Охарактеризуйте состояние и перспективы развития вэс в современной россии кратко

Обновлено: 05.07.2024

Постоянно возрастающая потребность в электроэнергии вынуждает внимательнее присматриваться к дополнительным возможностям ее производства. Один из вариантов, доступный как для промышленного, так и частного воспроизводства электрического тока — ветроэнергетика.

В России этот метод используется редко и в мелких масштабах, но его возможности привлекательны, позволяют решать проблему с энергообеспечением самостоятельно. Рассмотрим перспективы этого направления и варианты его реализации на практике.

Развитие ветроэнергетики в России

Несмотря на большое количество ГЭС, действующих в России, есть немало населенных пунктов, не имеющих подключения к централизованным сетям. Выходом из положения являются дизельные электростанции, но они требуют топлива и ремонта. Как постоянный источник электроэнергии такой вариант затратен и несамостоятелен. Кроме того, мощность дизельной электростанции ограничена, из-за чего появление новых потребителей затруднено.

Использование альтернативных источников энергии в России развито слабо. Причиной такой ситуации являются:

  • энергетическая избыточность, присутствующая в стране в целом
  • отсутствие возможности самостоятельного решения вопроса у населения, особенно во времена СССР
  • недостаток инициативы и специальных знаний, препятствующий развитию дополнительных направлений энергетики

Одним из наиболее привлекательных направлений альтернативной энергетики является ветроэнергетика. Она имеет массу преимуществ, основным из которых следует считать неограниченность источника, независимость от времени суток или сезона. При этом, широкого распространения ветроэнергетика пока не получила, поскольку основной упор уже давно сделан на более производительную и удобную для России гидроэнергетику.

Использование энергии ветра до сих пор рассматривалась как интересный физический эксперимент, наглядное пособие для студентов ВУЗов.

Тем временем, жители других стран, не имеющие возможности для строительства ГЭС, успешно развивают ветроэнергетику и получают немалое количество энергии. Например, в Германии, которая лидирует по количеству выработки энергии ветрогенераторами в Европе, ежегодно производится около 45 Гвт электроэнергии, что составляет значительный процент от общей выработки.

Другие страны Европы, расположенные на побережье Атлантики, успешно используют шельфовые ветроэлектростанции. Такая ситуация во многом вынужденная, возникшая из-за неимения других возможностей, но эффект от методики вполне реален и неоспорим.

Использование ветроэнергетики в России: самая крупная ветровая электростанция, состояние и перспективы развития

Состояние и перспективы

Ветроэнергетика имеет намного меньшую эффективность по сравнению с гидроэнергетикой. Стабильность и вырабатываемая мощность самого большого ветряка сильно уступают одному агрегату средней ГЭС.

География России, обилие крупных рек и удачный рельеф местности позволили создать массу гидроэлектростанций, обеспечивающих промышленность и население в достаточной степени.

Россия считается энергоизбыточной страной, что свидетельствует о состоянии энергетики в целом.

При этом, уровень потребления электроэнергии постоянно возрастает. Имеющиеся мощности не готовы к скачкообразному повышению спроса, появление новых приборов и оборудования, как промышленного, так и бытового, предполагают потребление дополнительной энергии.

Кроме того, состояние электросетей достаточно сложное, в некоторых участках оно неудовлетворительное. Общая изношенность имеет высокий процент, на замену и обновление материальной базы требуются немалые средства. Решать вопрос путем увеличения расценок за электроэнергию — означает вызвать волну критики и вопросов от населения и предпринимателей, вполне справедливых.

Использование ветрогенераторов как альтернативной энергетической отрасли государственного масштаба в России нецелесообразно. Причиной этого являются относительно слабые и нестабильные ветра, невысокая эффективность направления в сравнении с традиционным методом производства энергии.

Наиболее выгодным и полезным представляется использование ветрогенераторов для обеспечения частных домов, усадеб, фермерских хозяйств, расположенных вдали от сетевых источников и не имеющих возможности подключения.

Основная проблема, возникающая перед пользователями — стоимость оборудования. Цены на устройства заводского изготовления слишком высоки для населения, что резко ограничивает возможности спроса и окупаемость. При этом, самостоятельное изготовление ветряков обеспечивает экономию денег в 10 и более раз при таком же качестве. Это обстоятельство является ключевым условием развития ветроэнергетики на бытовом уровне — при появлении доступных по цене образцов спрос увеличится в десятки раз.

Наибольшие перспективы у ветроэнергетики имеются в степных регионах, на юге России, в местностях, где строительство дополнительных ГЭС или АЭС невозможно.

Основным импульсом в развитии стало бы решение правительства о строительстве крупных ВЭС, но на сегодня их параметры не могут в достаточной степени конкурировать с ГЭС или АЭС ни по мощности, ни по производительности. Кроме того, нестабильность источника энергии — ветра — является достаточно серьезным аргументом против использования этого направления в промышленных масштабах.

Использование ветроэнергетики в России: самая крупная ветровая электростанция, состояние и перспективы развития

Применение энергии ветра

На сегодняшний день использование энергии ветра имеет мелкие масштабы. Гидро- и ядерная энергетика в связке с угольными или мазутными ТЭЦ практически полностью закрывают потребность населения, а регионы, не имеющие подключения, пока обходятся дизельными или бензиновыми генераторами. Поэтому реализация программ альтернативных способов выработки энергии и, в частности, ветроэнергетики, еще не созрела для реального воплощения в жизнь.

Необходимо учитывать, что речь идет о промышленном производстве энергии, способном обеспечивать, как минимум, населенные пункты. Существующие относительно небольшие ветроэлектростанции пока нельзя считать существенным вкладом в энергетику страны, скорее, это варианты использования существующих возможностей при отсутствии подключения или недостатке имеющихся ресурсов.

Наибольший эффект в условиях России способны показывать именно небольшие ветряки, используемые для обеспечения одного дома или усадьбы. Для отдаленных поселков, дачных или коттеджных, где подключение стоит очень дорого, а состояние сетей допускает частые и внезапные отключения и перебои, использование собственного ветрогенератора способно стать неплохим вариантом дополнительного или основного источника питания бытовой техники и маломощного оборудования.

Для освещения или водоснабжения уже сегодня достаточно активно используются ветряки, созданные из подручных материалов. Они вполне справляются со своей задачей, имеют высокую ремонтопригодность и неприхотливы в обслуживании.

Такие преимущества привлекают широкий круг пользователей, желающих установить комплект ветрогенератора у себя на участке. Это позволит разгрузить имеющиеся электросети и сэкономить на счетах за электричество. Таким образом может быть частично или полностью решена проблема энергоснабжения отдаленных населенных пунктов, экспедиций или прочих участков.

Использование ветроэнергетики в России: самая крупная ветровая электростанция, состояние и перспективы развития

Самая крупная ветровая электростанция в России

На сегодняшний день самой крупной из действующих в России является Ульяновская ВЭС. Ее установленная мощность составляет 35 МВт, что относительно немного в сравнении с имеющимися ГЭС. Станция совсем новая, запущена в эксплуатацию в январе 2018 года. ВЭС принадлежит компании Фортум, строительство комплекса продолжалось два года. В состав станции входят 14 ветротурбин по 2,5 МВт мощностью.

Поставщиком комплекса является китайская компания DongFung, выигравшая тендер на поставку проектного оборудования. Проектные работы начались в феврале 2016 года, а непосредственное строительство стартовало в мае 2017. Примечательно, что основными участниками создания проекта и строительных работ являлись компании из России, хотя были и зарубежные представители. При этом, доля российского оборудования составляет 28 %, т.е. большинство технического обеспечения создано в Китае.

Данная ВЭС не долго будет являться самой крупной в России. В планах компании Фортум в партнерстве с компанией Вестас (мировым поставщиком ветротурбин и оборудования для ВЭС) строительство большого количества турбин суммарной мощностью до 1000 МВт. Предполагаемый процент российского оборудования в этих проектах — 65%.

Крупнейшие ВЭС в стране

Количество ветроэлектростанций в России не так уж и мало, хотя их мощность относительно невелика. Имеются агрегаты в Калининградской области, в Оренбургской области, в Башкортостане, Калмыкии, на Чукотке, в Белгородской области.

Большой список ВЭС имеется в Крыму, где ветроэнергетика имеет большую эффективность из-за географического положения и особенностей атмосферных потоков ветра. Изолированная энергосистема Крыма во многом опирается на ветрогенераторы, позволяющие использовать собственную энергию, а не поставляемую с материка.

Имеющиеся на сегодняшний день ВЭС являются, по сути, первыми пробными комплексами, созданными в том числе для получения практического опыта эксплуатации подобных сооружений и для сбора статистики, дающей информацию о возможностях ВЭС в условиях российских регионов.

В планах значится строительство намного более производительных и мощных ветростанций, предполагаемый ввод в эксплуатацию — 2020-2022 гг. Мощность каждого комплекса будет составлять от 15 до 300 МВт, что сможет в значительной степени разгрузить обветшалые сети, позволит стабилизировать работу энергостистем регионов, сделает возможной подачу электроэнергии в отсталые районы.


Наряду с развитием альтернативной энергетики, не остается в стороне и ветряная энергетика. Имеющиеся мощности получения энергии таким способом в России очень малы, тогда как потенциал может позволить больше.

Ключевые слова: ветряные парки, альтернативная энергетика, перспективные регионы

Несколько последних десятилетий основными источниками энергии в мире являются нефть, уголь и газ. Но так как они являются природными ископаемыми, то запас их иссякаем, конечно трудно сказать, когда именно они закончатся, но факт остается фактом. К тому же использование этих источником наносит необратимый вред окружающей природе и самому человеку. Когда встает вопрос об экологии, имеет смысл рассматривать альтернативные источники электроэнергии. Принцип их работы основан на получение энергии от солнца, ветра, воды, геотермальных источников, переработанных природных отходов и других. Помимо того, что данные источники не портят окружающую среду, имеют неиссякаемые ресурсы, так еще и не требуют дополнительных затрат на сырье.

Сегодня во многих развитых странах наблюдается активный рост числа парков ветряных мельниц и солнечных батарей. В основном это страны с небольшими своими запасами ископаемых, или же совершенно не имеющие их. В одном только Китае, за год возводится большее количество ветряных парков, чем в России уже имеется. Но благодаря своей огромной площади, России имеет самые большие перспективы по использованию энергии от ветра.

Но в настоящее время Россия занимает далеко не лидирующее место в этой области, а более того даже не входит в первые 6 десятков. Самые крупные ветряные парки в России сейчас в Калининградской области, Республике Коми и на Камчатке. Но это далеко не все перспективные зоны для реализации ветряных установок. Ниже приведен список территорий, где благодаря имеющемуся относительно постоянному ветру, возможно сооружение ветроустановок:

Согласно мнению экспертов, потенциал ветроэнергетики совершенно не реализован. Тому имеется множество причин, но главная из них — это материальные затраты на создание ветряных парков, которые делают стоимость энергии альтернативной энергетики равную традиционной. Именно этот фактор тормозит развитие ветроэнергетики в России, так как недостаточно инвесторов, готовых вложить свои денежные средства в рассматриваемую область. Но, на ряду с отрицательными факторами, имеются и положительные.

http://cyberleninka.ru/viewer_images/16923659/f/3.jpg

Рис. 1. Актуальность развития ветроэнергетической отрасли в России

На рисунке 1 приведена схема факторов, подтверждающая актуальность развития ветроэнергетической отрасли в нашей стране.

Исходя из выше представленной схемы, можно говорить о том, что получение энергии с помощью ветра оказывает положительное влияние на многие области государственного развития. Но понятно, что для строительства парков ветряных мельниц недостаточно только лишь наличие ветра. Необходимо тщательно охарактеризовать потоки ветра согласно следующим критериям, как скорость, повторяемость и мощность. Для этого необходимо как минимум год собирать данные по наличию и скорости ветра на исследуемой территории, а лучше использовать материалы наблюдений метеостанций за последние 10–15 лет. При анализе таких наблюдений можно выявить среднегодовые, среднесезонные и среднемесячные данные о потоках ветра.

Также стоит уделить внимание месторасположению ветряных парков. Необходимо учитывать следующие аспекты:

– Расстояние до жилых строений, во избежание доставления неудобств наличием громкого шума от вращения лопастей;

– Наличие потенциальных потребителей.

Подводя итоги, стоит отметить, что в России развитию ветроэнергетики, и альтернативной энергетики в целом должно поспособствовать именно государство. Необходимо наличие законов и стратегических программ по развитию альтернативной энергетики, определенных льгот для предпринимателей, других стимулирующих факторов, а самое главное — отделение класса потребителей из пользователей электроэнергии, которые гарантированно будут потреблять энергию, полученную от возобновляемых источников. Еще одним благоприятным фактором, для развитие альтернативной энергетики, является постоянный рост цен на традиционные энергоресурсы, тогда как, благодаря инновационным проектам, стоимость сооружения электростанций для возобновляемых проектов постоянно снижается.

  1. Азимов Т. А., Безнощук Л. Ю. Актуальность развития в Российской Федерации биоэнергетической отрасли // Молодой ученый. — 2017. — № 9.
  2. Бороздин А. Н. Экономические и технические аспекты строительства ветровых установок в Российской Федерации. Вестник Университета. 2016. № 10. С. 53–55.
  3. Азимов Т. А., Безнощук Л. Ю. Газогидраты — новый вид энергоресурсов // Молодой ученый. — 2016. — № 7. — С. 750–753.
  4. Мудрецов А. Ф., Тулупов А. С. Вопросы развития альтернативной энергетики в России / Вестник Томского государственного университета. Экономика. 2016. № 4(36). С. 38–45.
  5. Кушнир В. Г. Ветер как альтернативный вид энергии / Электротехнические и информационные комплексы и системы. 2013. № 9. С. 30–32.
  6. Щербак А. П. Возможности использования альтернативной энергетики на европейском севере России (Республика Карелия) / Экономика и управление. 2012. № 5(79). С. 100–103.

Основные термины (генерируются автоматически): Россия, альтернативная энергетика, ветроэнергетическая отрасль, парк, получение энергии, поток ветра, развитие ветроэнергетики.

Ветряные электростанции России

Медленно, но уверенно, Российская Федерация осваивает получение электроэнергии из альтернативных источников. Сейчас в этом направлении мы значительно уступаем многим другим странам, но, например, некоторые ветряные электростанции в России могут похвастаться высокими показателями выработки.

Сколько Россия получает электричества от ветра

По словам председателя Российской ассоциации ветроиндустрии, на 2021 год в нашей стране все ветропарки имеют мощность всего 1375 МВт, что составляет 0,56% от мощности всей энергосистемы. Хотя уже к 2024 году есть планы поднять этот показатель до 3380 МВт.

За 2020 год ветряные электростанции России смогли выработать 1384 млн кВт/ч электроэнергии. Эта капля в море составила 0,13% всей произведённой в стране электроэнергии.

Как развита ветроэнергетика в России

В основном потребность в ветряных электростанциях имеется в удалённых регионах, которые не подключены к централизованному энергоснабжению. Но в целом в России очень слабо используется эта отрасль ветроэнергетики.

Среди основных причин:

  • Энергетическая избыточность.Традиционные электростанции вполне справляются со своей задачей и Россия производит электроэнергию с избытком, который можно продавать другим странам.
  • Экономическая нецелесообразность. Этот пункт вытекает из предыдущего: у нас есть электростанции, которые удовлетворяют потребности населения, поэтому тратить средства на дорогие и менее эффективные проекты просто незачем.
  • Низкая поддержка со стороны государства. Субсидирование ветроэнергетики у нас ничтожно мало, если сравнивать с европейскими странами и США. Однако последние инициативы должны помочь в развитии отрасли.

Самые мощные ветровые электростанции России

В таблицу вынесли 10 мощнейших объектов по состоянию на 2021 год.

Кочубеевская ветряная электростанция

Ввиду благоприятных климатических условий большая концентрация ветряных электростанций в Республике Крым, однако большинство из них — это проекты конца 90-х и начала 2000-х, поэтому мощность несопоставима с современными объектами в регионах РФ. На фото ниже Останинская ВЭС — мощнейшая в Крыму ветряная электростанция.

Останинская ветряная электростанция

Перспективы ветроэнергетики в России

Заинтересованность в развитии этого направления имеется, но острой необходимости в этом нет, ведь традиционная электродобывающая промышленность у нас имеет высокий уровень развития.

Регулярно поднимается вопрос поддержки альтернативной энергетики. Так, стратегия развития Российской энергетики предполагает увеличение доли выработки ветроэнергетики до 3,3 ГВт к 2024 году.

Подводя итог, подчеркнём, что ветряные электростанции в России могут похвастаться высокими показателями мощности и есть предпосылки к дальнейшему наращиванию производительности ветропарков. Однако сейчас доля ветроэнергетики в общей энергосистеме РФ незначительна и выигрывает только за счёт запуска новых объектов последних лет.






Рис. 2. Пётр Леонидович Капица

Кто же прав? Главный идеолог современной России по внедрению ВИЭ или великий физик Советского Союза? Данный вопрос сводится к вопросу перспектив внедрения в условиях нашей страны солнечных (СЭС) и ветряных (ВЭС) электростанций. Данный вопрос весьма актуален, поскольку ответ на него может являться основанием для политических решений на государственном уровне, которые могут повлечь за собой положительные или отрицательные последствия социально-экономического и экологического характера. Поэтому целью данной работы является анализ перспектив внедрения СЭС и ВЭС в России. Для достижения поставленной цели в работе решаются следующие задачи:

Оценить потенциал энергии солнечного излучения и ветра на территории России;

Определить мощностные показателей некоторых эксплуатирующихся в России СЭС и ВЭС и сравнить их с аналогичными показателями электростанций традиционной энергетики;

Выделить основные проблемы на пути внедрения СЭС и ВЭС;

Оценить целесообразность применения СЭС и ВЭС в российских условиях с учётом наблюдающихся тенденций в области мировой энергетики.

Потенциал энергии солнечного излучения в России

На рис. 3 приведена карта распределения по территории России среднегодовой энергетической освещённости оптимально ориентированной неподвижной поверхности, взятая из [3]. В легенде карты приведены две шкалы с размерностями кВт·ч/(м 2 ·день) и Вт/м 2 . Вторая шкала демонстрирует значения максимальной средней мощности, которую можно было бы получать с одного квадратного метра оптимально ориентированной неподвижной рабочей поверхности солнечной установки, если бы её КПД был равен 100%. Однако КПД эксплуатируемых солнечных установок находится в диапазоне 10-20%, поэтому максимальная полезная мощность, которую можно получить как минимум в 5 раз меньше, чем потенциально возможная.



Рис. 3. Среднегодовая энергетическая освещённость оптимально ориентированной поверхности

Как видно из рис. 3 наибольшим солнечным потенциалом обладают Приморье и юг Иркутской области, где среднегодовая суточная энергетическая освещённость оптимально ориентированной поверхности может достигать 208 Вт/м 2 (при среднегодовой суточной инсоляции 5 кВт·ч/м 2 [3]). По этому значению оценим максимальную среднегодовую удельную электрическую мощность, которую может иметь солнечная электростанция (СЭС) в России. Под удельной среднегодовой электрической мощностью понимается полезная электрическая мощность, вырабатываемая электростанцией, приходящаяся на один квадратный метр земной поверхности, затеняемой солнечными панелями.

Будем считать, что электростанция состоит из рядов неподвижных фотоэлектрических панелей, наклонённых под оптимальным углом к поверхности земли, примерно равным широте местности φ. Чтобы электростанция работала наиболее эффективно, панели не должны затенять друг друга, поэтому расстояние между рядами панелей будет определяться минимальным углом падения солнечных лучей на данной широте, который в северном полушарии Земли достигается в день зимнего солнцестояния, около 22-го декабря, а в южном — в день летнего солнцестояния, около 22-го июня. На рис. 4 представлена схема освещения Солнцем рядов фотоэлектрических панелей в день зимнего солнцестояния в северном полушарии в истинный полдень, то есть когда Солнце находится в верхней кульминации.



Рис. 4. Схема освещения Солнцем рядов панелей солнечной электростанции в день зимнего солнцестояния в истинный полдень

Если среднегодовая энергетическая освещённость панелей равна E, а КПД электростанции равен η, то её удельную мощность можно определить по формуле, следующей из геометрических расчётов: ρ = E·η·cos(φ + ε)/cos ε, где ε ≈ 23.5° — угол наклона небесного экватора к плоскости эклиптики. У четырёхкаскадных солнечных элементов, изготовленных в Германии (Fraunhofer ISE/Soitec), при использовании концентрирования солнечного излучения в 500 раз, КПД достигает 46% [4]. На данном этапе развития солнечной энергетики это максимальное значение КПД, достигнутое на практике. Пренебрегая потерями в электросетях, преобразователях и накопителях электроэнергии, примем η = 0.46. Тогда для широты 50° максимально возможная удельная мощность солнечной электростанции в России составит 30 Вт/м 2 . Для следящих поверхностей в наиболее солнечных районах России энергетическая освещённость может достигать 292 Вт/м 2 (при среднегодовой суточной инсоляции 7 кВт·ч/м 2 [5]), поэтому при использовании следящих солнечных панелей потенциальная удельная мощность электростанции составит 42 Вт/м 2 . Но стоит заметить, что пока по экономическим соображениям на практике применяются гораздо менее эффективные солнечные элементы, а также предпочтение отдаётся стационарным солнечным панелям. Кроме того часть энергии теряется в сетях и различных устройствах (аккумуляторах, инверторах, распределителях и т.п.), поэтому реальные значения удельной мощности будут значительно меньше потенциально возможного уровня. При этом различные открытые информационные источники содержат заведомо несправедливую для России информацию, например, в [6] указано, что СЭС имеют удельную мощность 50–100 Вт/м 2 .

Потенциал энергии ветра в России

Теперь рассмотрим потенциал ветров на территории нашей страны. На рис. 5 изображена карта распределения среднегодовой скорости ветра на территории России.



Рис. 5. Карта распределения среднегодовой скорости ветра на территории России [7]

Опыт показывает, что для промышленного применения ветряных электростанций (ВЭС) требуется среднегодовая скорость ветра от 6.95 м/с [8], а для обеспечения самоокупаемости ВЭС требуется среднегодовая скорость ветра от 5 м/с [9]. Как видно из рис. 5, на большей части территории России применение ВЭС нецелесообразно. Наиболее благоприятными для промышленного применения ВЭС являются территории, примыкающие к побережьям северных и восточных морей России, а также Чёрного и Азовского морей. Наибольший интерес ветряная энергетика может представлять для прибрежных территорий от Карского до Охотского моря, вне зоны централизованного энергоснабжения.

Сравнение солнечных и ветряных электростанций с электростанциями традиционной энергетики

Теперь сравним мощностные показатели действующих в России СЭС и ВЭС с аналогичными показателями электростанций традиционной энергетики, а именно тепловых (ТЭС), атомных (АЭС) и гидроэлектростанций (ГЭС). Особый интерес представляет такой показатель, как среднегодовая удельная электрическая мощность электростанции



Nуст — установленная электрическая мощность электростанции, МВт;
КИУМ — коэффициент использования установленной мощности, %;
S — площадь территории электростанции, км 2 .

Среднегодовая удельная электрическая мощность характеризует эффективность использования территорий для производства электроэнергии, поскольку показывает, сколько среднегодовой вырабатываемой электростанцией мощности приходится на единицу площади её территории. По нему можно оценить сколько территории будет отчуждено при строительстве новой электростанции определённого типа.

В табл. 1 приведены значения среднегодовой удельной мощности некоторых российских электростанций, рассчитанные по данным открытых источников [10–23]. Площади территорий электростанций рассчитаны с помощью ресурса Google Earth [24]. Для заполнения табл. 1 в основном использованы данные за 2018 год.





Если сделать отступление в сторону традиционной энергетики, стоит заметить, что наибольшими удельными мощностями обладают современные ТЭС, имеющие в составе оборудования газотурбинные установки. Традиционные ТЭЦ с паротурбинными установками (Приуфимская ТЭЦ, Камчатская ТЭЦ-2) заметно уступают по удельной мощности газотурбинным ТЭС (Талаховская ТЭС, Новокузнецкая ГТЭС) и парогазовым ТЭС (ТЭС Международная, Сочинская ТЭС). Можно сделать вывод, что среди применяемых в современной энергетике электростанций парогазовые ТЭС обладают наибольшей удельной мощностью, обходя по данному показателю в том числе атомные и гидроэлектростанции.

Проблемы внедрения солнечных и ветряных электростанций для промышленного производства электроэнергии в России

Как показали вышеприведённые результаты расчётов, Пётр Леонидович Капица был прав, говоря ещё в 1975 году об экономической нецелесообразности использования энергии солнечного излучения и ветра из-за низкой плотности энергетического потока. Действительно, СЭС и ВЭС сильно уступают традиционным электростанциям по среднегодовой удельной электрической мощности, поэтому в регионах с высоким сельскохозяйственным потенциалом, применение таких электростанций недопустимо.

В конечном итоге перечисленные ранее трудности вытекают в проблему высокой стоимости электроэнергии, вырабатываемой на СЭС и ВЭС. В табл. 2 представлена себестоимость электроэнергии различных типов электростанций согласно прогнозу РусГидро [26].




Таблица 2 Себестоимость электроэнергии, генерируемой на различных электростанциях (прогноз РусГидро на 2020 год)

Перспективы развития солнечной и ветряной энергетики в России



Рис. 6. Прогноз МЭА мирового производства электроэнергии для сценария на основе сокращения удельных выбросов СО2

В данном докладе вопрос вызывают абсолютные цифры прогноза мирового производства электроэнергии, поскольку даже не были указаны размерности, но суть не в этом. Если рассмотреть вертикальную шкалу графика, представленного на рис. 6, в относительных единицах, то можно определить, что в 2018 году суммарная выработка электроэнергии с помощью ВИЭ должна была достичь примерно 10%. А потребление нефти и угля для производства электроэнергии должно было снизиться. Но в действительности наблюдается другая картина. На рис. 7 представлен график мирового энергопотребления до 2018 года, опубликованный в статистическом обзоре мировой энергетики нефтяной компании British Petroleum (BP) [28]. Согласно данным BP мировое потребление энергии, полученной с помощью ВИЭ, составило примерно 3,6%, что почти в три раза меньше прогнозного значения МЭА. В то же время потребление газа и нефти возросло, а потребление угля почти не изменилось. Глядя на текущие тенденции потребления энергоресурсов, трудно сказать, что в ближайшие годы генерация электроэнергии с помощью ВИЭ, в том числе на СЭС и ВЭС, составит серьёзную конкуренцию традиционной энергетике, даже несмотря на пока стабильный рост её доли в мировом энергопотреблении.



Рис. 7. График мирового энергопотребления в млн. тонн нефтяного эквивалента [28]



Исходя из вышеизложенного можно заключить, что промышленное применение солнечных и ветряных электростанций на территории России в текущих условиях нецелесообразно по ряду причин:

СЭС и ВЭС обеспечивают весьма низкую среднегодовую удельную электрическую мощность — на 2-3 порядка ниже, чем у традиционных электростанций.

Себестоимость солнечной и ветровой электроэнергии в несколько раз выше себестоимости электроэнергии, вырабатываемой на традиционных электростанциях, поэтому строительство СЭС и ВЭС в зоне централизованного энергоснабжения следует рассматривать как нерациональное вложение денежных средств.

Россия не обладает полным набором собственных отработанных технологий для производства солнечных и ветряных электростанций, поэтому при строительстве на её территории СЭС и ВЭС широко применяются иностранные технологии, что дополнительно ставит в зависимость российскую энергетику от других стран.


Тем не менее, результаты проведённого анализа не ставят крест на развитии солнечной и ветровой энергетики в России, однако приводят к следующим выводам:

Во-первых, развитие солнечной и ветровой энергетики в России должно в первую очередь сводиться к разработке отечественных технологий, которые затем можно применять в местах, где применение СЭС и ВЭС действительно оправдано.

Во-вторых, СЭС в России могут быть востребованы лишь в отдельных частных случаях, поскольку наиболее благоприятные для их применения территории находятся в зоне централизованного энергоснабжения.

В-третьих, ВЭС могут быть востребованы для отдельных потребителей, расположенных вдоль побережий северных и восточных морей нашей страны в энергетически изолированных зонах.

Отдельно следует подумать о возможности снижения энергопотребления, вероятно, путём развития у людей более бережного отношения к энергетическим ресурсам, а также путём создания и совершенствования энергосберегающих технологий.

Читайте также: