Нервная система насекомых кратко

Обновлено: 05.07.2024

Нервная система насекомых регулирует все функции организма, служит посредником между органами чувств и всеми другими органами. Нервная система состоит из центрального, периферического и симпатического отделов. Основу нервной системы составляют нервные клетки — нейроны, снабженные отростками: дендритами и аксонами. Обычно нейрон имеет несколько дендритов и один аксон. Эти отростки проводят нервное возбуждение, и из них образуются нервы, с помощью которых осуществляется связь нервной системы с различными органами и частями тела.
Центральная нервная система представляет собой серию парных нервных узлов, или ганглиев, соединенных межсегментными продольными тяжами — конненктивами, а в сегменте — короткими поперечными комиссурами. Каждый сегмент имеет по одному парному ганглию, от которого отходят нервы, в совокупности образующие периферическую нервную систему. Каждый ганглий иннервирует только свой сегмент. Различают две части в центральной нервной системе: головную и брюшную. Головная часть состоит из крупного надглоточного узла, расположенного над кишечником, и менее развитого подглоточного узла. Брюшная часть состоит из серии ганглиев, расположенных под кишечником, образующих брюшную нервную цепочку.
Головной мозг (надглоточный узел) устроен сложно и представляет собой главенствующий центр всей нервной системы. Он состоит из трех сросшихся ганглиев.
Периферическая нервная система образована нервами, отходящими от ганглиев центральной симпатической нервной системы. С ее помощью нервная система оказывается связанной с различными органами.
Симпатическая, или висцеральная, нервная система регулирует работу внутренних органов и мышечной системы. Она сложна анатомически и состоит из трех разделов: рото-желудочного, брюшного и хвостового.


Нервная система насекомого – это система образований, состоящих из нервной ткани и осуществляющих контроль над всеми функциями его организма.

Содержание:

Понимание строения и принципа работы нервной системы насекомых невозможно без изучения подробного строения нервной ткани.

Нейрон как структурная единица нервной системы

Простейший элемент нервной системы носит название нейрон. Это не что иное, как нервная клетка, покрытая оболочкой и имеющая особый набор органелл. Каждый нейрон состоит из трех частей:

  • тело клетки – ее основная часть, внутри которой находится ядро и другие структурные компоненты;
  • аксон – длинный толстый осевой отросток;
  • дендриты – короткие ветвящиеся отростки. [3][4][1]

Нервная система насекомых - Типичное строение нейрона

Типичное строение нейрона

Нервная система насекомых - Типичное строение нейрона

1 – тело клетки, 2 – аксон, 3 – дендриты.

Стрелки – направление передачи нервного импульса.

В целом, нейрон имеет звездчатую форму (фото).

Такое строение клетки неразрывно связано с ее функцией. По дендритам нервная клетка получает импульсы от соседних нейронов или чувствительных нервных окончаний, а по аксону отправляет их к другим таким же клеткам или рабочим органам: мышцам, железам (что заставляет их, соответственно, сокращаться или выделять секрет). Нервное возбуждение внутри нейрона передается только в этом направлении и никак иначе. [3]

В зависимости от того, какую функцию выполняет нейрон, нервные клетки разделяются на три вида.

  1. Чувствительные: воспринимают информацию от рецепторов (нервных окончаний) и передают их в центральную нервную систему.
  2. Вставочные (ассоциативные): обрабатывают информацию в нервных центрах, проводят импульсы от чувствительных рецепторов к двигательным нейронам.
  3. Двигательные (моторные) нейроны: передают возбуждение в направлении от нервных центров к рабочим органам. [3][4][1]

Трехнейронная рефлекторная дуга. Совокупность трех нейронов – чувствительного, вставочного и двигательного – составляет так называемую трехнейронную рефлекторную дугу. Она обеспечивает соответствующее реагирование насекомых на различные внешние стимулы, составляя основу для осуществления различных рефлексов. [3]

Двухнейронная дуга

Полинейронная

дуга. Кроме двух- и трехнейронной дуги, существует еще одна разновидность: полинейронная дуга. В ее составе находятся несколько вставочных нейронов, что обеспечивает сложные формы рефлексов, например, формирующих половое чувство или пищевое поведение. [3]

Нервная система насекомых - Строение нервной системы насекомых

Строение нервной системы насекомых

Нервная система насекомых - Строение нервной системы насекомых

1 – головной мозг, 2 – подглоточный ганглий,

3 – брюшная нервная цепочка, 4 – нервы

Центральная нервная система

Перейдем от микроструктуры нервной ткани к макростроению нервной системы. Она включает центральный и периферический отделы, а также вегетативную нервную систему. Центральный отдел, как логично предположить, имеет ведущее значение.

Центральная нервная система представлена двойной цепочкой ганглиев – узловых образований, состоящих из нервных клеток. Узлы в каждой цепочке продольно связаны между собой коннективами – волокнами нервных клеток, тела которых располагаются в их составе. Две продольные цепочки имеют и поперечные соединения между собой – комиссуры, тоже состоящие из волокон. Каждая пара ганглиев соответствует одному сегменту тела насекомого. [3][4]

Передние узлы цепочек объединены. Ганглии по меньшей мере трех сегментов слиты в так называемый надглоточный ганглий, который является головным мозгом насекомого. (фото) Соответственно, остальные узлы брюшной нервной цепочки являются аналогом спинного мозга, хотя конкретно данный термин в анатомии нервной системы насекомых не используется. [3]

Расположенные позади головного мозга узлы (также объединенные) носят название подглоточного ганглия. В его составе находятся ганглии трех сегментов челюстей. Коннективы, связывающие его с мозгом, называются окологлоточными коннективами. [3]

Далее располагаются три грудных ганглия, которые иногда соединяются в одну массу. Следом находятся оставшиеся ганглии брюшных сегментов. Так как количество сегментов брюшка у разных насекомых различается, то и число брюшных ганглиев тоже может быть разным. Например, у поденок и нимф их 7 пар. [3]

Каждая пара ганглиев брюшной нервной цепочки дает чувствительные и двигательные волокна к тканям и иннервирует соответствующий сегмент тела, то есть, управляет его функциями. Например, самая последняя пара контролирует спаривание и процесс откладки яиц, а узлы, расположенные в грудном отделе, управляют работой крыльев и ног. [3]

Самое сложное строение из всех ганглиозных образований имеет головной мозг, который осуществляет контроль не только над органами головы, но и над деятельностью всего организма. [3] [4]

Класс насекомые лидирует по числу видов среди всех животных. На настоящее время описано около 1,1 млн. видов насекомых, при том факте, что истинное число видов оценивается от 2 до 8 млн. разными исследователями. Можно смело заявить, что половина (скорее всего, гораздо больше) видов насекомых еще не изучены.

"Насекомые. Они - истинные хозяева земли" - сказал В.М. Песков. Это действительно так, люди - редкое исключение в мире насекомых. Именно они сейчас эволюционно достигли наивысшего расцвета, отлично приспособившись к жизни в среде людей. Так что с точки зрения эволюции мы с вами живем в эру господства насекомых, удивительных существ, сложные инстинкты и поведение многих из которых поражает.

Танцы пчел

С помощью танца пчелы могут сообщать друг другу, в каком направлении и как далеко от их местоположения находится корм. Если расстояние менее 100 метров, пчела исполняет круговой танец, а если более 100 метров - виляющий танец, в виде восьмерки. Только насекомым свойственна общественная организация, разделение труда между особями.

Танцы пчел: круговой и виляющий

Насекомых изучает интереснейшая наука - энтомология (от греч. entoma - насекомые и logos - слово, учение), в этой статье мы познакомимся с их общим строением.

Строение насекомых

Тело дифференцировано на голову (5 слившихся сегментов), грудь (3 сегмента) и брюшко (8 сегментов). На голове находится одна пара усиков - антенны, являющиеся органами обоняния и осязания. Полость тела насекомых смешанная (миксоцель), она позволяет во время линьки значительно увеличивать объем тела за счет увеличения давления крови.

Многие насекомые способны к удивительному движению в воздухе - полету. Первая пара крыльев носит названия надкрылья: в полете они не участвуют, это плотные хитинизированные образования, прикрывающие часть груди и брюшка. Вторая пара крыльев принимает непосредственное участие в полете, имеет вид уплощенных перепончатых образований.

Три пары ходильных ног крепятся к груди. Членистая конечность насекомого оканчивается двумя коготками, между которыми иногда располагаются присоски. Конечности насекомых разнятся по выполняемой функции, в соответствии с ней получая свои названия: копательная, бегательная, прыгательная, плавательная, собирательная.

Строение насекомого

Тело насекомых, как и всех членистоногих, покрыто хитиновой кутикулой - наружным скелетом. Эта плотная оболочка насекомого сдерживает рост. Запомните, что насекомые активно растут только в личиночной стадии и в период линьки, когда хитиновый покров до конца не сформирован или сброшен.

Линька насекомого

Состоит из переднего, среднего и заднего отделов. К переднему отделу относятся рот, глотка, пищевод, который часто имеет расширение - зоб, желудок. После желудка начинается средний отдел - кишечник, от которого отходят многочисленные слепо заканчивающиеся выросты, увеличивающие всасывательную поверхность. В заднем отделе кишечника происходит формирование экскрементов и всасывание воды, заканчивается задняя кишка анальным отверстием.

Особо необходимо отметить развитую мускулатуру желудка, который называется - мускульный. В нем происходит дополнительное перетирание пищи. После этого пищевые частицы расщепляются до мономеров, которые всасываются кишкой и попадают в гемолимфу. С ее током питательные вещества достигают внутренних органов и тканей.

Пищеварительная система насекомого

У большинства насекомых имеются слюнные железы. Насекомые обладают самыми разнообразными сложноустроенными ротовыми аппаратами. Строение ротового аппарата отражает способ питания. Ниже вы видите таблицу, отражающую многообразие ротовых аппаратов у насекомых.

Ротовые аппараты насекомых

Дыхательная система представлена сильно разветвленной системой трахей, которые выполняют функцию наружного дыхания. На голове, груди и брюшке у насекомых находятся дыхальца (стигмы) - дыхательные отверстия, которыми трахеи открываются во внешнюю среду.

Кровеносная система не переносит кислород, так что функция его доставки целиком принадлежит трахеям, которые ветвятся на тонкие трубочки (трахеолы) и подходят к небольшим группам клеток. У части быстролетающих насекомых (мухи, пчелы) трахеи образуют расширенные участки - воздушные мешки, которые улучшают вентиляцию трахейной системы и уменьшают удельный вес тела

Дыхательная система насекомых

Для насекомых характерен незамкнутый (лакунарный) тип кровеносной системы. Кровь свободно движется по лакунам (синусам), непосредственно омывая внутренние органы и ткани. Функцию сердца выполняет спинной сосуд: благодаря его сокращениям кровь перекачивается из задней части тела в переднюю.

Функционирование сосуда-сердца схоже с таковым у ракообразных. В момент расслабления сосуда-сердца через отверстия (остии) кровь наполняет его, а в момент сокращения (систолы) кровь выталкивается в артерии, затем попадает в полость тела, омывает органы и ткани.

Спинной сосуд насекомых

Внутреннюю среду насекомых составляет гемолимфа, представляющая собой бесцветную или желтоватую жидкость. В гемолимфу из кишечника всасываются питательные вещества, после чего доставляются к клеткам организма. В нее же удаляются побочные продукты обмена веществ.

Кровеносная система насекомых

Органы выделения представлены мальпигиевыми сосудами (в честь итал. биолога и врача - Марчелло Мальпиги). Это длинные трубчатые выросты насекомых и паукообразных, которые расположены на границе средней и задней кишки.

Как вы помните, перед насекомыми стоит сложная задача: максимально сохранить воду в организме. Мальпигиевы сосуды этому способствуют: в них поступают продукты обмена веществ из гемолимфы в виде суспензии. По мере продвижения по мальпигиевым сосудам, из суспензии всасывается вся вода обратно в гемолимфу, а продукты обмена веществ (кристаллы мочевой кислоты) в сухом виде поступают в кишку и выводятся из организма с экскрементами.

Мальпигиевы сосуды

К органам выделения также относится жировое тело. Жировое тело - образование мезодермального происхождения, содержащие запасы питательных веществ, которые постоянно расходуются организмом. В жировом теле могут накапливаться и продукты обмена веществ: продукты распада, что нейтрализует их токсическое действие.

Жировое тело

Тип нервной системы насекомых - узловой. Состоит она из головного мозга (надглоточного ганглия), подглоточного ганглия и брюшной нервной цепочки.

Головной мозг имеет сложное строение, образован в результате слияния 3 ганглиев и состоит соответственно из 3 отделов: переднего, среднего и заднего. От мозга отходят нервные тяжи - коннективы, которые направляются к подглоточному ганглию, в совокупности образуя окологлоточное нервное кольцо.

Наиболее развитые ганглии в брюшной нервной цепочке находятся в груди, так как они иннервируют сложную работу конечностей и крыльев. Узлы распределены неравномерно: 3 ганглия находятся в груди, 8 - в брюшке.

Строение нервной системы у насекомых

Органы чувств развиты хорошо. Глаза простые или сложные (фасеточные), одна пара усиков (антенн), на которых располагаются органы обоняния и осязания. Имеются органы вкуса, локализующиеся на щупиках нижней губы и нижней челюсти.

Сложные фасеточные глаза

Такое прогрессивное развитие нервной системы заложило фундамент для появления у насекомых сложнейших и удивительных рефлексов. Среди всех беспозвоночных только насекомые отличаются общественным (социальным) образом жизни: они совместно строят гнездо, ухаживают за потомством, разделяют обязанности среди членов семьи. Общественными насекомыми являются пчелы, осы, муравьи, шмели.

Заметим, что в переднем отделе мозга расположены грибовидные тела, ассоциативные центры головного мозга. Особенно хорошо развиты грибовидные тела у насекомых, ведущих общественный образ жизни, что связано с их сложным поведением.

Разделение труда у муравьев, общественных животных

Насекомые раздельнополы, гермафродиты среди них встречаются очень редко. Часто встречается хорошо выраженный половой диморфизм - внешние различия между самцом и самкой.

Половые железы парные: у мужских особей - семенники, у женских - яичники. От семенников и яичников соответственно отходят семяпроводы и яйцеводы, впадающие в семяизвергательный канал и влагалище. Оплодотворение у насекомых внутреннее: с помощью совокупительных органов семя вводится самцом в половые пути самки.

Половое размножение у насекомых

Развитие может быть прямым или непрямым. Запомните, что у всех насекомых развитие непрямое.

Непрямое развитие может протекать с метаморфозом (от греч. metamorphosis - превращение) - полное превращение, или без него - неполное превращение.

Метаморфоз - глубокое преобразование строения организма, переход из одной формы в другую, сопровождающийся появлением новых элементов строения и функций.

Полное и неполное превращение у насекомых

Как заметно из схемы выше, неполное и полное превращение отличаются наличием стадии куколки, это именно та стадия, в которую и происходит метаморфоз. О том, для каких насекомых характерно развитие с метаморфозом, а для каких нет - вы узнаете из следующей статьи.

Классический пример метаморфоза - превращение гусеницы в бабочку. В коконе (стадия куколки) в организме гусеницы происходит растворение практически всех тканей, за исключением нервной и кровеносной систем. В результате такого метаморфоза образуется новый организм - бабочка, сильно отличающаяся от гусеницы.

Непрямое развитие с метаморфозом

Логично предположить, что у насекомых с неполным превращением личинка напоминает взрослую особь, но меньше ее в размерах. У насекомых с полным превращением, которое сопровождается метаморфозом (гусеница становится бабочкой), личинка совершенно не похожа на взрослую особь, разительно отличается от нее по строению и функциям.

Особо необходимо отметить партеногенез. Партеногенез (от греческого parthenos - дева, девственница и genesis - рождение) - одна из форм полового размножения, при котором новый организм развивается из яйцеклетки без ее оплодотворения. Поскольку мужская гамета не участвует в данном процессе, генотип потомства содержит исключительно гены матери.

Партеногенез встречается у следующих насекомых: тли, муравьи, пчелы, осы, шмели, тутовый шелкопряд. Партеногенез относится именно к половому (а не бесполому) типу размножения, поскольку новый организм развивается из неоплодотворенной яйцеклетки (женской гаметы). Данный процесс играет важную роль: он значительно увеличивает темпы роста популяции, регулирует соотношение женских и мужских особей, обеспечивает продолжение существования вида.

Партеногенез у тлей

Искусственный партеногенез у тутового шелкопряда впервые был получен А.А. Тихомировым в 1886 году, а практика развита Б.Л. Астауровым, который придумал искусственный способ получения самцов тутового шелкопряда, дающих повышенный выход ценного материала - шелкового волокна высокого качества.

Тутовый шелкопряд

Значение насекомых
  • Являются опылителями цветковых растений, в числе которых много культурных видов, употребляемых человеком в пищу
  • Являются звеном в цепи питания (консументы)
  • Регулируют численность других насекомых
  • Участвуют в почвообразовании: способствуют разложению растительных останков, прокладывают в почве ходы, роют норки
  • Производство шелка: как и 4000 лет назад, сегодня для получения шелка используют коконы тутового шелкопряда
  • Способствуют разложению останков животных: мясные мухи питаются падалью (трупами животных)
  • Производство меда: почти во всех странах мира разводят медоносных пчел (пчеловодство)

Некоторые насекомые определенно приносят человеку больше вреда, чем пользы:

  • Часть является кровососущими эктопаразитами человека и животных - комары, вши, клопы, блохи
  • Переносят инфекционные заболевания - малярия (комары), лейшманиозы (москиты), сыпной и возвратный тиф (вши), чума (блохи), дизентерия (мухи, тараканы)
  • Личинки насекомых, а также взрослый особи (имаго) наносят значительный вред сельскохозяйственным культурам (саранча, жуки, тли)

Питание комара кровью

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.


Схема строения нервной системы насекомого (из Вюрмбах): 1 - протоцеребрум, 2 - нейросекреторные клетки, 3 - оптическая область мозга, 4 - дейтоцеребрум, 5 - антеннальный нерв, 6 - тритоцеребрум, 7 - кардиальные тела, 8 - прилежащие тела, 9 - окологлоточные коннективы, 10 - подглоточный ганглий, 11 - нервы, идущие к ротовым конечностям, 12 - ганглии грудных сегментов, 13 - ганглии брюшных сегментов, 14 - непарный нерв симпатической системы

Нервная система насекомых ( рис. 326 ), как и у прочих членистоногих, исходно построена по типу брюшной нервной цепочки, однако может достигать очень высокого уровня развития и специализации.

Центральная нервная система включает головной мозг, подглоточный ганглий и сегментарные ганглии брюшной нервной цепочки, расположенные в туловище. Головной мозг состоит из трех участков: передний - протоцеребрум, средний - дейтоцеребрум и задний - тритоцеребрум. Протоцеребрум и дейтоцеребрум иннервируют соответственно глаза и сяжки насекомых, т. е. придатки акрона. Тритоцеребрум принадлежит вставочному, или интеркалярному, сегменту, который отвечает сегменту второй пары антенн раков. Головной мозг отличается очень сложным гистологическим строением, так как каждый его отдел, в свою очередь, слагается из нескольких ганглиозных скоплений, разделенных прослойками из нервных волокон.

Особенно важными ассоциативными центрами головного мозга считаются "грибовидные тела", располагающиеся в протоцеребруме. Впрочем, сложность структуры характеризует мозг не всех насекомых, а главным образом тех, жизнь которых отличается сложностью и разнообразием жизненных функций. Поэтому мозг развит сложнее всего у общественных насекомых: муравьев, пчел, термитов. Эта закономерность у них прослеживается даже в пределах одного вида, представленного несколькими "кастами", отличающимися по сложности жизненных отправлений. У рабочих муравьев, например, грибовидные тела развиты значительно сильнее, чем у цариц и самцов.

Брюшная нервная цепочка состоит из сложного подглоточного ганглия, посылающего нервы к трем парам ротовых конечностей, из трех крупных обособленных грудных ганглиев и брюшных ганглиев, количество которых может варьировать. Наиболее полное их число - 11 - наблюдается только на самых ранних стадиях эмбриогенеза некоторых насекомых - тараканы, медведки, жуки и т. д.

У большинства насекомых ганглии брюшной цепочки концентрируются в продольном направлении, так что во взрослом состоянии даже у самых примитивных форм не встречается более 8 брюшных ганглиев. Причем последний, VIII ганглий сохраняет следы своего сложного происхождения за счет слияния нескольких ганглиев. Однако у многих насекомых процесс концентрации ганглиев заходит значительно дальше. Возникают сложные брюшные и грудные ганглиозные массы. В ряде случаев все ганглии грудного и брюшного отделов могут сливаться, образуя массу, расположенную в груди, тогда как в брюшке остаются только нервы. Обычно нервная цепочка личинок богаче расчленена, чем таковая взрослых насекомых: взрослая пчела имеет всего б ганглиев вместо личиночных 10.

Насекомые обладают системой отходящих от головного мозга симпатических нервов, которые регулируют работу внутренних органов и мышечной системы.

Практически во всех отделах центральной нервной системы (головной мозг, подглоточный ганглий, брюшная нервная цепочка) имеются нейросекреторные клетки. Синтезируемый в них нейросекрет транспортируется по аксонам в особые образования - прилежащие и кардиальные тела, а затем поступает в гемолимфу. Кардиальные и прилежащие тела располагаются над кишечником сразу же за головным мозгом. Они выполняют функции желез внутренней секреции.

Нейросекреты играют важную роль в гормональной системе насекомых: они регулируют деятельность всех остальных эндокринных органов, гормоны которых обеспечивают нормальное осуществление развития организма, течение обменных процессов, линьки и т. д.


Схема строения нервной системы насекомого (из Вюрмбах): 1 - протоцеребрум, 2 - нейросекреторные клетки, 3 - оптическая область мозга, 4 - дейтоцеребрум, 5 - антеннальный нерв, 6 - тритоцеребрум, 7 - кардиальные тела, 8 - прилежащие тела, 9 - окологлоточные коннективы, 10 - подглоточный ганглий, 11 - нервы, идущие к ротовым конечностям, 12 - ганглии грудных сегментов, 13 - ганглии брюшных сегментов, 14 - непарный нерв симпатической системы



Нервная система насекомых ( рис. 326 ), как и у прочих членистоногих, исходно построена по типу брюшной нервной цепочки, однако может достигать очень высокого уровня развития и специализации.

Центральная нервная система включает головной мозг, подглоточный ганглий и сегментарные ганглии брюшной нервной цепочки, расположенные в туловище. Головной мозг состоит из трех участков: передний - протоцеребрум, средний - дейтоцеребрум и задний - тритоцеребрум. Протоцеребрум и дейтоцеребрум иннервируют соответственно глаза и сяжки насекомых, т. е. придатки акрона. Тритоцеребрум принадлежит вставочному, или интеркалярному, сегменту, который отвечает сегменту второй пары антенн раков. Головной мозг отличается очень сложным гистологическим строением, так как каждый его отдел, в свою очередь, слагается из нескольких ганглиозных скоплений, разделенных прослойками из нервных волокон.

Особенно важными ассоциативными центрами головного мозга считаются "грибовидные тела", располагающиеся в протоцеребруме. Впрочем, сложность структуры характеризует мозг не всех насекомых, а главным образом тех, жизнь которых отличается сложностью и разнообразием жизненных функций. Поэтому мозг развит сложнее всего у общественных насекомых: муравьев, пчел, термитов. Эта закономерность у них прослеживается даже в пределах одного вида, представленного несколькими "кастами", отличающимися по сложности жизненных отправлений. У рабочих муравьев, например, грибовидные тела развиты значительно сильнее, чем у цариц и самцов.

Брюшная нервная цепочка состоит из сложного подглоточного ганглия, посылающего нервы к трем парам ротовых конечностей, из трех крупных обособленных грудных ганглиев и брюшных ганглиев, количество которых может варьировать. Наиболее полное их число - 11 - наблюдается только на самых ранних стадиях эмбриогенеза некоторых насекомых - тараканы, медведки, жуки и т. д.

У большинства насекомых ганглии брюшной цепочки концентрируются в продольном направлении, так что во взрослом состоянии даже у самых примитивных форм не встречается более 8 брюшных ганглиев. Причем последний, VIII ганглий сохраняет следы своего сложного происхождения за счет слияния нескольких ганглиев. Однако у многих насекомых процесс концентрации ганглиев заходит значительно дальше. Возникают сложные брюшные и грудные ганглиозные массы. В ряде случаев все ганглии грудного и брюшного отделов могут сливаться, образуя массу, расположенную в груди, тогда как в брюшке остаются только нервы. Обычно нервная цепочка личинок богаче расчленена, чем таковая взрослых насекомых: взрослая пчела имеет всего б ганглиев вместо личиночных 10.

Насекомые обладают системой отходящих от головного мозга симпатических нервов, которые регулируют работу внутренних органов и мышечной системы.

Практически во всех отделах центральной нервной системы (головной мозг, подглоточный ганглий, брюшная нервная цепочка) имеются нейросекреторные клетки. Синтезируемый в них нейросекрет транспортируется по аксонам в особые образования - прилежащие и кардиальные тела, а затем поступает в гемолимфу. Кардиальные и прилежащие тела располагаются над кишечником сразу же за головным мозгом. Они выполняют функции желез внутренней секреции.

Нейросекреты играют важную роль в гормональной системе насекомых: они регулируют деятельность всех остальных эндокринных органов, гормоны которых обеспечивают нормальное осуществление развития организма, течение обменных процессов, линьки и т. д.

Читайте также: