Назовите биологические макромолекулы входящие в состав живых систем кратко

Обновлено: 05.07.2024

Назовите биологические макромолекулы, входящие в состав живых систем?

Белки, жиры и углеводы называют макромолекулами, если я не ошибаюсь. А так же ДНК и РНК тоже макромолекулы. Во всех живых организмах присутствуют эти биополимеры. Однозначно в живые системы вхожят и белки и жиры и углеводы и нуклеиновые кислоты.

рессорная-смягчение толчков и сотрясений

Потому что клетка по своим функциям действует как самостоятельный орган. она питается, обладает способностью расти, делиться, выделять продукты энергетического и пластического обмена. то есть клетка - это единица всего живого.

На эту тему можно писать реферат, вопрос интересный,подразумевает обширный ответ.Допустим, цветковые растения, дикорастущие или культурные.Многие из них закрывают венчик в пасмурную погоду или на ночь.Это забота о потомстве, закрываясь,растение сберегает пыльцу от влаги(росы, дождя),теплоотдачи или от влагоотдачи в сухую и жаркую погоду.Портулак или сорняк-вьюнок полевой,обратите внимание,даже в тени портулак не раскроет свой цветок,только на Солнце. Тот же подсолнечник движет свою корзинку вслед за Солнцем,стремясь получить как можно больше его энергии.Обратили внимание, что ранним утром корзинки снова смотрят на восток?В стеблях его есть клетки, растущие быстрее от полученного солнечного тепла, что позволяет делать поворот в нужную сторону.Опушенные листья растений способны сохранить больше влаги, а растения тундры стелятся по земле, чтобы уберечь себя от ветра и холода зимой, скрываясь под снегом.

Лоси на длинных ногах хорошо перемещаются в заснеженном лесу, а зайцы-русаки даже зимой сохраняют серую шерстку на спине. Обитатели открытых пространств в заснеженных полях,степях становятся малозаметными в высоком бурьяне.

У них есть зубы. Они находятся на верхнем небе и направлены внутрь, чтобы можно было удерживать жертву. Размеры у них меньше, чем у других животных, поэтому заметить их можно лишь при ближайшем рассмотрении.

К самоудвоению способны митохондрии и хлоропласты. Это органойды имеющие собственный отдельный геном. Можно сказать, что это наши симбионты, которые выполняют главнейшую энергетическую функцию для эукариот. Именно благодаря хлоропластам эукариоты способны усваивать солнечную энергию и именно благодаря митохондриям эукариоты умеют выделять энергию из сжигаемой в кислороде органики, которые добыты в фотосинтезе. Две ступени энергетического обмена находятся "в руках" этих симбионтов. Ах да, есть еще усваиватели азота, но они еще более независимы. Их приручение еще вначале. Их приручают бобовые в своих клубеньках. Но без них не было бы белков - основного стройматериала жизни.

В процессе эволюции происходило посте­пенное усложнение организации живой мате­рии, причем по мере образования очередного уровня предыдущий входил в него как состав­ная часть. В результате окружающий нас мир живых существ представляет собой совокуп­ность биологических систем разной степени сложности. Это и обуславливает необходи­мость выделения различных уровней органи­зации живой материи. Чрезвычайно важно также то, что объединение нескольких систем, принадлежащих к одному уровню (например, клеток), дает не просто арифметическую сум­му их свойств. Происходит подъем на качест­венно более высокую ступень, и новая система обладает расширенными возможностями и способностями (ткань, многоклеточный орга­низм).

Вопрос 2. Перечислите и охарактеризуйте уровни организации живой материи.

Обычно выделяют восемь уровней органи­зации живого.

Молекулярно-генетический уровень. Это уровень макромолекул: нуклеиновых кис­лот, углеводов, белков и других органических веществ. На этом уровне начинаются важней­шие биологические процессы: кодирование и передача наследственной информации, обмен веществ, превращение энергии.

Клеточный уровень. Клетка — это струк­турно-функциональная единица живого. Про­цессы, происходящие в клетке, лежат в осно­ве роста и развития живых организмов.

Тканевый уровень. Ткань — это сово­купность клеток, сходных по строению, про­исхождению и выполняемой функции. В со­став ткани входит также межклеточное ве­щество.

Органный уровень. Орган — это обособ­ленная часть организма, имеющая определен­ную форму, строение, расположение и выпол­няющая конкретную функцию. Орган, как правило, образован несколькими тканями, среди которых одна (реже — две) преобладает.

Организменный (онтогенетический) уровень. Организм — целостная одноклеточ­ная или многоклеточная живая система, спо­собная к самостоятельному существованию и поддержанию гомеостаза (т. е. постоянства внутренней среды). Многоклеточный орга­низм представляет собой совокупность тканей и органов.

Популяционно-видовой уровень. Вид — это совокупность особей, сходных по стро­ению, имеющих общее происхождение, сво­бодно скрещивающихся между собой и даю­щих плодовитое потомство. На этом уровне под действием эволюционных факторов осу­ществляется процесс видообразования. Попу­ляция — это совокупность особей одного вида, в течение достаточно длительного времени (большого числа поколений) населяющих оп­ределенную территорию внутри ареала вида, свободно скрещивающихся между собой и час­тично или полностью изолированных от дру­гих подобных совокупностей.

Биогеоценотический (Экосистемный) уровень. Биогеоценоз — исторически сложив­шаяся совокупность организмов разных ви­дов, взаимодействующая со всеми факторами их среды обитания.

Биосферный (глобальный) уровень. Био­сфера — биологическая система высшего ран­га, охватывающая все явления жизни в атмо­сфере, гидросфере, литосфере и объединяю­щая все экосистемы в единый комплекс. На этом уровне происходят вещественно-энерге­тические круговороты, связанные с жизнеде­ятельностью всех живых организмов, обитаю­щих на Земле.

Вопрос 3. Назовите биологические макромоле­кулы, входящие в состав живых систем.

Вопрос 4. Как проявляются свойства живого на различных уровнях организации?

Для всех уровней организации живой мате­рии на Земле характерно единство химическо­го и биохимического состава; обязательно при­сутствие основных макромолекул (см. ответ на вопрос 3). Каждый уровень представляет со­бой целостную систему, состоящую из взаимо­связанных и взаимодействующих элементов. Наличие этого взаимодействия обеспечивает саморегуляцию системы, ее рост, развитие и общее увеличение биомассы (размножение). Наконец, на любом уровне организации жи­вой материи мы наблюдаем процессы обмена веществ и энергии с окружающей средой, а также способность отвечать на изменения окружающего мира и приспосабливаться к ним. Конечно, клетка и экосистема по-раз­ному отвечают, например, на повышение тем­пературы или сезонные изменения освещен­ности, но сам принцип реагирования (раздра­жимости) присущ живой материи на любой ступени ее организации.

Вопрос 5. Какие методы исследования живой материи вы знаете?

Перечислим основные методы исследова­ния живых объектов.

Метод наблюдения и связанный с ним описательный метод основаны на сборе фактического материала. С их применения на­чинается большинство биологических иссле­дований. Особое значение эти методы имеют, например, для анатомических дисциплин (изучение строения организма человека, рас­тений, животных).

Сравнительный метод позволяет, сопо­ставляя разные организмы, выявлять их сход­ство и различие. Благодаря этому методу были заложены основы систематики растений и жи­вотных, создана клеточная теория.

Исторический метод позволяет выявить закономерности появления организмов, их развития, усложнения структуры и функций. Он имеет ключевое значение для теории эво­люции, эмбриологии (науки об индивидуаль­ном развитии организмов).

Экспериментальный метод в настоя­щее время, пожалуй, наиболее актуален. Уче­ный, использующий экспериментальный ме­тод, активно влияет на организм, помещая его в те или иные условия, оказывая на него различные воздействия и изучая ответные ре­акции.

Метод компьютерного моделирования незаменим для исследования биологических процессов, воссоздать которые в реальности очень сложно либо вообще невозможно. С по­мощью моделирования можно, например, за несколько дней оценить действие на организм сотен лекарственных препаратов и выбрать наиболее эффективный. На аналогичные экс­периментальные исследования ушли бы мно­гие месяцы.

Макромолекулы - это крупные структуры, состоящие из атомов и более мелких молекулярных структур, которые играют важную, а иногда и жизненно важную роль в создании и поддержании жизни. Хотя существует много типов макромолекул, те, которые имеют основополагающее значение для существования биоактивных макромолекул, называемых биополимерами, могут быть организованы в четыре категории: белки, нуклеиновые кислоты, углеводы и липиды. При этом в макромолекулах также можно найти пластмассы, резину и алмазы.

Макромолекулы (биополимеры) имеют различную форму и строение, являясь неотъемлемой частью клеток, синтезируются из атомов и небольших молекул и играют основополагающую роль в процессах жизнедеятельности клетки.

Кратко рассмотрим некоторые биополимеры, которые определяют функции и метаболизм всех живых систем.

Белки обладают множеством функций. Они состоят из аминокислот, соединённых в генетически детерминированной последовательности, которая и определяет как структуру, так и функции данных макромолекул. Таким образом, белки являются тем инструментом, при помощи которого геном управляет всеми реакциями клеточного метаболизма.

Полисахариды – высокомолекулярные вещества, состоящие из повторяющихся структурных единиц – моно- или олигосахаридов. Полисахариды отличаются друг от друга структурой моносахаридных звеньев, молекулярной массой, а также типом гликозидных связей. Они присутствуют почти во всех клетках и выполняют многообразные функции: структурную, энергетическую, резервную и т. д.

Липиды – сложные эфиры высших жирных кислот и глицерина (иногда сфингозина). В их состав входят фосфорная кислота, азотистые основания и углеводы. Они играют существенную роль в качестве структурных компонентов клетки (биомембраны), а также в качестве энергетических субстратов.

Нуклеиновые кислоты – информационные биополимеры, состоящие из мононуклеотидов, связанных между собой фосфодиэфирной связью. В клетках содержится дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновые кислоты (РНК). ДНК самая большая макромолекула в живых системах. Она состоит из многих тысяч пар мононуклеотидов, соединённых в определённой последовательности. Для нуклеиновых кислот несвойственно многообразие функций, зато хранение и передача генетической информации является основой размножения и функционирования клеток.

1.5. α-Аминокислоты

Большинство аминокислот, участвующих в биохимических превращениях, являются карбоновыми кислотами, содержащими карбоксильную и аминную группы, которые находятся у одного и того же углеродного атома. В организме человека найдено 70 аминокислот. Двадцать из них входят в состав белков. Это так называемые протеиногенные аминокислоты.

Общая формула α-аминокислот представлена на Рис. 1.2:

Рис. 1.2. Общая формула аминокислот

Аминокислоты отличаются друг от друга структурой боковых групп, которые в приведенной выше формуле, обозначены через R. Эти группы имеют различную химическую структуру.

Макромолекулы (биополимеры) имеют различную форму и строение, являясь неотъемлемой частью клеток, синтезируются из атомов и небольших молекул и играют основополагающую роль в процессах жизнедеятельности клетки.

Кратко рассмотрим некоторые биополимеры, которые определяют функции и метаболизм всех живых систем.

Белки обладают множеством функций. Они состоят из аминокислот, соединённых в генетически детерминированной последовательности, которая и определяет как структуру, так и функции данных макромолекул. Таким образом, белки являются тем инструментом, при помощи которого геном управляет всеми реакциями клеточного метаболизма.

Полисахариды – высокомолекулярные вещества, состоящие из повторяющихся структурных единиц – моно- или олигосахаридов. Полисахариды отличаются друг от друга структурой моносахаридных звеньев, молекулярной массой, а также типом гликозидных связей. Они присутствуют почти во всех клетках и выполняют многообразные функции: структурную, энергетическую, резервную и т. д.

Липиды – сложные эфиры высших жирных кислот и глицерина (иногда сфингозина). В их состав входят фосфорная кислота, азотистые основания и углеводы. Они играют существенную роль в качестве структурных компонентов клетки (биомембраны), а также в качестве энергетических субстратов.

Нуклеиновые кислоты – информационные биополимеры, состоящие из мононуклеотидов, связанных между собой фосфодиэфирной связью. В клетках содержится дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновые кислоты (РНК). ДНК самая большая макромолекула в живых системах. Она состоит из многих тысяч пар мононуклеотидов, соединённых в определённой последовательности. Для нуклеиновых кислот несвойственно многообразие функций, зато хранение и передача генетической информации является основой размножения и функционирования клеток.




1.5. α-Аминокислоты

Большинство аминокислот, участвующих в биохимических превращениях, являются карбоновыми кислотами, содержащими карбоксильную и аминную группы, которые находятся у одного и того же углеродного атома. В организме человека найдено 70 аминокислот. Двадцать из них входят в состав белков. Это так называемые протеиногенные аминокислоты.

Общая формула α-аминокислот представлена на Рис. 1.2:

Рис. 1.2. Общая формула аминокислот

Аминокислоты отличаются друг от друга структурой боковых групп, которые в приведенной выше формуле, обозначены через R. Эти группы имеют различную химическую структуру.

Читайте также: