Модели систем информатика кратко

Обновлено: 04.07.2024

Первое определение системы

Цель — это субъективный образ (абстрактная модель) несуществующего, но желаемого состояния среды, которое решило бы возникшую проблему. Вся последующая деятельность, способствующая решению этой проблемы, направлена на достижение поставленной цели, т.е. как работа по созданию системы. Другими словами: система есть средство достижения цели.

Приведем несколько упрощенных примеров систем, предназначенных для реализации определенных целей.

N Цель Система
1 В произвольный момент указать время Часы
2 Обеспечить выпечку хлеба в заданном ассортименте для большого количества людей Пекарня
3 Передать зрительную и звуковую информацию на большое расстояние практически мгновенно Телевидение
4 Обеспечить перемещение людей в городе Городской транспорт

В инженерной практике момент формулирования цели — один из важнейших этапов создания систем. Обычно цели уточняются итеративно, с многократными изменениями и дополнениями.

Модель состава системы

Рис.3.2.(a) — Модель состава системы

Пример модели состава системы:

Рис. 3.2.(b) — Модель состава системы

Модель структуры системы

Несмотря на полезность рассмотренных выше моделей систем, существуют проблемы, решить которые с помощью таких моделей нельзя. Например, чтобы получить велосипед, недостаточно иметь отдельные его детали (хотя состав системы налицо). Необходимо еще правильно соединить все детали между собой, или, говоря общо, установить между элементами определенные связи — отношения.

Совокупность необходимых и достаточных для достижения цели отношений между элементами называется структурой системы.

Когда мы рассматриваем некую совокупность объектов как систему, то из всех отношений мы выбираем важные, т.е. существенные для достижения цели. Точнее, в модель структуры (в список отношений) мы включаем только конечное число связей, которые существенны по отношению к рассматриваемой цели. Например, при расчете механизмов не учитываются силы взаимного притяжения его деталей, хотя, согласно закону всемирного тяготения, такие силы объективно существуют. Зато вес деталей учитывается обязательно.

Второе определение системы. Структурная схема системы

Объединяя все изложенное в предыдущих параграфах, можно сформулировать второе определение системы: система есть совокупность взаимосвязанных элементов, обособленная от среды и взаимодействующая с ней как целое.

Пара элементов Связь между ними
Датчик и индикатор Однозначное соответствие
Эталон и датчик Приблизительное соответствие
Индикатор и эталон Периодическое сравнение и устранение расхождения

Рис.3.3 — Структурная схема системы синхронизируемые часы

Все структурные схемы имеют нечто общее и это побудило математиков рассматривать их как объект математических исследований. Для этого пришлось абстрагироваться от содержательной стороны структурных схем. В результате получилась схема, в которой обозначается только наличие элементов и связей между ними. Такая схема называется графом.

Граф состоит из обозначений элементов произвольной природы, называемых вершинами, и обозначений связей между ними, называемых ребрами (либо дугами). На рис.3.4 изображен граф: вершины обозначены в виде кружков, ребра в виде линий.

Рис.3.4 — Пример графа

Если направления связей не обозначаются, то граф называется неориентированным, при наличии стрелок — ориентированным. Данная пара вершин может быть соединена любым количеством ребер; вершина может быть соединена сама с собой (тогда ребро называется петлей). Если в графе требуется отразить другие различия между элементами или связями, то либо приписывают ребрам различные веса (взвешенные графы), либо раскрашивают вершины или ребра (раскрашенные графы).

Для графов построена интересная и содержательная теория, имеющая многочисленные приложения. Разнообразные задачи этой теории связаны с различными преобразованиями графов, а также с возможностью рассмотрения различных отношений на графах: весов, рангов, цветов, вероятностных характеристик (стохастические графы) и т.д. Поскольку множества вершин и ребер формально можно поменять местами, получается два разных представления системы в виде вершинного или реберного графа.

Графы могут изображать любые структуры, если не накладывать ограничений на пересекаемость ребер. Некоторые типы структур имеют особенности, важные для практики, они выделены из других и получили специальные названия. Так, в организационных системах часто встречаются (см.рис.3.5) линейные, древовидные (иерархические) и матричные структуры; в технических системах чаще встречаются сетевые структуры; особое место в теории систем занимают структуры с обратными связями, которые соответствуют кольцевым путям в ориентированных графах.

Структурная схема системы является наиболее подробной и полной моделью любой системы на данном этапе нашего познания. При этом всегда остается актуальным вопрос об адекватности этой модели, разрешаемый только на практике.

Рис. 3.5 — Линейные, древовидные, матричные и сетевые структуры

Динамические модели систем

Системы, в которых происходят какие бы то ни было изменения со временем называются динамическими, а модели, отображающие эти изменения, — динамическими моделями систем.

Функционирование и развитие

T → X: x(t) ∈ X T , t ∈ T.

С помощью этих понятий строятся математические модели систем.

X T = и Y T = , t ∈ T

Общая математическая модель динамики

Класс систем, которые можно считать безинерционными, весьма узок. Необходимо строить математические модели систем, выход которых определяется не только значением входа в данный момент времени, но и теми значениями, которые были на входе в предыдущие моменты. В наиболее общей модели это достигается введением понятия состояния системы как некоторой внутренней характеристики, значение которой в настоящий момент времени определяет текущее значение выходной величины. Обозначим это состояние через z(t). Сказанное выше означает существование такого отображения

η: Z × T → Y, что y(t) = η[t, z(t)]

Явная зависимость от t введена для учета возможности изменения зависимости выхода от состояния с течением времени. Это отображение называется отображением выхода.

Для завершения построения модели нужно описать связь между входом и состоянием, т.е. ввести параметрическое семейство отображений

заданных для всех значений параметров

t ∈ T, τ ∈T и τ ≤ t

Это означает принятие аксиомы о том, что состояние в любой момент t однозначно определяется состоянием z и отрезком реализации входа х( )

Такое отображение называется переходным отображением.

Конкретизируя множества X, Z и Y и отображения можно перейти к содержательным моделям различных систем. Говорят о дискретных или непрерывных по времени системах в зависимости от того, дискретно или непрерывно множество Т. Далее, если множества X, Z и Y дискретной по времени системы имеет конечное число элементов, то такую систему называют конечным автоматом. Это довольно простой класс систем в том смысле, что для исследования конечных автоматов необходимы лишь методы логики и алгебры. В то же время это широкий и практически важный класс, так как в него входят все дискретные (цифровые) измерительные, управляющие и вычислительные устройства.

Если X, Z и Y — линейные пространства, а есть- линейные операторы, то и система называется линейной. Если к линейной системе предъявить дополнительные требования, состоящие в том, чтобы пространства имели топологическую структуру, а отображения были непрерывны в этой топологии, то мы приходим к гладким системам. Не вдаваясь в математические подробности, отметим, что задание топологической структуры множества позволяет строго определить основные понятия анализа на этом множестве, например сходимость последовательностей на нем, а так же вводить метрику (меру близости между элементами пространства).

Стационарные системы

Большой интерес на практике представляют стационарные системы, т.е. системы, свойства которых не изменяются со временем. Стационарность означает независимость от времени t и инвариантность функции к сдвигу во времени:

Подведем итог

Все указанные типы моделей являются формальными, относящимися к любым системам и, следовательно, не относящимися ни к одной конкретной системе. Чтобы получить модель заданной системы, нужно придать формальной модели конкретное содержание, т.е. решить, какие аспекты реальной системы включать как элементы модели, а какие — нет. Этот процесс обычно неформализуем, поскольку признаки существенности не удается формализовать. Столь же слабо формализованными являются признаки элементарности и разграничения между подсистемами.

В силу сказанного, процесс построения содержательных моделей является процессом интеллектуальным, творческим. Тем не менее эксперту, разрабатывающему содержательную модель, помогают формальная модель и рекомендации по ее наполнению конкретным содержанием.

Общие сведения о методологии IDEF0

Создание современных информационных систем представляет собой сложнейшую задачу, решение которой требует применения специальных методик и инструментов. Неудивительно, что в последнее время среди системных аналитиков и разработчиков значительно вырос интерес к CASE-технологиям и инструментальным CASE-средствам, позволяющим максимально систематизировать и автоматизировать все этапы разработки программного обеспечения: СASE-средство верхнего уровня Bpwin, поддерживающее методологии IDEFO. Erwin — case средство, позволяющее осуществить прямое и обратное проектирование базы данных, поддерживает методологию IDEF1X. Сase-средство BPwin значительно облегчают задачу создания информационной системы, позволяя осуществить декомпозицию сложной системы на более простые с тем, чтобы каждая из них могла проектироваться независимо, и для понимания любого уровня проектирования достаточно было оперировать с информацией о немногих ее частях.

Стандарт IDEF0 предназначен для функционального моделирования. Его применение — это сравнительно новое направление, но уже достаточно популярное и заслужившее серьезное отношение к себе. В основе стандарта лежит понятие функции, под которой понимается управляемое действие над входными данными, осуществляющееся посредством определенного механизма, результатом его являются выходные данные.

Стандарт IDEF0 базируется на трех основных принципах:

  1. Принцип функциональной декомпозиции — любая функция может быть разбита на более простые функции;
  2. Принцип ограничения сложности — количество блоков от 2 до 8 (в BPwin) условие удобочитаемости;
  3. Принцип контекста — моделирование делового процесса начинается с построения контекстной диаграммы, на которой отображается только один блок — главная функция моделирующей системы.

Специализированным средством создания IDEF0 диаграмм является BPwin. Это лучшее средство в своем классе. Пакет BPWin предназначен для функционального моделирования и анализа деятельности предприятия. Модель в BPWin представляет собой совокупность SADT-диаграмм, каждая из которых описывает отдельный процесс в виде разбиения его на шаги и подпроцессы. С помощью соединяющих дуг описываются объекты, данные и ресурсы, необходимые для выполнения функций. Имеется возможность для любого процесса указать стоимость, время и частоту его выполнения. Эти характеристики в дальнейшем могут быть просуммированы с целью вычисления общей стоимости затрат — таким образом выявляются узкие места технологических цепочек, определяются затратные центры. BPWin может импортировать фрагменты информационной модели из ERWin (при этом сущности и атрибуты информационной модели ставятся в соответствие дугам SADT-диаграммы). Генерация отчетов по модели может осуществляться в формате MS Word и MS Excel.

Результатом применения методологии SADT является модель, которая состоит из диаграмм, фрагментов текстов и глоссария, имеющих ссылки друг на друга. Диаграммы — главные компоненты модели, все функции и интерфейсы на них представлены как блоки и дуги. Место соединения дуги с блоком определяет тип интерфейса. Диаграммы строятся при помощи блоков (см. рис.1.1).Каждый блок описывает какое-либо законченное действие. Четыре стороны блока имеют различное предназначение. Слева отображаются входные данные — исходные ресурсы для описываемой блоком функции (исходная информация, материалы); Справа показываются выходные ресурсы — результирующие ресурсы, полученные в результате выполнения описываемой блоком функции; Сверху управление — то, что воздействует на процесс выполнения описываемой блоком функции и позволяет влиять на результат выполнения действия (средства управления, люди); Механизм изображается снизу — это то, посредством чего осуществляется данное действие (станки, приборы, люди и т.д.).

Рис.3.7 — Построение диаграммы Bpwin

Иерархия диаграмм

Построение SADT-модели начинается с представления всей системы в виде простейшей компоненты — одного блока и дуг, изображающих интерфейсы с функциями вне системы. Поскольку единственный блок представляет всю систему как единое целое, имя, указанное в блоке, является общим. Это верно и для интерфейсных дуг — они также представляют полный набор внешних интерфейсов системы в целом. Затем блок, который представляет систему в качестве единого модуля, детализируется на другой диаграмме с помощью нескольких блоков, соединенных интерфейсными дугами. Эти блоки представляют основные подфункции исходной функции. Данная декомпозиция выявляет полный набор подфункций, каждая из которых представлена как блок, границы которого определены интерфейсными дугами. Каждая из этих подфункций может быть декомпозирована подобным образом для более детального представления.

Во всех случаях каждая подфункция может содержать только те элементы, которые входят в исходную функцию. Кроме того, модель не может опустить какие-либо элементы, т.е., как уже отмечалось, родительский блок и его интерфейсы обеспечивают контекст. К нему нельзя ничего добавить, и из него не может быть ничего удалено.

Модель SADT представляет собой серию диаграмм с сопроводительной документацией, разбивающих сложный объект на составные части, которые представлены в виде блоков. Детали каждого из основных блоков показаны в виде блоков на других диаграммах. Каждая детальная диаграмма является декомпозицией блока из более общей диаграммы. На каждом шаге декомпозиции более общая диаграмма называется родительской для более детальной диаграммы.

Дуги, входящие в блок и выходящие из него на диаграмме верхнего уровня, являются точно теми же самыми, что и дуги, входящие в диаграмму нижнего уровня и выходящие из нее, потому что блок и диаграмма представляют одну и ту же часть системы. Каждый блок на диаграмме имеет свой номер. Блок любой диаграммы может быть далее описан диаграммой нижнего уровня, которая, в свою очередь, может быть далее детализирована с помощью необходимого числа диаграмм. Таким образом, формируется иерархия диаграмм.

Для того, чтобы указать положение любой диаграммы или блока в иерархии, используются номера диаграмм. Например, А21 является диаграммой, которая детализирует блок 1 на диаграмме А2. Аналогично, А2 детализирует блок 2 на диаграмме А0, которая является самой верхней диаграммой модели.

Как уже отметили главный процесс — это создать курсовой проект. На входе этого процесса — исходные данные по заданию. В качестве управляющего воздействия выступает методическое пособие, ГОСТы, необходимые требования.

Механизм осуществления создания курсового проекта — программное обеспечение, с помощью которого представлен материал и разработан проект и исполнитель проекта(студент)

Исследование некоторой реальной системы состоит из двух этапов: этапа анализа и этапа синтеза.

Синтез - это мысленное или реальное соединение частей в единое целое. В результате синтеза создается целостное представление о системе, объясняется механизм системного эффекта.

Системным анализом называется исследование реальных объектов и явлений с точки зрения системного подхода, состоящее из этапов анализа и синтеза.

Всякое описание системы носит модельный характер, т. е. отра­жает ограниченное число ее свойств. Главный вопрос при построе­нии модели системы - какие ее характеристики яявляются сущес­·венными с точки зрения целей использования будущей модели?


Модель состава


Структурная модель системы

Структурную модель системы еще называют структурной схе­мой. На структурной схеме отражается состав системы и ее внут­ренние связи. Для отображения структурной схемы системы ис­пользуются графы.

Граф состоит из вершин, обозначающих элементы системы, и ребер - линий, обозначающих связи (отношения) между эле­ментами системы. Знакомая многим схема скоростного транспор­та Москвы (рис. 1.4) является примером графа. Вершинами здесь являются станции метро, а ребрами - линии движения поездов. Такая схема позволяет пассажиру метро определить маршрут сво­его перемещения между любыми станциями. Схема метро отра­жает его радиально-кольцевую структуру.



Еще один пример графа показан на рис. 1.5. Это структурная модель молекулы углеводорода. Вершинами являются атомы во­дорода и углерода, ребра отображают валентные связи.

Связь между двумя станциями метро, соединенными линией движения, является двунаправленной, поскольку поезда могут двигаться в обе стороны. Валентная связь между атомами молеку­лы также не имеет выделенного направления. Такие графы назы­ваются неориентированными. Если же связь между двумя эле­ментами системы действует только в одну сторону, то на графе она отображается направленной стрелкой. Такой граф называется ориентированным. Направленные линии связи на графе называ­ются дугами.

На рис. 1.6 приведен пример ориентированного графа из облас­ти медицины. Известно, что у разных людей кровь может разли­чаться по группе. Существуют четыре группы крови. Оказывается, что при переливании крови от одного человека к другому не все группы совместимы. Граф на рис. 1.6 показывает возможные вари­анты переливания крови. Группы крови - это вершины графа с соответствующими номерами, а стрелки указывают на возмож­ность переливания крови одной группы человеку с другой груп­пой. Например, из этого графа видно, что кровь I группы можно переливать любому человеку, а человек с I группой крови воспри­нимает кровь только своей группы. Видно также, что человеку с IV группой крови можно переливать любую кровь, но его кровь можно переливать только людям с той же группой.


На практике часто встречаются системы с иерархической структурой, граф которых называется деревом (рис. 1. 7).

Дерево - это ориентированный граф, хотя при его изображе­нии не всегда рисуются стрелки. Обычно вершины дерева распо­лагаются по уровням сверху вниз. Дуги направлены от верхних вершин к нижним. Каждая вершина может быть связана с одной вершиной верхнего уровня (исходной) и множеством вершин нижнего уровня (порожденными). Такая связь называется «один ко многим". Единственная вершина самого верхнего уровня назы­вается корнем дерева. Вершины самого нижнего уровня, у кото­рых нет порожденных вершин, называются листьями дерева. Де­рево является связным графом. Это значит, что между любыми двумя вершинами имеется хотя бы один путь, связывающий их между собой. В дереве отсутствуют петли — замкнутые траекто­рии связей. Поэтому маршрут перемещения по дереву между лю­быми двумя вершинами всегда является единственным.

Структура организации файловой системы во внешней памяти компьютера является иерархической. Вершинами графа, отобра­жающего файловую структуру, являются папки и файлы. Дуги отражают отношения вхождения одних вершин в другие. Дерево имеет многоуровневую структуру. Папка самого верхнего уровня называется корнем дерева. Конечные вершины такого дерева (листья) - это файлы и пустые папки.

Система основных понятий


Вопросы и задания

1. Какие существуют типы моделей систем? Чем они различаются?

2. Что такое граф? Из чего он состоит?

3. Какой граф называется неориентированным? Приведите примеры.

4. Какой граф называется ориентированным? Приведите примеры.

5. Нарисуйте в виде графа систему, состоящую из четырех одноклассников, между которыми существуют следующие связи (взаимоотношения): дружат — Саша и Маша, Саша и Даша, Маша и Гриша, Гриша и Саша. Анализируя полученный граф, ответьте на вопрос: с кем Саша может поделиться секретом, не рискуя, что тот станет известен кому-то другому?

Презентация. Модели систем. Системный анализ смотреть

Нажмите, чтобы узнать подробности

Краткое содержание: Что такое система, виды систем, примеры, модели систем.

Что такое система. Модели систем.

Что такое система. Модели систем.










Система – это совокупность материальных или информационных объектов, обладающая определенной целостностью. Состав системы – это совокупность входящих в нее частей (элементов). Подсистема – это система, входящая в состав другой, наиболее крупной системы.

Система – это совокупность материальных или информационных объектов, обладающая определенной целостностью.

Состав системы – это совокупность входящих в нее частей (элементов).

Подсистема – это система, входящая в состав другой, наиболее крупной системы.


Системы бывают естественные и искусственные. Естественные системы – это природные системы. Примеры: системы звезд и планет, растительный и животный мир Земли, молекулы и атомы.

Системы бывают естественные и искусственные. Естественные системы – это природные системы.

Примеры: системы звезд и планет, растительный и животный мир Земли, молекулы и атомы.

Искусственные системы создаются людьми – это заводы, дороги, образование, культура, здравоохранение, компьютеры, самолеты и др. Некоторые системы объединяют в себе части естественного и искусственного происхождения. Например: гидроэлектростанция, городской парк.

Искусственные системы создаются людьми – это заводы, дороги, образование, культура, здравоохранение, компьютеры, самолеты и др.

Некоторые системы объединяют в себе части естественного и искусственного происхождения.

Например: гидроэлектростанция, городской парк.

Система не является случайным набором частей. Ее состав подчиняется тому назначению, которое система имеет в природе или в обществе. Примеры: транспортная система предназначена для перевозки грузов и людей, система здравоохранения – для лечения и укрепления здоровья людей, компьютер – для работы с информацией.

Система не является случайным набором частей. Ее состав подчиняется тому назначению, которое система имеет в природе или в обществе.

Примеры: транспортная система предназначена для перевозки грузов и людей, система здравоохранения – для лечения и укрепления здоровья людей, компьютер – для работы с информацией.

Части системы всегда связаны между собой, находятся в определенных отношениях. Виды этих связей могут быть самыми разными (материальными, социальными, информационными и др.).

Части системы всегда связаны между собой, находятся в определенных отношениях. Виды этих связей могут быть самыми разными (материальными, социальными, информационными и др.).

Системный эффект обеспечивается не только наличием нужного состава частей системы, но и существованием необходимых связей между ними. Структурой системы называется совокупность связей, существующих между частями системы.

Системный эффект обеспечивается не только наличием нужного состава частей системы, но и существованием необходимых связей между ними.

Структурой системы называется совокупность связей, существующих между частями системы.

Система – целостная, взаимосвязанная совокупность частей, существующая в некоторой среде и обладающая определенным назначением, подчиненная некоторой цели. Система обладает внутренней структурой, относительной обособленностью от окружающей среды, наличием связей со средой.

Система – целостная, взаимосвязанная совокупность частей, существующая в некоторой среде и обладающая определенным назначением, подчиненная некоторой цели. Система обладает внутренней структурой, относительной обособленностью от окружающей среды, наличием связей со средой.

К свойствам системы относятся: Целесообразность Целостность Структурированность Иерархическая совокупность подсистем Связь со средой

К свойствам системы относятся:

Системный эффект – всякая система приобретает новые свойства, не присущие ее составным частям. Целое больше суммы своих частей.

Системный подход – основа научной методологии: рассмотрение всякого объекта изучения в качестве системы, а также учет его существенных связей с внешней средой.

Модели систем Исследование некоторой реальной системы состоит из двух этапов: этапа анализа и этапа синтеза. Анализ системы – это выделение ее частей с целью прояснения состава системы. Синтез – это мысленное или реальное соединение частей в единое целое.

Модели систем

Исследование некоторой реальной системы состоит из двух этапов: этапа анализа и этапа синтеза.

Анализ системы – это выделение ее частей с целью прояснения состава системы.

Синтез – это мысленное или реальное соединение частей в единое целое.

Системным анализом называется исследование реальных объектов и явлений с точки зрения системного подхода, состоящее из этапов анализа и синтеза.

Системным анализом называется исследование реальных объектов и явлений с точки зрения системного подхода, состоящее из этапов анализа и синтеза.

Модель состава

Модель состава

Структурная модель системы Структурную модель системы еще называют структурной схемой. На структурной схеме отображается состав системы и ее внутренние связи. Для отображения структурной схемы используются графы.

Структурная модель системы

Структурную модель системы еще называют структурной схемой. На структурной схеме отображается состав системы и ее внутренние связи. Для отображения структурной схемы используются графы.



Связь между двумя станциями метро, соединенными линией движения, является двунаправленной, поскольку поезда могут двигаться в обе стороны. Валентная связь между атомами молекулы также не имеет выделенного направления. Такие графы называются неориентированными.

Связь между двумя станциями метро, соединенными линией движения, является двунаправленной, поскольку поезда могут двигаться в обе стороны. Валентная связь между атомами молекулы также не имеет выделенного направления. Такие графы называются неориентированными.

Если же связь между двумя элементами системы действует только в одну сторону, то на графе она отображается направленной стрелкой. Такой граф называется ориентированным. Направление линии связи на графе называются дугами.

Если же связь между двумя элементами системы действует только в одну сторону, то на графе она отображается направленной стрелкой. Такой граф называется ориентированным. Направление линии связи на графе называются дугами.


На практике часто встречаются системы с иерархической структурой , граф которых называется деревом .

На практике часто встречаются системы с иерархической структурой , граф которых называется деревом .

Единственная вершина самого верхнего уровня называется корнем дерева. Вершины самого нижнего уровня, у которых нет порожденных вершин, называются листьями дерева. Дерево является связным графом.

Единственная вершина самого верхнего уровня называется корнем дерева. Вершины самого нижнего уровня, у которых нет порожденных вершин, называются листьями дерева. Дерево является связным графом.

Это значит, что между любыми двумя вершинами имеется хотя бы один путь , связывающий их между собой. В дереве отсутствуют петли – замкнутые траектории связей. Поэтому маршрут перемещения по дереву между любыми вершинами всегда является единственным.

Это значит, что между любыми двумя вершинами имеется хотя бы один путь , связывающий их между собой. В дереве отсутствуют петли – замкнутые траектории связей. Поэтому маршрут перемещения по дереву между любыми вершинами всегда является единственным.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Что такое система? Модели систем 11 класс

Описание презентации по отдельным слайдам:

Что такое система? Модели систем 11 класс

Что такое система?
Модели систем

Что такое система?Система - совокупность материальных или информационных объ.

Что такое система?
Система - совокупность материальных или информационных объектов, обладающая определенной целостностью.
Состав системы - совокупность входящих в нее частей (элементов).
Подсистема – это система, входящая в состав другой, более крупной системы.

Всякая система представляет собой иерархию входящих в неё подсистем.

Всякая система представляет собой иерархию входящих в неё подсистем.

Системы бывают: ЕСТЕСТВЕННЫЕ

Системы бывают:
ЕСТЕСТВЕННЫЕ

Системы бывают: ИСКУССТВЕННЫЕ

Системы бывают:
ИСКУССТВЕННЫЕ

Они объединяют в себе части естественного и искусственного происхождения. С.

Они объединяют в себе части естественного и искусственного происхождения.

Системы бывают:
СМЕШАННЫЕ

Свойство ЦЕЛОСТНОСТИВсякая система существует в совокупности своих частей и в.

Свойство ЦЕЛОСТНОСТИ
Всякая система существует в совокупности своих частей и выполняет свою отдельную функцию в среде своего существования.

Системный эффектВ науке о системах – системологии – сформулирован закон, кото.

Системный эффект
В науке о системах – системологии – сформулирован закон, который называется принципом эмерджентности или законом системного эффекта. Звучит он так : целое больше суммы своих частей.

Связи (отношения) в системе Части системы всегда связаны между собой, наход.

Связи (отношения) в системе
Части системы всегда связаны между собой, находятся в определенных отношениях. Виды этих связей могут быть самыми разными. В естественных и технических системах они носят материальный характер.

Вывод: системный эффект обеспечивается не только наличием нужного состава ч.

Вывод:
системный эффект обеспечивается не только наличием нужного состава частей системы, но и существованием необходимых связей между ними.

СИСТЕМА – целостная, взаимосвязанная совокупность частей, существующая в н.

СИСТЕМА – целостная, взаимосвязанная совокупность частей, существующая в некоторой среде и обладающая определенным назначением, подчиненная некоторой цели. Система обладает внутренней структурой, относительной обособленностью от окружающей среды, наличием связей со средой.

Системный подход научный метод изучения действительности, при котором любой.

Системный подход
научный метод изучения действительности, при котором любой объект исследования рассматривается как система, при этом учитываются его существенные связи с внешней средой.

Вопрос: Выделите подсистемы в следующих объектах, рассматриваемых в качеств.

Вопрос:
Выделите подсистемы в следующих объектах, рассматриваемых в качестве систем:

Исследование некоторой реальной системы состоит из двух этапов : этапа анали.

Исследование некоторой реальной
системы состоит из двух этапов :
этапа анализа и этапа синтеза.
Анализ системы - это выделение ее частей с целью прояснения состава системы.
Синтез - это мысленное или реальное соединение частей в единое целое .
Системный анализ

исследование реальных объектов и явлений с точки зрения системного подхода.

исследование реальных объектов и явлений с точки зрения системного подхода, состоящее из этапов анализа и синтеза.
Системный анализ

Модель составаРезультатом анализа системы является определение ее состава. Ес.

Модель состава
Результатом анализа системы является определение ее состава. Если описание системы ограничить перечислением ее частей, то мы получим модель состава.
Модели систем

Модель структуры Для отображения структурной схемы системы используются г.

Модель структуры
Для отображения структурной схемы системы используются графы. Граф состоит из вершин, обозначающих элементы системы, и ребер - линий, обозначающих связи (отношения) между элементами системы.
Модели систем

Теория графовЕсли связь между двумя элементами системы действует только в од.

Теория графов
Если связь между двумя элементами системы действует только в одну сторону, то такие графы называют ориентированными, если в две стороны, то неориентированным.

Направленные линии связи на графе называются дугами. На практике часто встреч.

Направленные линии связи на графе называются дугами. На практике часто встречаются системы с иерархической структурой, граф которых называется деревом.

Задания: 1. Нарисуйте в виде графа систему, состоящую из четырех однокласс.

Задания:
1. Нарисуйте в виде графа систему, состоящую из четырех одноклассников, между которыми существуют следующие связи (взаимоотношения):
дружат - Саша и Маша, Саша и Даша, Маша и Гриша, Гриша и Саша.
Анализируя полученный граф, ответьте на вопрос: с кем Саша может поделиться секретом, не рискуя, что тот станет известен кому-то другому?

Краткое описание документа:

Презентация предназначена для визуализации информации из параграфов 1 и 2 темы "Информационные системы и базы данных" учебника информатики 11 класса базового уровня (авторы: Семакина И.Г., Хеннер Е.К., Шеина Т.Ю.)В тексте презентации использованы авторские материалы учебника и иллюстрации из свободных источников интернета.

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 922 человека из 80 регионов


Курс повышения квалификации

Инструменты онлайн-обучения на примере программ Zoom, Skype, Microsoft Teams, Bandicam

  • Курс добавлен 31.01.2022
  • Сейчас обучается 28 человек из 18 регионов

Курс повышения квалификации

Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Дистанционные курсы для педагогов

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 612 565 материалов в базе

Материал подходит для УМК

Глава 1. Информационные системы и базы данных

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

Свидетельство и скидка на обучение каждому участнику

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

  • 14.06.2021 3511
  • PPTX 7.3 мбайт
  • 736 скачиваний
  • Рейтинг: 5 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Миронова Анна Юрьевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

  • Подготовка к ЕГЭ/ОГЭ и ВПР
  • Для учеников 1-11 классов

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Россияне ценят в учителях образованность, любовь и доброжелательность к детям

Время чтения: 2 минуты

Отчисленные за рубежом студенты смогут бесплатно учиться в России

Время чтения: 1 минута

Минобрнауки и Минпросвещения запустили горячие линии по оказанию психологической помощи

Время чтения: 1 минута

В Госдуме предложили ввести сертификаты на отдых детей от 8 до 17 лет

Время чтения: 1 минута

Рособрнадзор предложил дать возможность детям из ДНР и ЛНР поступать в вузы без сдачи ЕГЭ

Время чтения: 1 минута

Минпросвещения России подготовит учителей для обучения детей из Донбасса

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Читайте также: