Нейрон структурная единица нервной системы кратко

Обновлено: 05.07.2024

Функционирование организма как единого целого, взаимодействие отдельных его частей, сохранение постоянства внутренней среды (гомеостаза) осуществляются двумя регуляторными системами: нервной и гуморальной.

Значение нервной системы. Основными функциями нервной системы являются: 1) быстрая и точная передача информации о состоянии внешней и внутренней среды организма; 2) анализ и интеграция всей информации; 3) организация адаптивного реагирования на внешние сигналы; 4) регуляция и координация деятельности всех органов и систем в соответствии с конкретными условиями деятельности и изменяющимися факторами внешней и внутренней среды организма. С деятельностью высших отделов нервной системы связано осуществление психических процессов и организация целенаправленного поведения.

Нервная система, являясь единой и высоко интегрированной, на основе структурных и функциональных особенностей, подразделяется на две основные части - центральную и периферическую.

Центральная нервная система (ЦНС) включает головной и спинной мозг, где расположены скопления нервных клеток – нервные центры, осуществляющие прием и анализ информации, ее интеграцию, регуляцию целостной деятельности организма, организацию адаптивного реагирования на внешние и внутренние воздействия.

Периферическая нервная система состоит из нервных волокон, расположенных вне центральной нервной системы. Она представлена пучками отростков нейронов (нервные стволы), лежащих в ЦНС или в ганглиях (узлах) за ее пределами (вегетативная нервная система). Одни из них - афферентные (чувствительные) волокна - передают сигналы от рецепторов, находящихся в разных частях тела в центральную нервную систему, другие - эффекторные (двигательные) волокна - из центральной нервной системы на периферию. В зависимости от объекта иннервации периферические нервы делятся на соматические (черепно- и спинно-мозговые) и вегетативные (симпатические и парасимпатические).

Нейрон (нейроцит) – основная структурно-функциональная единица нервной системы. Нейроны - высокоспециализированные клетки, приспособленные для приема, кодирования, обработки, интеграции, хранения и передачи информации. Нейрон состоит из тела и отростков двух типов: коротких ветвящихся дендритов и длинного отростка - аксона.

Тело нервной клетки имеет диаметр от 5 до 150 микрон. Оно является биосинтетическим центром нейрона, где происходят сложные метаболические процессы. Тело содержит ядро и цитоплазму, в которой расположено множество органелл, участвующих в синтезе клеточных белков (протеинов). От тела клетки отходит длинный нитевидный отросток аксон, выполняющий функцию передачи информации. Аксон покрыт особой миелиновой оболочкой, создающей оптимальные условия для проведения сигналов. Конец аксона сильно ветвится, его конечные веточки образуют контакты со множеством других клеток (нервных, мышечных и др.). Скопления аксонов образуют нервное волокно. Дендриты - сильно ветвящиеся отростки, которые во множестве отходят от тела клетки. От одного нейрона может отходить до 1000 дендритов. Тело и дендриты покрыты единой оболочкой и образуют воспринимающую (рецептивную) поверхность клетки. На ней расположена большая часть контактов от других нервных клеток - синапсов. Клеточная оболочка - мембрана - является хорошим электрическим изолятором. По обе стороны мембраны существует электрическая разность потенциалов – мембранный потенциал, уровень которого изменяется при активации синаптических контактов.

Синапс имеет сложное строение. Он образован двумя мембранами: пресинаптической и постсинаптической. Пресинаптическая мембрана находится на окончании аксона, передающего сигнал; постсинаптическая - на теле или дендритах, к которым сигнал передается. В синапсах при поступлении сигнала из синаптических пузырьков выделяются химические вещества двух типов - возбудительные (ацетилхолин, адреналин, норадреналин) и тормозящие (серотонин, гамма-аминомасляная кислота). Эти вещества - медиаторы, действуя на постсинаптическую мембрану, изменяют ее свойства в области контактов. При выделении возбуждающих медиаторов в области контакта возникает возбудительный постсинаптический потенциал (ВПСП), при действии тормозящих медиаторов - соответственно тормозящий постсинаптический потенциал (ТПСП). Их суммация приводит к изменению внутриклеточного потенциала в сторону деполяризации или гиперполяризации. При деполяризации клетка генерирует импульсы, передающиеся по аксону к другим клеткам или работающему органу. При гиперполяризации нейрон переходит в тормозное состояние и не генерирует импульсную активность. Множественность и разнообразие синапсов обеспечивает возможность широких межнейрональных связей и участие одного и того же нейрона в разных функциональных объединениях.




Классификация нейронов. Имея принципиально общее строение, нейроны сильно различаются размерами, формой, числом, ветвлением и расположением дендритов, длиной и разветвленностью аксона, что свидетельствует об их высокой специализации. Выделяются следующие два основных типа нейронов.

Пирамидные клетки - крупные нейроны разного размера ("коллекторы"), на которых сходятся (конвергируют) импульсы от разных источников.

Дендриты пирамидных нейронов пространственно организованы. Один отросток - апикальный дендрит - выходит из вершины пирамиды, ориентирован вертикально и имеет конечные горизонтальные разветвления. Другие - базальные дендриты - разветвляются у основания пирамиды. Дендриты густо усеяны специальными выростами (шипиками), которые повышают эффективность синаптической передачи. По аксонам пирамидных нейронов импульсация передается другим отделам ЦНС. Пирамидные нейроны по своей функции подразделяются на два типа: афферентные и эфферентные. Афферентные передают и принимают сигнал из сенсорных рецепторов, мышц, внутренних органов в центральную нервную систему. Нервные клетки, передающие сигналы из центральной нервной системы на периферию, называются эфферентными.

Вставочные (контактные) клетки или интернейроны. Они меньше по размерам, разнообразны по пространственному расположению отростков (веретенообразные, звездчатые, корзинчатые). Общим для них является широкая разветвленность дендритов и короткий аксон с разной степенью ветвления. Интернейроны обеспечивают взаимодействие различных клеток и поэтому иногда называются ассоциативными.

Представленность разных типов нейронов и характер их взаимосвязи существенно различаются в разных структурах мозга.

Возрастные изменения структуры нейрона и нервного волокна. На ранних стадиях эмбрионального развития нейрон, как правило, состоит из тела, имеющего два недифференцированных и неветвящихся отростка. Тело содержит крупное ядро, окруженное небольшим слоем цитоплазмы. Процесс созревания нейронов характеризуется быстрым увеличением цитоплазмы, увеличением в ней числа рибосом и формированием аппарата Гольджи, интенсивным ростом аксонов и дендритов. Различные типы нервных клеток созревают в онтогенезе гетерохронно. Наиболее рано (в эмбриональном периоде) созревают крупные афферентные и эфферентные нейроны. Созревание мелких клеток (интернейронов) происходит после рождения (в постнатальном онтогенезе) под влиянием средовых факторов, что создает предпосылки для пластических перестроек в центральной нервной системе. Отдельные части нейрона тоже созревают неравномерно. Наиболее поздно формируется дендритный шипиковый аппарат, развитие которого в постнатальном периоде в значительной мере обеспечивается притоком внешней информации. Покрывающая аксоны миелиновая оболочка интенсивно растет в постнатальном периоде, ее рост ведет к повышению скорости проведения импульса по нервному волокну. Миелинизация проходит в таком порядке: сначала - периферические нервы, затем волокна спинного мозга, стволовая часть головного мозга, мозжечок и позже - волокна больших полушарий головного мозга. Двигательные нервные волокна покрываются миелиновой оболочкой уже к моменту рождения, чувствительные (например, зрительные) волокна - в течение первых месяцев постнатальной жизни ребенка.

Функционирование организма как единого целого, взаимодействие отдельных его частей, сохранение постоянства внутренней среды (гомеостаза) осуществляются двумя регуляторными системами: нервной и гуморальной.

Значение нервной системы. Основными функциями нервной системы являются: 1) быстрая и точная передача информации о состоянии внешней и внутренней среды организма; 2) анализ и интеграция всей информации; 3) организация адаптивного реагирования на внешние сигналы; 4) регуляция и координация деятельности всех органов и систем в соответствии с конкретными условиями деятельности и изменяющимися факторами внешней и внутренней среды организма. С деятельностью высших отделов нервной системы связано осуществление психических процессов и организация целенаправленного поведения.

Нервная система, являясь единой и высоко интегрированной, на основе структурных и функциональных особенностей, подразделяется на две основные части - центральную и периферическую.

Центральная нервная система (ЦНС) включает головной и спинной мозг, где расположены скопления нервных клеток – нервные центры, осуществляющие прием и анализ информации, ее интеграцию, регуляцию целостной деятельности организма, организацию адаптивного реагирования на внешние и внутренние воздействия.

Периферическая нервная система состоит из нервных волокон, расположенных вне центральной нервной системы. Она представлена пучками отростков нейронов (нервные стволы), лежащих в ЦНС или в ганглиях (узлах) за ее пределами (вегетативная нервная система). Одни из них - афферентные (чувствительные) волокна - передают сигналы от рецепторов, находящихся в разных частях тела в центральную нервную систему, другие - эффекторные (двигательные) волокна - из центральной нервной системы на периферию. В зависимости от объекта иннервации периферические нервы делятся на соматические (черепно- и спинно-мозговые) и вегетативные (симпатические и парасимпатические).

Нейрон (нейроцит) – основная структурно-функциональная единица нервной системы. Нейроны - высокоспециализированные клетки, приспособленные для приема, кодирования, обработки, интеграции, хранения и передачи информации. Нейрон состоит из тела и отростков двух типов: коротких ветвящихся дендритов и длинного отростка - аксона.

Тело нервной клетки имеет диаметр от 5 до 150 микрон. Оно является биосинтетическим центром нейрона, где происходят сложные метаболические процессы. Тело содержит ядро и цитоплазму, в которой расположено множество органелл, участвующих в синтезе клеточных белков (протеинов). От тела клетки отходит длинный нитевидный отросток аксон, выполняющий функцию передачи информации. Аксон покрыт особой миелиновой оболочкой, создающей оптимальные условия для проведения сигналов. Конец аксона сильно ветвится, его конечные веточки образуют контакты со множеством других клеток (нервных, мышечных и др.). Скопления аксонов образуют нервное волокно. Дендриты - сильно ветвящиеся отростки, которые во множестве отходят от тела клетки. От одного нейрона может отходить до 1000 дендритов. Тело и дендриты покрыты единой оболочкой и образуют воспринимающую (рецептивную) поверхность клетки. На ней расположена большая часть контактов от других нервных клеток - синапсов. Клеточная оболочка - мембрана - является хорошим электрическим изолятором. По обе стороны мембраны существует электрическая разность потенциалов – мембранный потенциал, уровень которого изменяется при активации синаптических контактов.

Синапс имеет сложное строение. Он образован двумя мембранами: пресинаптической и постсинаптической. Пресинаптическая мембрана находится на окончании аксона, передающего сигнал; постсинаптическая - на теле или дендритах, к которым сигнал передается. В синапсах при поступлении сигнала из синаптических пузырьков выделяются химические вещества двух типов - возбудительные (ацетилхолин, адреналин, норадреналин) и тормозящие (серотонин, гамма-аминомасляная кислота). Эти вещества - медиаторы, действуя на постсинаптическую мембрану, изменяют ее свойства в области контактов. При выделении возбуждающих медиаторов в области контакта возникает возбудительный постсинаптический потенциал (ВПСП), при действии тормозящих медиаторов - соответственно тормозящий постсинаптический потенциал (ТПСП). Их суммация приводит к изменению внутриклеточного потенциала в сторону деполяризации или гиперполяризации. При деполяризации клетка генерирует импульсы, передающиеся по аксону к другим клеткам или работающему органу. При гиперполяризации нейрон переходит в тормозное состояние и не генерирует импульсную активность. Множественность и разнообразие синапсов обеспечивает возможность широких межнейрональных связей и участие одного и того же нейрона в разных функциональных объединениях.

Классификация нейронов. Имея принципиально общее строение, нейроны сильно различаются размерами, формой, числом, ветвлением и расположением дендритов, длиной и разветвленностью аксона, что свидетельствует об их высокой специализации. Выделяются следующие два основных типа нейронов.

Пирамидные клетки - крупные нейроны разного размера ("коллекторы"), на которых сходятся (конвергируют) импульсы от разных источников.

Дендриты пирамидных нейронов пространственно организованы. Один отросток - апикальный дендрит - выходит из вершины пирамиды, ориентирован вертикально и имеет конечные горизонтальные разветвления. Другие - базальные дендриты - разветвляются у основания пирамиды. Дендриты густо усеяны специальными выростами (шипиками), которые повышают эффективность синаптической передачи. По аксонам пирамидных нейронов импульсация передается другим отделам ЦНС. Пирамидные нейроны по своей функции подразделяются на два типа: афферентные и эфферентные. Афферентные передают и принимают сигнал из сенсорных рецепторов, мышц, внутренних органов в центральную нервную систему. Нервные клетки, передающие сигналы из центральной нервной системы на периферию, называются эфферентными.

Вставочные (контактные) клетки или интернейроны. Они меньше по размерам, разнообразны по пространственному расположению отростков (веретенообразные, звездчатые, корзинчатые). Общим для них является широкая разветвленность дендритов и короткий аксон с разной степенью ветвления. Интернейроны обеспечивают взаимодействие различных клеток и поэтому иногда называются ассоциативными.

Представленность разных типов нейронов и характер их взаимосвязи существенно различаются в разных структурах мозга.

Возрастные изменения структуры нейрона и нервного волокна. На ранних стадиях эмбрионального развития нейрон, как правило, состоит из тела, имеющего два недифференцированных и неветвящихся отростка. Тело содержит крупное ядро, окруженное небольшим слоем цитоплазмы. Процесс созревания нейронов характеризуется быстрым увеличением цитоплазмы, увеличением в ней числа рибосом и формированием аппарата Гольджи, интенсивным ростом аксонов и дендритов. Различные типы нервных клеток созревают в онтогенезе гетерохронно. Наиболее рано (в эмбриональном периоде) созревают крупные афферентные и эфферентные нейроны. Созревание мелких клеток (интернейронов) происходит после рождения (в постнатальном онтогенезе) под влиянием средовых факторов, что создает предпосылки для пластических перестроек в центральной нервной системе. Отдельные части нейрона тоже созревают неравномерно. Наиболее поздно формируется дендритный шипиковый аппарат, развитие которого в постнатальном периоде в значительной мере обеспечивается притоком внешней информации. Покрывающая аксоны миелиновая оболочка интенсивно растет в постнатальном периоде, ее рост ведет к повышению скорости проведения импульса по нервному волокну. Миелинизация проходит в таком порядке: сначала - периферические нервы, затем волокна спинного мозга, стволовая часть головного мозга, мозжечок и позже - волокна больших полушарий головного мозга. Двигательные нервные волокна покрываются миелиновой оболочкой уже к моменту рождения, чувствительные (например, зрительные) волокна - в течение первых месяцев постнатальной жизни ребенка.

Ожидайте

Специалист свяжется с Вами сразу в рабочее время с
Пн - Пт с 10:00 - 19:00 МСК

Перезвоните мне


Ваш персональный менеджер: Екатерина
Ответственная и отзывчивая! 😊

Ожидайте

Специалист свяжется с Вами сразу в рабочее время, ежедневно с 10:00 - 19:00 МСК

Перезвоните мне

Статья

В теле человека бессчетное количество клеток, каждая из которых имеет собственную функцию.

Бесплатные занятия с логопедом

Бесплатный курс ИКТ для детей

В теле человека бессчетное количество клеток, каждая из которых имеет собственную функцию. Среди них самые загадочные – нейроны, отвечающие за любое совершаемое нами действие. Попробуем разобраться как работают нейроны и в чем их предназначение.

Что такое нейрон (нейронные связи)

Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.

К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.

Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.

Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.

Даже у такого малыша есть практический опыт, позволяющий отсекать ненужные действия и стремиться к полезным. Поэтому, например, так сложно отучить ребенка от груди - у него сформировалась крепкая нейронная связь между приложением к материнскому молоку и удовольствию, безопасности, спокойствию.

Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.

Сколько нейронов в мозге

Нервные клетки в составе головного мозга занимают порядка 10 процентов, остальные 90 процентов это астроциты и глиальные клетки, но их задача заключается лишь в обслуживании нейронов.

Тем не менее ученые придумали сразу несколько способов для определения количества нейронов у человека:

  • Рассчитывается число нервных клеток на небольшой части мозга, а затем, количество умножается пропорционально полному объему. Исследователи исходят из постулата о том, что нейроны равномерно распределены в нашем мозге.
  • Происходит растворение всех мозговых клеток. В результате получается жидкость, в составе которой можно увидеть клеточные ядра. Их можно посчитать. При этом служебные клетки, о которых мы сказали выше, не учитываются.

В результате описанных экспериментов установлено, что число нейронов в головном мозге человека - 85 миллиардов единиц. Ранее, на протяжении многих веков считалось, что нервных клеток больше, порядка 100 миллиардов.

Строение нейрона

На рисунке приведено строение нейрона. Он состоит из основного тела и ядра. От клеточного тела идет ответвление многочисленных волокон, которые именуются дендритами.

Строение

Мощные и длинные дендриты называются аксонами, которые в действительности намного длиннее, чем на картинке. Их протяженность варьируется от нескольких миллиметров до более метра.

Аксоны играют ведущую роль в передаче информации между нейронами и обеспечивают работу всей нервной системы.

Место соединения дендрита (аксона) с другим нейроном называется синапсом. Дендриты при наличии раздражителей могут разрастись настолько сильно, что станут улавливать импульсы от других клеток, что приводит к образованию новых синаптических связей.

Синаптические связи играют существенную роль в формировании личности человека. Так, личность с устоявшимся позитивным опытом будет смотреть на жизнь с любовью и надеждой, человек, у которого нейронные связи с негативным зарядом, станет со временем пессимистом.

Виды нейронов и нейронных связей

Нейроны можно обнаружить в различных органах человека, а не исключительно в головном мозге. Большое их количество расположено в рецепторах (глаза, уши, язык, пальцы рук – органы чувств). Совокупность нервных клеток, которые пронизывают наш организм составляет основу периферической нервной системы. Выделим основные виды нейронов.

Самыми загадочными являются промежуточные нейроны. С одной стороны, их работа обуславливает наличие рефлекса: дотронулся до электричества – отдернул руку, полетела пыль –зажмурился. Однако, пока не объяснимо как обмен между волокнами рождает идеи, образы, мысли?

Единственное, что установили ученые, это тот факт, что любой вид мыслительной деятельности (чтение книг, рисование, решение математических задач) сопровождается особой активностью (вспышкой) нервных клеток определенного участка головного мозга.

Функции нейронов

Без нейронов невозможна работа организма человека. Мы увидели, что эти наноклетки отвечают буквально за каждое наше движение, любой поступок. Выполняемые ими функции до настоящего времени в полной мере не изучены и не определены.

Существует несколько классификаций функций нейронов. Мы остановимся на общепринятой в научном мире.

Функция распространения информации

Данная функция:

  • является основной;
  • изучена лучше остальных.

Суть ее в том, что нейронами обрабатываются и переносятся в головной мозг все импульсы, которые поступают из окружающего мира или собственного тела. Далее происходит их обработка, подобно тому, как работает поисковик в браузере.

По результатам сканирования сведений из вне, головной мозг в форме обратной связи передает обработанную информацию к органам чувств или мышцам.

Мы не подозреваем, что в нашем теле происходит ежесекундная доставка и переработка информации, не только в голове и на уровне периферической нервной системы.

До настоящего времени создать искусственный интеллект, который бы приблизился к работе нейронных сетей человека, не удалось. У каждого из 85 миллиардов нейронов имеется, как минимум, 10 тысяч обусловленных опытом связей, и все они работают на передачу и обработку информации.

Функция аккумуляции знаний (сохранения опыта)

Человек обладает памятью, возможностью понимать суть вещей, явлений и действий, которые он единожды или многократно повторял. За формирование памяти отвечают именно нейронные клетки, точнее нейротрансмиттеры, связующие звенья между соседними нейронами.

Таким образом, за память отвечает не какая-то отдельная часть мозга, а маленькие белковые мостики между клетками. Человек может потерять память, когда произошло крушение этих нервных связей.

Функция интеграции

Данная функция позволяет взаимодействовать между собой отдельным долям головного мозга. Как мы уже сказали, сигналы от разных органов чувств поступают в разные отделы мозга.

Функция производства белков

Нейроны – настолько полезные клетки, что не ограничиваются только передаточными функциями. Нервные клетки вырабатывают необходимые для жизни человека белки. Опять же ключевую роль в производстве белков имеют нейротрансмиттеры, которые отвечают за память.

Всего в невронах индуцируется порядка 80 белков, вот основные из них, влияющие на самочувствие человека:

Прекращение выработки белков или их выпуск в недостаточном количестве способны привести к тяжелым заболеваниям.

Восстанавливаются ли нервные клетки

При нормальном состоянии организма нейроны могут жить и функционировать очень долго. К сожалению, случается так, что они начинают массово погибать. Причин разрушения нервных волокон может быть много, но до конца механизм их деструкции не изучен.

Установлено, что нервные клетки погибают из-за гипоксии (кислородное голодание). Нейронные сети рушатся при отдельных травмах головного мозга, человек теряет память или утрачивает способность к хранению информации. В этом случае сами нейроны сохранены, но теряется их передаточная функция.

Отсутствие допамина ведет к развитию болезни Паркинсона, а его переизбыток является причиной шизофрении. Почему прекращается выработка белка не известно, спусковой механизм не выявлен.

Гибель нервных клеток происходит при алкоголизации личности. Алкоголик со временем может совершенно деградировать и утратить вкус к жизни.

Формирование нервных клеток происходит при рождении. Долгое время ученые полагали, что со временем нейроны отмирают. Поэтому с возрастом человек утрачивает способность накапливать информацию, хуже соображает. Нарушение функции по выработке допамина и серотонина связывается с наличием практически у всех пожилых людей депрессивных состояний.

Подобно тому, как мы усиливаем бицепс при помощи гантели, активизировать процесс включения новых нервных клеток можно следующими способами:

  • изучение новых сфер знаний, которые ранее были не нужны или не интересны. К примеру, математику можно начать изучать живопись, а юристу – основы физики.
  • через постановку сложных задач и поиск их решения;
  • составлением планов деятельности, которые включают в себя множество исходных данных.

Механизм возрождения прост. У нас имеются совершенно не задействованные новые клетки, которые нужно заставить работать, а сделать это можно лишь путем постановки новых задач и изучения неизвестных предметных сфер.

Нервная ткань отличается от других тканей нашего организма тем, что обладает особыми свойствами — возбудимостью и проводимостью . Эти свойства нервной ткани обусловлены особенностями её строения.

В состав нервной ткани входят клетки двух видов. Основные функции выполняют нейроны, а клетки-спутники (клетки нейроглии) служат опорой и обеспечивают обмен веществ.

Нервная ткань_Nerve tissue_Nervu audi.jpg

Функции нейронов: генерирование и передача нервных импульсов; обработка и хранение поступающей информации.

Нервный импульс — это волна возбуждения (биоэлектрическая волна), распространяющаяся по нервным клеткам.

Нейрон — основная клетка нервной ткани. Он имеет тело и отростки двух типов. В теле нейрона располагается ядро и органоиды, а по отросткам передаются нервные импульсы.

Дендриты — это отростки, по которым нервные импульсы передаются к телу нейрона. Эти отростки сильно ветвятся. У нейрона может быть несколько дендритов.

Аксон — это отросток, по которому импульсы передаются от тела клетки. Аксон обычно ветвится только на конце. У каждого нейрона всего один аксон.


Нервная клетка.jpg

Аксоны часто окружены оболочкой из жироподобного вещества миелина. Это вещество имеет белый цвет. Скопления миелинизированных аксонов образуют белое вещество головного и спинного мозга. Тела нервных клеток и дендриты не покрыты миелином. Они серого цвета, а их группы составляют серое вещество центральной нервной системы.

Главными элементами синапса являются мембраны двух клеток (пресинаптическая и постсинаптическая мембраны) и пространство между ними (синаптическая щель).

Нервная клетка_2.jpg

В аксоне пресинаптического нейрона вырабатывается медиатор — особое вещество, с помощью которого происходит передача нервного импульса.

Под действием нервного импульса медиатор выделяется в синаптическую щель. Рецепторы постсинаптической мембраны реагируют на его появление и генерируют возникновение нервного импульса в следующем нейроне. Так в синапсе происходит химическая передача возбуждения с одной клетки на другую.

Виды нейронов.jpg

Чувствительные ( сенсорные ) нейроны проводят информацию от органов в мозг. Тела таких нейронов находятся в нервных узлах вне центральной нервной системы.

Другая группа нейронов передаёт информацию от головного и спинного мозга к органам. Это двигательные ( моторные ) нейроны. Их тела находятся в сером веществе центральной нервной системы, а аксоны находятся за пределами ЦНС.

Третий вид нейронов осуществляет связь между чувствительными и двигательными нейронами. Это вставочные нейроны, они находятся в головном и спинном мозге.

Типы нейронов.jpg

Нерв — это орган, в состав которого входят пучки нервных волокон, покрытые соединительнотканной оболочкой.

Нерв.jpg

Нервы выполняют проводниковую функцию. Они связывают головной и спинной мозг с кожей, органами чувств и с внутренними органами.

Чувствительные нервы проводят нервные импульсы от рецепторов в мозг. В их состав входят дендриты чувствительных нейронов.

Двигательные нервы состоят из аксонов двигательных нейронов. Их функция — проведение импульсов от мозга к рабочим органам.

Смешанные нервы образованы чувствительными и двигательными волокнами и способные проводить импульсы как к ЦНС, так и от ЦНС.

Нервные сплетения представлены сетчатыми скоплениями нервных волокон разных нервов, связывающих ЦНС с внутренними органами, скелетными мышцами и кожей.

Нервная ткань - основная ткань, формирующая нервную систему и создающая условия для реализации ее многочисленных функций. Нервная ткань имеет эктодермальное происхождение, не принято делить нервную ткань на какие-либо виды тканей. Обладает двумя основными свойствами: возбудимостью и проводимостью.

Нейрон

Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον — волокно, нерв) - клетка с одним длинным отростком - аксоном (греч. axis - ось), и одним/несколькими короткими - дендритами (греч. dendros - дерево).

Строение нейрона

Спешу сообщить, что представление, будто короткий отросток нейрона - всегда дендрит, а длинный - всегда аксон, в корне неверно. С точки зрения физиологии правильнее дать следующие определения: дендрит - отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон - отросток нейрона, по которому импульс перемещается от тела нейрона.

Нейроны обладают 4 свойствами:

  • Рецепция (лат. receptio - принятие) - способны воспринимать поступающие сигналы (дендриты)
  • В ответ на сигналы способны переходить в состояние возбуждения или торможения
  • Проведение возбуждения (от дендрита к телу нейрона, затем - к концу аксона)
  • Передача сигнала другим объектам - нейрону или эффекторному органу

Отростки нейронов проводят нервные импульсы и передают их другим нейронам, эффекторам, благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.

Тройничный нерв

Миелиновая оболочка

Нервные волокна подразделяются на миелиновые и безмиелиновые. Нервное волокно - это один или несколько отростков нейронов (могут быть как аксоны, так и дендриты) с окружающей оболочкой.

Безмиелиновые нервные волокна находятся преимущественно в составе вегетативной нервной системы (скорость проведения 1-2 м/c). Миелиновые - образуют белое вещество головного и спинного мозга, нервные волокна соматической нервной системы (5-120 м/с).

В миелиновых нервных волокнах отростки нейронов покрыты миелиновой оболочкой (на 70-75% состоит из липидов (жиров)), которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, то вместе с рукой двигалась бы нога.

Существует болезнь при которой собственные антитела уничтожают миелиновую оболочку нервных волокон головного и спинного мозга (случаются и такие сбои в работе организма). Эта болезнь - рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов - а значит, происходит атрофия мышц и человек постепенно становится обездвиженным.

Рассеянный склероз, разрушенная миелиновая оболочка

Миелиновый слой представлен несколькими слоями мембраны глиальной клетки (леммоцит, шванновская клетка), которые закручиваются вокруг осевого цилиндра (отростка нейрона). Это закручивание хорошо видно на картинке, где изображен здоровый нерв, чуть выше ;)

Миелиновый слой оболочки волокна регулярно прерывается в местах стыка соседних леммоцитов - перехваты Ранвье. Миелиновая оболочка обеспечивает изолированное и более быстрое проведение возбуждения (сальтаторный тип, лат. salto - скачу, прыгаю).

Перехваты Ранвье

Нейроглия (греч. νεῦρον — волокно, нерв + γλία — клей)
  • Опорная - поддерживает нейроны в определенном положении
  • Регенераторная (лат. regeneratio - возрождение) - в случае повреждения нервных структур нейроглия способствует регенерации
  • Трофическая (греч. trophe - питание) - с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют
  • Электроизоляционная - леммоциты (шванновские клетки) закручиваются вокруг отростков нейронов и формируют миелиновую оболочку
  • Барьерная и защитная - изолируют нейроны от тканей внутренней среды организма
  • Некоторые глиоциты секретируют цереброспинальную (спинномозговую) жидкость - ликвор (от лат. liquor - жидкость)

В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии - шванновских клеток (леммоцитов). Между ними хорошо заметны перехваты Ранвье - участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.

Строение нейрона

Классификация нейронов

Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.

Классификация нейронов по функции

Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие - они воспринимают раздражения, преобразуют их в нервные импульсы и передают в ЦНС. Рецептором называют концевое окончание чувствительных нервных волокон, воспринимающих раздражитель.

Вставочные нейроны также называются промежуточные, ассоциативные - они обеспечивают связь между чувствительными и двигательными нейронами, передают возбуждение в различные отделы ЦНС, участвуют в обработке информации и выработке команд.

Двигательные нейроны по-другому называются эфферентные, центробежные, мотонейроны - они передают нервный импульс (возбуждение) на эффектор (рабочий орган). Наиболее простой пример взаимодействия нейронов - коленный рефлекс (однако вставочного нейрона на данной схеме нет). Более подробно рефлекторные дуги и их виды мы изучим в разделе, посвященном нервной системе.

Схема коленного рефлекса

Синапс

На схеме выше вы наверняка заметили новый термин - синапс (греч. sýnapsis - соединение). Синапсом называют место контакта между двумя нейронами или между нейроном и эффектором (органом-мишенью). В синапсе нервный импульс "преобразуется" в химический: происходит выброс особых веществ - нейромедиаторов (наиболее известный - ацетилхолин) в синаптическую щель.

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.

Схема синапса

Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение (нервный импульс) передается другому нейрону. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).

Яд кураре

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими ;) Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.

Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к эффекторам, в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.

Яд кураре

Нервы и нервные узлы

Собираясь вместе, отростки нейронов (нервные волокна) образуют пучки нервных волокон. Нервные пучки объединяются в нервы, которые покрыты соединительнотканной оболочкой. В случае, если тела нейронов концентрируются в одном месте за пределами центральной нервной системы, их скопления называют нервным узлом - или ганглием (от др.-греч. γάγγλιον — узел).

В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных - плечевое сплетение.

Плечевое сплетение

Болезни нервной системы

Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.

Миастения

Постепенно любые движения мышцами становятся для пациента все труднее, становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом - опущение верхнего века. Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: