать и на других платформах.

С развитием графических оболочек операционных систем (например, Windows) видеокарты взяли на себя часть вычислений по окончательному выводу изображения на экран, которые обычно производил центральный процессор: перемещение окон, рисование линий, шрифтов и другие. С появлением трёхмерных игр видеокарты обзавелись 3D-акселератором, который сперва имел вид отдельной платы, вставляемой в свободный разъём на материнской плате, а позже уже был интегрирован дополнительным чипом на видеокарту – до этого момента видеоадаптер позволял работать только с двухмерной графикой (2D). Далее, с развитием технологий производства полупроводников, графический чип стал содержать в себе все необходимые блоки, отвечающие как за 2D-, так и 3D-графику. Для максимальной универсальности и совместимости видеокарт с программным обеспечением компания Microsoft создаёт API DirectX (API – интерфейс программирования приложений), работающий в среде Windows. Так как мир не однополярный и кроме Windows существуют и другие операционные системы, был разработан альтернативный API – мультиплатформенный OpenGL, а также его дополнение для звука – OpenAL.

Именно в те времена доминирующая на тот момент компания 3dfx (все активы 3dfx после банкротства перешли к NVIDIA) представляет технологию SLI (Scan Line Interleave – чередование строчек), благодаря которой появилась возможность объединить две подобные видеокарты с шиной PCI для формирования изображения методом чередования строк, что увеличивало быстродействие графической подсистемы и разрешение экрана. Действительно, всё новое – это хорошо (в данном случае – очень хорошо) забытое старое: спустя почти 15 лет NVIDIA возродила SLI.

Видеокарта Quantum3D Obsidian X-24 на базе двух Voodoo2 в режиме SLI

Видеокарта Quantum3D Obsidian X-24 на базе двух Voodoo2 в режиме SLI

Ближе к концу 90-х прошлого века видеоадаптеры получают собственную шину – AGP (Accelerated Graphics Port – ускоренный графический порт) и приобретают черты современных видеокарт: объём локальной видеопамяти достиг десятков мегабайт, появилась возможность выводить видеоизображение на ещё один приёмник, например, телевизор. Из-за ограничений шины PCI, а именно её разновидностью является AGP, производителям графических процессоров пришлось в итоге отказаться от технологий, подобных SLI (о современных компьютерных шинах вы можете узнать в этом материале).

Видеокарта на базе SiS315 с шиной AGP

Видеокарта на базе SiS315 с шиной AGP

Видеокарта, как и любой другой продукт, рассчитанный на розничный рынок, поставляется в коробке (Retail-версия) как обычной, так и оригинальной формы. Изредка, в последнее время всё реже, покупателю предлагают приобрести продукт в OEM- или так называемой bulk-комплектации, то есть без коробки: антистатический пакет с видеокартой, необходимые кабели и переходники, диск с драйвером. Такая комплектация предназначена для продажи только компаниям – сборщикам компьютеров и не должна попадать в розничную продажу. Естественно, никакой разницы в видеокартах нет, не хватает лишь красивой коробки, которая обеспечивает заметную долю удовольствия от приобретения.

Стандартная упаковка видеокарты

Стандартная упаковка видеокарты

В комплект поставки современного видеоадаптера обычно входят всевозможные переходники, инструкция, диск с драйверами, иногда и с дополнительным программным обеспечением, а также различные бонусы (но не обязательно): игры, чехлы, джойстики.

Кабели и переходник

Кабели и переходник

В качестве основного примера мы рассмотрим видеокарту производства Chaintech, построенную на базе GeForce 7600GT и оснащённую 256 Мбайт видеопамяти.

Видеокарта Chaintech GeForce 7600GT

Видеокарта Chaintech GeForce 7600GT

Видеокарта, как и материнская плата, представляет собой очень сложное устройство, но меньших размеров и с небольшим количеством разъёмов. Размеры видеокарт примерно зависят от того класса, к которому они относятся, так как имеют схематические решения различной сложности: карты начального – Low-End – класса имеют длину около 15-18 см, Middle-End – в среднем 20 см, а длина High-End достигает 25-27 см. Конечно, это не регламентированное требование, а результат того обстоятельства, что мощные контроллеры требуют более сложного набора сопутствующих компонентов. Печатная плата видеоадаптера состоит из нескольких слоев, каждый из которых содержит тонкие токопроводящие дорожки, компоненты видеокарты устанавливаются только на верхних слоях: лицевой и обратной. И ни в коем случае нельзя делать дополнительные отверстия на плате – прецеденты были, и не один раз, – видеокарта сразу же выйдет из строя. С каждой стороны плата покрыта диэлектрическим лаком и усеяна множеством мелких элементов (резисторы, конденсаторы), так что обращаться с видеоадаптером необходимо аккуратно, чтобы не повредить эти элементы.

Все дорожки на плате объединяют между собой графическое ядро (GPU – графический процессор, видеоядро), видеопамять, раздельные подсистемы питания ядра и памяти (иногда и разъём для дополнительного питания – в случае мощной видеокарты), интерфейсный разъём для подключения к материнской плате, а также разъёмы для подключения мониторов и телевизора.

Основные компоненты видеокарты: ядро (1), память (2), подсистема питания (3), интерфейс PCI-E (4), разъёмы DVI (5) и ТВ-выход (6)

Основные компоненты видеокарты: ядро (1), память (2), подсистема питания (3), интерфейс PCI-E (4), разъёмы DVI (5) и ТВ-выход (6)

Ключевым компонентом любой современной видеокарты является графический процессор, который занимается расчётами выводимой на экран информации и трёхмерных сцен. На данный момент разработкой графических процессоров занимаются в основном компании NVIDIA, продвигающая серию GeForce, и AMD, купившая канадскую компанию ATI с её линейкой Radeon. Остальные игроки графического рынка, увы, не выдержали конкуренции и той скорости, с которой разрабатываются очередные поколения видеокарт, и если и выпускают свою продукцию, то отличной производительностью и массовостью похвастаться не могут. В зависимости от того, какой GPU положен в основу видеокарты, определяются её характеристики: поддержка тех или иных технологий визуализации и рендеринга, тип памяти и ширина её шины.

Печатная плата Chaintech 7600GT: тыльная сторона

Печатная плата Chaintech 7600GT: тыльная сторона

В данный момент времени происходит переход от архитектуры традиционной конвейерной обработки данных графическим процессором к унифицированной и более гибкой благодаря новому API DirectX 10. В предыдущем поколении видеокарт данные, полученные от центрального процессора, сперва обрабатываются вершинным блоком (также называется процессором, конвейером): создаются вершины, над которыми производятся преобразования, дополненные вершинными шейдерами (программы, добавляющие некоторые эффекты объектам, например – мех, волосы, водная гладь, блеск и так далее). Далее вершины собираются в примитивы – треугольники, линии, точки, после чего переходят в пиксельный блок. Здесь определяются конечные пиксели, которые будут выведены на экран, и над ними проводятся операции освещения или затенения, текстурирования (этим занимается блок TMU – Texture Mapping Unit, который связан с пиксельным конвейером), присвоения цвета, добавляются эффекты от пиксельных шейдеров.

Недостаток процесса формирования 3D-сцены при классическом рендеринге состоит в том, что, если уже обработанные данные нужно снова запросить и изменить, приходится дожидаться завершения всего конвейера и заново вычитывать их из памяти или вообще снова получать данные от центрального процессора. Также разделение ядра на отдельные вершинные и пиксельные процессоры сильно ограничивает разработчиков графических приложений, ведь необходимо предусмотреть все варианты геометрии и эффектов в будущих играх, учитывая особенности решений обоих ведущих производителей видеокарт.

Для охлаждения графического процессора Chaintech GeForce 7600GT используется активное охлаждение (кулер), состоящее из медного радиатора и небольшого вентилятора-турбинки.

Некоторые маломощные видеокарты обходятся пассивным охлаждением, то есть обычным радиатором из алюминия или сплава. Самые производительные видеоадаптеры снабжаются высокими монстрообразными комбинированными кулерами, использующими тепловые трубки. Такие кулеры накрывают практически всю поверхность платы, охлаждают попутно видеопамять, но из-за их размеров соседний слот на материнской плате становится недоступным. Зато горячий воздух от карты выгоняется из корпуса наружу, чего не происходит с обычными системами охлаждения. Также некоторые производители оснащают высокоуровневые адаптеры системами водяного охлаждения, которые по эффективности могут превосходить лучшие воздушные кулеры, а иногда и более экзотическими решениями вроде термоэлектрического кулера Пельтье.

На видеокарте, как и на материнской плате, имеется микросхема BIOS, в которой хранится информация о видеоадаптере, экранные шрифты и так далее, но в отличие от материнской платы в BIOS видеоадаптера зайти практически нельзя, его можно лишь сохранить, изменить и затем прошить заново.

Из статьи читатель узнает об устройстве и основных характеристиках видеокарты, которые нужно учитывать при ее выборе и приобретении.

Видеокарта (видеоадаптер, графическая плата, графический адаптер, графическая карта, GPU, Graphics Processing Unit) – важная и очень сложная составная часть компьютера. Можно сказать, что она является своего рода отдельным специализированным компьютером, состоящим из собственного процессора, оперативной памяти и прочих компонентов, по своей структуре и организации взаимодействия между собой приспособленных для максимально эффективного решения одной задачи – обработки графических данных.

Основными разработчиками видеокарт (графических чипов) являются американские компании Nvidia, AMD и Intel. Ну а выпускать карты этих разработчиков могут разные производители (ASUS, MSI, Gigabyte, Inno3D, Palit и др.), привнося в каждую конкретную модель некоторые изменения. В частности, они могут немного изменять частоту графического процессора и памяти, использовать разные по качеству микросхемы памяти, дроссели, конденсаторы и другие компоненты, делать разные по эффективности системы питания, охлаждения и т.д. Обо всем этом речь пойдет чуть ниже.

Существует два типа видеокарт: игровые и профессиональные. Игровые видеокарты от Nvidia выпускаются под брендом GeForce, профессиональные – Quadro. Игровые карты от AMD называются Radeon, профессиональные – FirePro.

Игровые видеокарты являются более универсальными устройствами. Как правило, они хорошо справляются как с играми, так и с другими задачами. Профессиональные же карты, даже те, которые хорошо показывают себя в трёхмерном моделировании и проектировании, в играх могут выглядеть заметно хуже игровых аналогов. Главный плюс профессиональных карт – специальные драйверы и улучшенная поддержка специализированного программного обеспечения.

Не трудно догадаться, что для домашнего использования лучшим вариантом будет игровая видеокарта.

Дискретная и интегрированная видеокарты

Полноценная видеокарта, представляющая собой самостоятельное устройство, называется дискретной. У нее отдельный графический процессор, собственная видеопамять, отдельные цепи питания, охлаждение и т.д. Все это расположено на отдельной плате, присоединяемой к материнской плате компьютера (в разъем PCI-E).

Как известно, "сердцем" любого компьютера является его центральный процессор. Многие процессоры, кроме вычислительных ядер, имеют в своем составе графический чип, способный выполнять функции видеокарты. И если в компьютере отдельной видеокарты нет, а за обработку и вывод на монитор графики отвечает встроенный в процессор видеочип, говорят, что у компьютера встроенная (интегрированная) видеокарта. Когда-то графические чипы встраивались не в процессор, а в материнскую плату, но это было очень давно и сейчас такие компьютеры уже не встречаются.

Интегрированная видеокарта позволяет сэкономить на приобретении дискретной карты. Возможностей встроенного в процессор графического чипа достаточно для выполнения офисных задач, просмотра и базовой обработки фото и видео, просмотра страниц Интернета, и даже развлечений в виде простых видеоигр. Некоторые интегрированные видеочипы сопоставимы по быстродействию с дискретными видеокартами начального уровня. Но геймерам и людям, работающим с графикой, хорошая дискретная видеокарта необходима по следующей причине.

Обработка и формирование различных графических данных, отображаемых на мониторе компьютера - очень сложная задача. В компьютерных играх этот процесс требует огромного количества точных расчетов: создание вершин, их собирание в примитивы (треугольники, линии, точки и т.д.), создание пиксельных блоков, операции освещения, затенения, текстурирования, присвоения цвета и т.д. Поскольку картинка в игре постоянно изменяется, все расчеты должны происходить на очень высокой скорости, чтобы обеспечить формирование достаточного количества кадров, выводимых за единицу времени.

Для человека комфортным является уровень не ниже 24 кадров в секунду (FPS, Frames Per Second). В компьютерных играх со сложной графикой встроенная видеокарта не способна обеспечить такой уровень быстродействия. Если FPS опускается ниже 24, человек замечает "торможение". Обычно, когда пользователь говорит, что его видеокарта "не тянет" какую-то игру, имеется ввиду именно ее неспособность вывести достаточное количество кадров в секунду.

Поскольку скорость обработки графики зависит не только от мощности видеокарты, но и от сложности обрабатываемой графики, остроту проблемы можно снизить, опустив до минимума качество графики в настройках игры. Но удовольствие от игрового процесса будет уже не то.

То же самое касается и профессиональной работы с графикой. Создание сцены, которая у дискретной видеокарты займет несколько минут, в случае с интегрированной графикой может затянуться на несколько часов или вообще закончиться ничем. Если проектирование, 3D-рендеринг и анимация является вашей работой, без хорошей дискретной видеокарты много заработать вряд ли получится.

Устройство видеокарты и как ее выбрать

При выборе видеокарты обращать внимание необходимо на характеристики следующих ее компонентов:

• Графический процессор (графическое ядро, GPU) – это процессор, занимающийся расчётами и формированием графической информации. Он является основой видеокарты и по своей сложности не уступает центральному процессору компьютера.

Как и в случае с центральным процессором, быстродействие графического процессора определяется его частотой, а также качеством и количеством вычислительных блоков, которые он содержит (шейдерные блоки, TMU, ROP и др.). Но подробно вникать в этот вопрос особого смысла нет. Сравнивать карты по упомянутым характеристикам целесообразно, если они принадлежат к одной линейке (архитектуре). Более новая карта может оказаться значительно быстрее старой, даже если частота или количество блоков у последней будут выше.

Правильно оценить быстродействие видеокарты возможно лишь по ее результатам в различных бэнчмарках и игровых приложениях. Общий рейтинг быстродействия видеокарт можно посмотреть здесь. На нашем сайте есть также страница сравнения видеокарт, позволяющая быстро определить лидера среди нескольких приглянувшихся моделей.

Кроме общего уровня быстродействия, важными моментами при оценке графического процессора видеокарты являются поддерживаемая им версия DirectX и наличие аппаратной поддержки трассировки лучей (Ray Tracing).

DirectX – это набор функций, разработанных для быстрого решения задач, связанных с игровым и видеопрограммированием под ОС Microsoft Windows. Он широко используется разработчиками компьютерных игр и программного обеспечения. Если видеокарта компьютера поддерживает, например, только DirectX 11, то все видеоигры, разработанные с использованием DirectX 12, играть на нем будет невозможно.

Могут также возникнуть сложности с установкой на компьютер программного обеспечения. В частности, одним из требований для установки Windows 11 является поддержка видеокартой компьютера DirectX 12.

Трассировка лучей (англ. Ray Tracing) — относительно новая технология отрисовки трехмерной графики, позволяющая симулировать физическое поведение света и значительно повышающая реалистичность компьютерных игр. При выборе видеокарты для игрового компьютера желательно, чтобы ее графический процессор на аппаратном уровне поддерживал трассировку лучей. То есть, он должен включать в себя специальные RT-ядра. Это позволит наслаждаться более красивой графикой в играх, поддерживающих упомянутую технологию. Подробнее о трассировке лучей можно узнать здесь.

• Видеопамять (VRAM, Video Random Access Memory) – это встроенная в дискретную видеокарту быстрая память, выполняющая роль буфера, в который временно помещаются данные, обрабатываемые графическим ядром.

В случае с видеочипом, интегрированным в центральный профессор, в качестве VRAM используется часть оперативной памяти компьютера, что не лучшим образом сказывается на его быстродействии.

Главными характеристиками памяти видеокарты являются ее объем и пропускная способность (простым языком - сколько данных в ней могут одновременно находиться и как быстро к ним можно получить доступ).

При подборе объема памяти видеокарты нужно ориентироваться по разрешению монитора компьютера. Если оно не превышает Full HD (1920х1080), достаточно 4–6 GB видеопамяти. Для 2K-мониторов (2560х1440) нужно уже 6–8 GB. Ну а для 4K (3840x2160) – 8 GB и больше. Эти рекомендации касаются только игрового использования. Для офисных приложений, просмотра фото, видео, страниц Интернета и других несложных задач подойдет видеокарта с любым объемом VRAM, даже если разрешение монитора будет 4K. Нужно также учитывать, что актуальны эти цифры сейчас (2022 год), но со временем, когда игры станут более требовательными к "железу", памяти нужно будет больше.

Пропускная способность видеопамяти – это скорость доступа к находящимся в ней данным. Измеряется она в GB/s и чем этот показатель выше, тем лучше.

Пропускная способность в свою очередь определяется несколькими факторами:

• тип памяти (DDR3, GDDR5, GDDR6 и др. (чем новее тип, тем на более высоких частотах способна работать память);

• частота памяти (количество тактовых колебаний за единицу времени);

• ширина шины памяти (количество данных, передаваемых за каждое колебание).

По большому счету, на тип, частоту и ширину шины можно вообще не смотреть. Они могут быть самыми разными. Главное, чтобы пропускная способность в итоге была высокой. Но для лучшего понимания все же приведу пример.

Допустим, некая видеопамять, имея ширину шины 256 бит, работает на частоте 14000 МГц. Это значит, что за 1 секунду она совершает 14 миллиардов колебаний, передавая за каждый такт 256 бит информации (14000000000х256=3584000000000 бит/с или 417 GB/s). Другая память, работает на частоте 18000 МГц, но при этом имеет шину 192 бит (18000000000х192=3456000000000 бит/с или 402 GB/s). Как видно в примере, память со значительно большей частотой является менее продуктивной в связи с более узкой шиной. Это, конечно, теоретический пример, но он демонстрирует реальное положение вещей.

Нужно также учитывать, что во многих видеокартах от AMD (например, в картах серии Radeon 6000) используется так называемый Infinity Cache. Это своеобразный сверхбыстрый запоминающий буфер, встроенный в графический процессор. Он служит для сглаживания проблем, связанных с узкой шиной видеопамяти, и значительно повышает эффективность использования VRAM, даже если ее пропускная способность не очень высокая.

• Качество VRM видеокарты.

Требования графического процессора и видеопамяти к электропитанию весьма высокие. Им нужен постоянный ток большой мощности (до 400 Ватт у топовых моделей) при низком напряжении (~1,35 Вольт). Не сложно посчитать, что сила тока при этом составляет внушительные 296 Ампер. Для беспроблемной передачи такого тока даже на относительно небольшое расстояние потребовались бы очень толстые провода. Допустим, для передачи на 1 метр будут нужны медные провода толщиной около 1,5 см., а также контактные клеммы как у сварочного аппарата. В противном случае все это будет сильно греться и плавиться.

Поэтому на видеокарту подается питание 12 Вольт (при мощности 400 Ватт это чуть больше 30 Ампер), которое превращается в требуемое напряжение уже на самой ее плате в непосредственной близости от графического процессора и видеопамяти. За это превращение отвечает импульсный понижающий преобразователь, который чаще называют VRM.

От качества исполнения VRM зависит долговечность видеокарты и стабильность ее работы под нагрузкой. На специализированных сайтах в описании каждой конкретной модели можно найти информацию о количестве силовых фаз VRM, предназначенных для питания GPU и памяти (чем их больше, тем лучше). Представление о этих цифрах можно также получить при визуальном осмотре платы видеокарты, однако, придется снять радиатор системы охлаждения. Выглядит VRM примерно так (участки с VRM я "подсветил" желтым).


Каждая фаза состоит из двух транзисторов, дросселя и конденсатора. Те прямоугольные штуки с надписью "R15" на фото — это дроссели. Их количество равно количеству силовых фаз VRM.

На изображении выше плата видеокарты Nvidia Geforce RTX 3090, модель Gigabyte Eagle. Можно посчитать, что ее VRM включает 18 силовых фаз. В то же время, на рынке присутствуют модели Geforce RTX 3090, VRM которых состоят из заметно большего количества фаз (до 26). Понятное дело, они будут надежнее и долговечнее этой, смогут работать на более высоких частотах (то есть, будут немного быстрее). Но многое зависит не только от количества фаз VRM. Значение имеет также качество используемых дросселей, конденсаторов и транзисторов.

В общем, оценить VRM конкретной модели видеокарты – та еще задача. В этом вопросе можно полагаться лишь на независимые обзоры блогеров и отзывы людей, которые ее приобрели. Но интересоваться этим моментом однозначно нужно. Особенно, если речь идет о видеокарте с потреблением больше 200W.

• Требования к блоку питания.

При покупке видеокарты нужно убедиться, что блок питания компьютера отвечает ее требованиям. Топовые видеокарты могут требовать от блока мощности до 850W. Если БП недостаточно мощный, под нагрузкой (в игровых или других приложениях, активно использующих видеокарту) компьютер будет "зависать" или же он перестанет включаться вообще. И это не самое худшее, что может произойти. Слишком "слабый" блок питания может "сгореть", попутно утащив с собой в небытие видеокарту или что-то еще.

Необходимо также убедиться, что у блока питания есть необходимые коннекторы, которыми его можно подключить к видеокарте (у разных моделей видеокарт разные разъемы питания).

У некоторых видеокарт вообще отсутствует коннектор для подключения блока питания. Это один из косвенных признаков невысокой производительности. Такие карты питаются через шину PCIE материнской платы, к которой они подключаются. Максимальная мощность, обеспечивающаяся при этом, не может превышать 75W. Для "офисной" карты этого достаточно, для игровой – нет.

• Система охлаждения – часть видеокарты, отвечающая за отвод и рассеивание тепла от основных ее компонентов с целью обеспечения нормального температурного режима их работы (процессор, памяти, VRM и др.). Чем мощнее видеокарта, тем в более эффективной системе охлаждения она нуждается. Если у видеокарты плохое охлаждение, она будет перегреваться и "тротлить", то есть, самостоятельно снижать свое быстродействие чтобы снизить нагрев. Ее кулеры (вентиляторы) будут постоянно раскручиваться до максимума, доставляя акустический дискомфорт. Кроме того, карта, которая регулярно перегревается, долго не прослужит.

Оценить систему охлаждения карты можно не только по отзывам и обзорам в Интернете, но и визуально. Добротная система охлаждения состоит из большого радиатора (или нескольких), через который проходят теплопроводные трубки, а также одного или нескольких куллеров. Существуют также модели видеокарт с жидкостным охлаждением.


О вопросе стоимости

При выборе видеокарты нужно учитывать, что ее быстродействие и стабильность работы зависят от всех упомянутых выше компонентов в комплексе. Но чем это все мощнее и качественнее, тем карта дороже.

При выборе видеокарты важно не переплачивать за ненужные возможности и избыточную производительность. Так, если частота вашего монитора составляет обычные 60 Гц, вы не почувствуете разницы между среднебюджетной графической картой, выдающей 60 FPS в определенной игре, и дорогущим "монстром", показывающим в той же игре 150 FPS и стоящим в 5 раз дороже. Если же частота монитора 144 Гц, разница будет заметна. Однако стоит ли за нее столько платить?

В большинстве случаев оптимальным вариантом будет приобретение карты из "золотой середины", обеспечивающей комфортное быстродействие с небольшим запасом. Компьютерная техника развивается огромными темпами. Сегодняшние топовые видеокарты через 1-1,5 года по быстродействию будут соответствовать "середнячкам" из новых линеек, у которых ценник будет ниже в разы. Разумнее вместо этого чаще менять видеокарту на новую.



НАПИСАТЬ АВТОРУ

 Описание всех компонентов и разъемов видеокарты

Видеокарта - один из важнейших компонентов игрового ПК или профессионального высокопроизводительного ПК. Он обладает огромной мощностью и имеет различные компоненты, которые работают вместе для обработки графики. Также видеокарты поставляются с разными типами разъемов для разных целей.

Некоторые предназначены для питания, некоторые - для подключения кабелей дисплея и т.д. Многие пользователи не знают о различных компонентах и ​​частях видеокарты, поэтому для них я собираюсь объяснить все основные компоненты и разъемы графической карты.

Основные компоненты видеокарты

Вот основные компоненты, которые присутствуют во всех видеокартах.

Графический процессор

Графический процессор - это главный компонент и сердце видеокарты. Он также известен как GPU и выполняет всю обработку вашей видеокарты. Как правило, большая часть видеокарт поставляется с одним графическим процессором, но есть и несколько видеокарт с двумя графическими процессорами. Работа графического процессора определяется его архитектурой, известной как его архитектура. Различные серии GPU имеют разную архитектуру GPU. Кроме того, у разных производителей GPU есть собственная архитектура и компоновка процессоров.

компоненты видеокарты

Например, в настоящее время последней архитектурой GPU от Nvidia является Pascal, а от AMD - Polaris. В GPU есть сотни и тысячи ядер для параллельной обработки и многозадачности. Функциональность этих процессорных ядер определяется архитектурой графического процессора. Nvidia называет их ядрами CUDA, а AMD называет их потоковыми процессорами, но технически они отличаются друг от друга из-за различных архитектур графических процессоров. Как правило, чем новее архитектура графического процессора, тем лучше производительность видеокарты, а также она имеет меньшее энергопотребление по сравнению со старыми архитектурами.

Это второй по важности компонент видеокарты. VRAM, или видеопамять - это место, где все графические данные и игровые текстуры хранятся для обработки графическим процессором. Более быстрая память действительно может повысить производительность видеокарты до определенного уровня. Следует отметить, что сама по себе память не может повысить производительность в играх, потому что, если ваш графический процессор слабый, у вас никогда не будет большей производительности, независимо от того, насколько быстра ОЗУ.

Для видеокарты доступны различные типы видеопамяти, в зависимости от их скорости и пропускной способности. Память видеокарты включает в себя ОЗУ DDR3, GDDR5, GDDR5X, HBM и HBM2. DDR3 - самый старый и самый медленный из всех и используется в основном в видеокартах начального уровня.

GDDR5 - самая популярная и часто используемая видеопамять, которая используется в видеокартах бюджетного, среднего и высокого класса. GDDR5X почти в два раза быстрее GDDR5 и используется в нескольких топовых видеокартах от Nvidia. Nvidia Titan X, GeForce GTX 1080 и GeForce GTX 1080 Ti используют память GDDR5X. HBM (память с высокой пропускной способностью) и HBM2 являются наиболее совершенными модулями памяти видеокарт для игр и виртуальной реальности (VR) и используются только в высокопроизводительных видеокартах. Radeon R9 Fury X и Radeon Pro используют память HBM.

Память HBM быстрее, занимает меньше места на печатной плате и имеет меньшее энергопотребление по сравнению с памятью GDDR5. Вы можете прочитать полное сравнение всех этих видеопамяти видеокарт, перейдя по приведенной ниже ссылке.

VRM или модуль регулятора напряжения - это основная схема, питающая GPU. VRM преобразует более высокое напряжение источника питания в более низкие уровни напряжения для использования в графическом процессоре. Как правило, он преобразует 12 В примерно в 1 В до 1,5 В (приблизительно), что обычно является уровнем напряжения, на котором работает графический процессор. Наряду с графическим процессором и VRAM, VRM также является одним из наиболее важных компонентов видеокарты. VRM также называют модулем питания процессора (PPM) или просто регулятором напряжения.

Количество регуляторов напряжения на видеокарте варьируется от карты к карте. Некоторые видеокарты имеют большее количество VRM по сравнению с другими. VRM может быть очень горячим, а иногда даже более горячим, чем графический процессор, и им требуется хорошее охлаждение, чтобы видеокарта не выключилась.

Как описано выше, VRAM и VRM - это совершенно разные компоненты, и их не следует путать друг с другом.

Кулер

Каждая видеокарта поставляется с кулером, чтобы поддерживать температуру графического процессора, видеопамяти и VRM на более безопасном уровне. Кулеры видеокарты могут быть активными или пассивными. При активном охлаждении кулер имеет радиатор и вентилятор (HSF), тогда как при пассивном охлаждении кулер имеет единственный радиатор.

В большинстве видеокарт используется активное охлаждение, поскольку обычно оно требует меньше места и обеспечивает лучшее охлаждение, особенно при разгоне, тогда как пассивное охлаждение обычно используется в графических процессорах начального уровня и менее мощных и работает совершенно бесшумно. Но есть несколько хороших видеокарт среднего уровня, которые также поставляются с пассивным кулером или только с радиатором. Кроме того, не рекомендуется разгонять вашу видеокарту с помощью решения для пассивного охлаждения, поскольку оно имеет ограниченную охлаждающую способность.

видеокарта с активным и пассивным охлаждением

Слева с активным, а справа с пассивным охлаждением

Количество вентиляторов, используемых в системе активного охлаждения, зависит от производителя видеокарты. Некоторые высокопроизводительные видеокарты также поставляются с жидкостным/водяным охлаждением или гибридным охлаждением. Вы можете узнать больше о решениях для охлаждения видеокарт, перейдя по приведенной ниже ссылке.

Печатная плата

Печатная плата - это основание или плата, на которой установлены все компоненты, включая графический процессор, видеопамять, VRM, конденсаторы, датчики и т.д., А также порты дисплея. Высококлассные видеокарты имеют больше компонентов, поэтому для них требуется печатная плата большего размера по сравнению с видеокартами mi-диапазона и начального уровня.

Основные разъемы видеокарты

Вот различные разъемы, которые вы можете найти в видеокарте. Некоторые разъемы встречаются только в видеокартах среднего и высокого класса, а некоторые присутствуют во всех видеокартах.

Разъем PCI Express x16

Разъем PCI Express x16 присутствует во всех современных видеокартах. Это единственный интерфейс, через который видеокарты связываются с материнской платой и процессором. Старые интерфейсы - это PCI и AGP, которые устарели и сейчас не используются. Разъем PCI Express x16 вставляется в слот PCI Express x16 на материнской плате и может обеспечить работу видеокарту мощностью до 75 Вт.

Дисплейные порты/разъемы

Все видеокарты поставляются с портами дисплея для подключения их к монитору с помощью кабеля дисплея. Существуют различные типы портов или разъемов дисплея: VGA, DVI, HDMI и DisplayPort (DP). VGA - это аналоговая технология, поддерживающая более низкое разрешение, тогда как DVI, HDMI и DP - это цифровые дисплеи, поддерживающие более высокое разрешение и четкость изображения.

Слот SLI и CrossFire

Видеокарты, совместимые с несколькими графическими процессорами, имеют слот SLI или CrossFire на верхней части печатной платы видеокарты для их работы в конфигурации с несколькими или двумя графическими процессорами. Две или более видеокарты SLI/CrossFire подключаются с помощью разъема SLI или разъема CrossFire. Вы должны знать, что SLI - это технология Nvidia с несколькими GPU, а CrossFire - это технология AMD с несколькими GPU.

Из чего состоит видеокарта

Сейчас практически все компьютеры оснащены дискретной видеокартой. С помощью данного устройства создается видимое на экране монитора изображение. Комплектующее это далеко не простое, а состоит из многих деталей, формирующих единую рабочую систему. В этой статье мы постараемся подробно рассказать обо всех компонентах современной видеокарты.

Из чего состоит видеокарта

Сегодня мы рассмотрим именно современные дискретные видеокарты, ведь интегрированные имеют совсем другую комплектацию и, в основном, они встроены в процессор. Дискретный графический адаптер представлен в виде печатной платы, которая вставляется в соответствующий разъем расширения. Все компоненты видеоадаптера расположены на самой плате в определенном порядке. Давайте подробнее разберем все составные части.

Графический процессор

В самом начале нужно поговорить о самой важной детали в видеокарте – GPU (графический процессор). От данного компонента зависит быстродействие и мощность всего устройства. В его функциональность входит обработка команд, связанных с графикой. Графический процессор берет на себя выполнение определенных действий, за счет чего снижается нагрузка на ЦП, освобождая его ресурсы для других целей. Чем современнее видеокарта, тем мощность установленного в ней GPU больше, она может превосходить даже центральный процессор благодаря наличию множества вычислительных блоков.

Графический процессор видеокарты

Видеоконтроллер

За генерацию картинки в памяти отвечает видеоконтроллер. Он посылает команды на цифро-аналоговый преобразователь и проводит обработку команд ЦП. В современной карточке встроенно несколько компонентов: контроллер видеопамяти, внешней и внутренней шины данных. Каждый компонент функционирует независимо друг от друга, позволяя осуществлять одновременное управление экранами дисплеев.

Видеоконтроллер графической карты

Видеопамять

Для хранения изображений, команд и промежуточных не видимых на экране элементов необходимо определенное количество памяти. Поэтому в каждом графическом адаптере присутствует постоянный объем памяти. Она бывает разных типов, отличающихся по своей скорости работы и частоте. Тип GDDR5 на данный момент является самым популярным, используется во многих современных карточках.

Видеопамять графического адаптера

Однако еще стоит учитывать, что помимо встроенной в видеокарту памяти новые устройства задействуют и ОЗУ, установленную в компьютере. Для доступа к ней используется специальный драйвер через шину PCIE и AGP.

Цифро-аналоговый преобразователь

Видеоконтроллер формирует изображение, однако его нужно преобразовать в необходимый сигнал с определенными уровнями цвета. Данный процесс выполняет ЦАП. Он построен в виде четырех блоков, три из которых отвечают за преобразование RGB (красный, зеленый и синий цвет), а последний блок хранит в себе информацию о предстоящей коррекции яркости и гаммы. Один канал работает на 256 уровнях яркости для отдельных цветов, а в сумме ЦАП отображает 16,7 миллионов цветов.

Постоянное запоминающее устройство

ПЗУ хранит в себе необходимые экранные элементы, информацию с BIOS и некоторые системные таблицы. Видеоконтроллер никак не задействуется вместе с постоянным запоминающим устройством, обращение к нему происходит только со стороны ЦП. Именно благодаря хранению информации с BIOS видеокарта запускается и функционирует еще до полной загрузи ОС.

Постоянное запоминающее устройство на видеокарте

Система охлаждения

Как известно, процессор и графическая карта являются самыми горячими комплектующими компьютера, поэтому для них необходимо охлаждение. Если в случае с ЦП кулер устанавливается отдельно, то в большинство видеокарт вмонтирован радиатор и несколько вентиляторов, что позволяет сохранить относительно низкую температуру при сильных нагрузках. Некоторые мощные современные карточки очень сильно греются, поэтому для их охлаждения используется более мощная водяная система.

Водяное охлаждение видеокарты

Интерфейсы подключения

Современные графические карты оснащены преимущественно по одному разъему HDMI, DVI и Display Port. Данные выводы являются самыми прогрессивными, быстрыми и стабильными. Каждый из этих интерфейсов имеет свои преимущества и недостатки, с чем вы можете подробно ознакомиться в статьях на нашем сайте.

В этой статье мы подробно разобрали устройство видеокарты, детально рассмотрели каждый компонент и выяснили его роль в устройстве. Надеемся, что предоставленная информация была полезной и вы смогли узнать что-то новое.

Закрыть

Мы рады, что смогли помочь Вам в решении проблемы.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Закрыть

Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Читайте также: