Определение условий видимости планеты марс по данным школьного астрономического календаря

Обновлено: 02.07.2024

5.Условия видимости Луны (Венеры, Марса) по данным школьного астрономического календаря.

Билет № 1. Земля совершает сложные движения: вращается вокруг своей оси (Т=24 ч.), движется вокруг Солнца (Т=1 год), вращается вместе с Галактикой (Т= 200 тыс. лет). Отсюда видно,

что все наблюдения, совершаемые с Земли, отличаются кажущимися траекториями. Планеты делятся на внутренние и внешние (внутренние: Меркурий, Венера; внешние: Марс, Юпитер, Сатурн, Уран,

Нептун и Плутон). Все эти планеты обращаются так же, как и Земля вокруг Солнца, но, благодаря движению Земли, можно наблюдать петлеобразное движение планет (календарь стр. 36).

Благодаря сложному движению Земли и планет возникают различные конфигурации планет (рисунок).

для внутренних планет

для внешних планет

S – сидерический период (относительно звёзд), Т – синодический период (между фазами), Т

Кометы и метеоритные тела движутся по эллиптическим, параболическим и гиперболическим траекториям.

Билет № 2. Существует 2 географические координаты: географическая широта и географическая долгота. Астрономия как практическая наука позволяет находить эти координаты (рисунок

(Кульминация – момент прохождения светила через меридиан

h – высота светила,

Географическая долгота – это вторая координата, отсчитывается от нулевого Гринвичского меридиана к востоку. Земля разделена на 24 часовых пояса, разница во времени – 1 час. Разница

местных времён равна разнице долгот:

Местное время – это солнечное время в данном месте Земли. В каждой точке местное время различно, поэтому люди живут по поясному времени, т. е. по времени среднего меридиана данного

пояса. Линия изменения даты проходит на востоке (Берингов пролив).

Билет № 3. Луна движется вокруг Земли в ту же сторону, в какую Земля вращается вокруг своей оси. Отображением этого движения, как мы знаем, является видимое перемещение Луны на фоне

звёзд навстречу вращению неба. Каждые сутки Луна смещается к востоку относительно звёзд примерно на 13

, а через 27,3 сут возвращается к тем же звёздам, описав на небесной сфере полный круг.

Видимое движение Луны сопровождается непрерывным изменением её вида – сменой фаз. Происходит это оттого, что Луна занимает различные положения относительно освещающего её Солнца и

Когда Луна видна нам как узкий серп, остальная часть её диска тоже слегка светится. Это явление называется пепельным светом и объясняется тем, что Земля освещает ночную сторону Луны

отражённым солнечным светом.

Земля и Луна, освещённые Солнцем, отбрасывают конусы тени и конусы полутени. Когда Луна попадает в тень Земли полностью или частично происходит полное или частное затмение Луны. С

Земли оно видно одновременно повсюду, где Луна над горизонтом. Фаза полного затмения Луны продолжается, пока Луна не начнёт выходить из земной тени, и может длиться до 1 ч 40 мин.

Солнечные лучи, преломляясь в атмосфере Земли, попадают в конус земной тени. При этом атмосфера сильно поглощает голубые и соседние с ними лучи, а пропускает внутрь конуса

преимущественно красные. Вот почему Луна при большой фазе затмения окрашивается в красноватый свет, а не пропадает совсем. Лунные затмения бывают до трёх раз в году и, конечно, только в

Солнечное затмение как полное видно только там, где на Землю падает пятно лунной тени, диаметр пятна не превышает 250 км. Когда Луна перемещается по своей орбите, её тень движется по

Земле с запада на восток, вычерчивая последовательно узкую полосу полного затмения. Там, где на Землю падает полутень Луны, наблюдается частное затмение Солнца.

Вследствие небольшого изменения расстояний Земли от Луны и Солнца видимый угловой.

Документ из архива "Билеты по астрономии, 11 класс", который расположен в категории " ". Всё это находится в предмете "наука и техника" из раздела "", которые можно найти в файловом архиве Студент. Не смотря на прямую связь этого архива с Студент, его также можно найти и в других разделах. Архив можно найти в разделе "к экзамену/зачёту", в предмете "наука и техника" в общих файлах.

Онлайн просмотр документа "25570-1"

Текст 4 страницы из документа "25570-1"

А. группируются также по элементам орбит, образуя т.н. семейства Хираямы. Большинство А. имеет период обращения ок. 8 час. Все А. радиусом меньше 120 км имеют неправильную форму, орбиты подвержены гравитац. воздействию Юпитера. В рез-те в распределении А. по большим полуосям орбит существуют пробелы, называемые люками Кирквуда. А., попавшие в эти люки, имели бы периоды, кратные орбитальному периоду Юпитера. Орбиты астероидов в этих люках крайне неустойчивы. Внутр. и внеш. края пояса А. лежат в областях, где это соотношение равно 1 : 4 и 1 : 2. А.

БИЛЕТ № 13

Солнце, как типичная звезда. Его основные характеристики.

Солнце, центральное тело Солнечной системы, пред­ставляет собой раскаленный плазменный шар. Звезда, вокруг которой обращается Земля. Обычная звезда главной по­следовательности спектрального класса G2, самосве­тящаяся газовая масса, состоящая на 71% из водорода и на 26% из гелия. Абсолютная звездная величина +4,83, эффективная температура поверхности 5770 К. В цен­тре Солнца она 15*10 6 К, что обеспечивает давление, спо­собное противостоять силе гравитации, которая на по­верхности Солнца (фотосфере) в 27 раз больше, чем на Земле. Такая высокая температура возникает за счет термо­ядерных реакций превращения водорода в гелий (протон-протонная реакция) (вы­ход энергии с поверхности фотосферы 3,8*10 26 Вт). Солнце — сферически симметричное тело, находящееся в равновесии. В зависимости от изменения физических условий Солнце можно разделить на несколько концентрических слоев, постепенно переходящих друг в друга. Почти вся энергия Солнца генерируется в центральной области — ядре, где протекает реакция термоядерного синтеза. Ядро за­нимает менее 1/1000 его объема, плотность — 160 г/см 3 (плотность фотосферы в 10 млн. раз меньше плотности воды). Из-за огромной массы Солнца и непрозрачности его вещества излучение идет из ядра к фотосфере очень медлен­но — около 10 млн. лет. За это время уменьшается частота рентгеновского излучения, и оно становится видимым светом. Однако нейтрино, образующиеся в ядерных реакциях, свободно покидают Солнце и в принципе обеспе­чивают непосредственное получение информации о яд­ре. Расхождение между наблюдаемым и предсказанным теорией потоком нейтрино породило серьезные споры о внутреннем строении Солнца. На протяжении последних 15% радиуса находится конвективная зона. Конвективные движения также играют роль в переносе магнитных полей, генерируемых токами в его вра­щающихся внутренних слоях, что проявляется в виде сол­нечной активности, причем наиболее сильные поля на­блюдаются в солнечных пятнах. За пределами фото­сферы находится солнечная атмосфера, в которой температура до­стигает минимального значения 4200 К, а затем снова увеличи­вается вследствие диссипации ударных волн, порожда­емых подфотосферной конвекцией, в хромосфере, где резко возрастает до значения 2*10 6 К, характерного для короны. Высокая температура последней ведет к непрерывному истечению плазменного вещества в межпланет­ное пространство в виде солнечного ветра. В отдельных об­ластях может быстро и сильно возрастать напряжен­ность магнитного поля. Этот процесс сопровождается целым комплексом явлений солнечной активности. К ним от­носятся солнечные вспышки (в хромосфере), протубе­ранцы (в солнечной короне) и корональные дыры (осо­бые области короны).

Масса Солнца 1,99*10 30 кг, средний радиус, определяемый приблизительно сферической фотосферой, — 700 000 км. Это эквивалентно 330 000 массам и 110 радиусам Земли соответственно; в Солнце может уместиться 1,3 млн. таких тел, как Земля. Вра­щение Солнца вызывает движение его поверхностных обра­зований, таких, как солнечные пятна, в фотосфере и расположенных над ней слоях. Средний период вращения 25,4 дня, причем на экваторе он составляет 25 суток, а на полю­сах — 41 день. Вращением обусловлено сжатие сол­нечного диска, составляющее 0,005%.

БИЛЕТ № 14

Важнейшие проявления солнечной активности, их связь с геофизическими явлениями.

Солнечная активность является следствием конвекции средних слоев звезды. Причина этого явления заключается в том, что кол-во энергии, поступающей от ядра гораздо больше отводимого теплопроводностью. Конвекция вызывает сильные магнитные поля, генерируемые токами в конвектирующих слоях. Основными проявлениями солнечной активности, воздействующими на землю, являются солнечные пятна, солнечный ветер, протуберанцы.

Солнечные пятна, образования в фотосфе­ре Солнца, наблюдались с древних времен, и в настоящее, время их считают областями фотосферы с темп-рой на 2000 К ниже, чем в окружающих, из-за наличия сильно­го магнитного поля (ок. 2000 Гс). С.п. состоят из относитель­но темной центр, части (тени) и более светлой волокни­стой полутени. Поток газа из тени в полутень называ­ется эффектом Эвершеда (V=2км/с). Число С.п. и их появление меняются в течение 11-летнего цикла солнечной ак­тивности, или цикла солнечных пятен, который описывается законом Шперера и графически иллюст­рируется бабочковидной диаграммой Маундера (перемещение пятен по широте). Цю­рихское относительное число солнечных пятен указывает общую площадь поверхности, покрытую С.п. На основной 11-летний цикл накладываются долгопериодичные вариации. Напр., С.п. меняют магн. полярность в течение 22-летнего цик­ла солнечной активности. Но наиб, поразительный пример долгопериодичных вариаций — это минимум. Маундера (1645—1715), когда С.п. отсутствовали. Хо­тя общепризнанно, что вариации числа С.п. определяют­ся диффузией магнитного поля из вращающихся солнечных недр, процесс еще не понят до конца. Сильное магнитное поле солнечных пятен воздействует на поле Земли вызывая помехи радиосвязи и полярное сияние. существует неск. неопровержимых короткопериодичных эффектов, утверждение о существо­вании долгопериодич. связи между климатом и числом С.п., особенно 11-летним циклом, весьма спорно, что обусловлено трудностями соблюдения условий, к-рые необходимы при проведении точного статистического анализа данных.

Последний максимум солнечной активности был в 2001 году. Максимум солнечной активности означает наибольшее количество пятен, излучения и протуберанцев. Давно установлено, что изменение солнечной активности Солнце влияет на следующие факторы:

эпидемиологическую обстановку на Земле;

количество разного рода стихийных бедствий (тайфуны, землетрясения, наводнения и т. д.);

на количество автомобильных и железнодорожных аварий.

Максимум всего этого приходится на годы активного Солнца. Как установил учёный Чижевский, активное Солнце влияет на самочувствие человека. С тех пор составляются периодические прогнозы самочувствия человека.

БИЛЕТ № 15

Способы определения расстояний до звезд, единицы расстояния и связь между ними.

Для измерения расстояния до тел Солнечной системы применяется метод параллакса. Радиус земли оказывается слишком малым, чтобы служить базисом для измерения параллактического смещения звёзд и расстояния до них. Поэтому пользуются годичным параллаксом вместо горизонтального.

Годичным параллаксом звезды называют угол (p), под которым со звезды можно было бы видеть большую полуось земной орбиты, если она перпендикулярна лучу зрения.

a – большая полуось земной орбиты,

p – годичный параллакс.

Также используется единица расстояния парсек. Парсек – расстояние, с которого большая полуось земной орбиты, перпендикулярная лучу зрения видна под углом 1.

1 парсек = 3,26 светового года = 206265 а. е. = 3 * 10 11 км.

Измерением годичного параллакса можно надёжно установить расстояние до звёзд, находящихся не далее 100 парсек или 300 св. лет.

Если известны абсолютная и видимая звездные величины, то расстояние до звезды можно определить по формуле lg(r)=0.2*(m-M)+1

БИЛЕТ № 16

Основные физические характеристики звезд, взаимосвязь этих характеристик. Условия равновесия звезд.

Основные физические характеристики звезд: светимость, абсолютная и видимая звездные величины, масса, температура, размер, спектр.

Светимость – энергия, излучаемая звездой или другим небесным телом за единицу времени. Обычно дается в единицах светимости Солнца, выражается формулой lg (L/Lc) = 0,4•(Mc – M), где L и M – светимость и абсолютная звездная величина источника, Lc и Mc – соответствующие величины для Солнца (Mc = +4,83). Также определяется по формуле L=4πR 2 σT 4 . Известны звезды, светимость которых во много раз превосходит светимость Солнца. Светимость Альдебарана в 160, а Ригеля в 80 000 раз больше, чем Солнца. Но подавляющее большинство звезд имеют светимости сравнимые с солнечной или меньше ее.

Звездная величина – мера яркости звезды. З.в. не дает истинного представления о мощности излу­чения звезды. Близкая к Земле слабая звезда может вы­глядеть ярче, чем далекая яркая звезда, т.к. поток излу­чения, принимаемый от нее, уменьшается обратно про­порционально квадрату расстояния. Видимая З.в. — блеск звезды, к-рый видит наблюдатель, глядя на небо. Абсолютная З.в. — мера истинной яркости, пред­ставляет собой уровень блеска звезды, к-рый она имела бы, находясь на расстоянии 10 пк. Гиппарх изобрел си­стему видимых З.в. во 2 в. до н.э. Звездам были приписа­ны числа в зависимости от их видимой яркости; ярчай­шие звезды были 1-й величины, а самые слабые — 6-й. В сер. 19 в. эта система была модифицирована. Современная шкала З.в. была установлена путем определения З.в. представительной выборки звезд вблизи сев. полюса мира (сев. полярный ряд). По ним определялись З.в. всех др. звезд. Это логарифмическая шкала, на к-рой звезды 1-й величины в 100 раз ярче звезд 6-й величины. По мере роста точности измерений пришлось вводить десятые доли. Самые яркие звезды ярче 1-й величины, а нек-рые даже имеют отрицательные звездные величины.

Масса звездная – параметр, непосредст­венно определяемый только для компонентов двойных звезд с известными орбитами и расстояниями (M1 +M2 = R 3 /T 2 ). Т.о. установлены массы лишь нескольких десятков звезд, но для гораздо больше­го числа массу можно определить из зависимости масса – светимость. Массы больше 40 солнечных и менее 0,1 солнечных очень редки. Массы большинства звезд меньше солнечной. Температура в центре таких звезд не может дости­гать уровня, при котором начинаются реакции ядерного синтеза, и источником их энергии является только сжа­тие Кельвина – Гельмгольца. Такие объекты называют­ся коричневыми карликами.

1. Видимые движения светил как следствие их собственного движения в пространстве, вращения Земли и ее обращения вокруг Солнца.

2. Вычисление расстояния до галактики на основе закона Хаббла.

1. Принципы определения географических координат по астрономическим наблюдениям.

2. Вычисление температуры звезды на основе данных о ее светимости и размерах.

1. Причины смены фаз Луны. Условия наступления и периодичность солнечных и лунных затмений.

2. Определение координат звезд по звездной карте.

1. Особенности суточного движения Солнца на различных географических широтах в различное время года.

2. Наведение на заданный объект и фокусирование телескопа.

1. Принцип работы и назначение телескопа.

2. Вычисление периода обращения планеты на основе третьего закона Кеплера.

1. Способы определения расстояний до тел Солнечной системы и их размеров.

2. Определение светимости звезды на основе данных о ее размерах и температуре.

Возможности спектрального анализа и внеатмосферных наблюдений для изучения природы небесных тел.

2. Определение по звездной карте склонения Солнца на данный день и вычисление его высоты в полдень.

1. Важнейшие направления и задачи исследования и освоения космического пространства.

2. Установка подвижной звездной карты на заданный момент времени и определение условий видимости светил.

1. Законы Кеплера, их открытие, значение и границы применимости.

2. Нанесение на звездную карту объекта (планета, комета и т. п.) по заданным координатам.

1. Основные характеристики планет земной группы и планет-гигантов.

2. Установка модели небесной сферы для данной широты и ее ориентация по сторонам горизонта.

1. Отличительные особенности Луны и спутников планет.

1. Кометы и астероиды. Основы современных представлений о происхождении Солнечной системы.

1. Солнце как типичная звезда. Его основные характеристики.

1. Важнейшие проявления солнечной активности, их связь с геофизическими явлениями.

1. Способы определения расстояний до звезд, единицы расстояния и связь между ними.

1. Основные физические характеристики звезд, взаимосвязь этих характеристик.

Условия равновесия звезд.

2. Вычисление линейных размеров светила по известным угловым размерам и расстоянию.

1. Физический смысл закона Стефана-Больцмана и его применение для определения физических характеристик звезд.

2. Определение географической широты места наблюдения по заданной высоте светила в кульминации и его склонению.

1. Переменные и нестационарные звезды. Их значение для изучения природы звезд.

2. Вычисление склонения светила по данным о его высоте в кульминации на определенной географической широте.

1. Двойные звезды и их роль в определении физических характеристик звезд.

2. Вычисление высоты светила в кульминации по известному склонению для заданной географической широты.

1. Эволюция звезд, ее этапы и конечные стадии.

2. Наблюдение и зарисовка положения солнечных пятен с помощью телескопа (на экране).

1. Состав, структура и размеры нашей Галактики.

2. Вычисление радиуса звезды по данным о ее светимости и температуре.

1. Звездные скопления. Физическое состояние межзвездной среды.

2. Вычисление угловых размеров Солнца, для наблюдателя, находящегося на другой планете.

1. Основные типы галактик и их отличительные особенности.

§ 11. К онфигурация планет. С инодический период

1. Конфигурация планет и условия их видимости

Соединение и противостояние, а также другие характерные расположения планеты относительно Солнца называются конфигурациями . Внутренние планеты (Меркурий и Венера), которые всегда находятся внутри земной орбиты, и внешние, которые движутся вне её (все остальные планеты), меняют свои конфигурации по-разному. Названия различных конфигураций внутренних и внешних планет, которые характеризуют расположение планеты относительно Солнца на небе, приведены в таблице и на рисунке 3.4.

Читайте также: