Метод неопределенных коэффициентов в школе

Обновлено: 02.07.2024

Нам уже известны формулы для решения квадратных уравнений. А что делать, если встретится уравнение более высокой степени ? Оказы вается, что для уравнений третьей и четвёртой степени есть формулы, позволяющие найти корни (но они редко используются на практике ввиду их громоздкости), а для уравнений пятой степени и выше доказано, что таких формул не существует. Таким образом, у нас не выйдет в общем случае решить уравнение третьей или более высокой степени. Но существует ряд приёмов, позволяющих решить некоторые специальные виды уравнений. К их рассмотрению мы сейчас и перейдём.

Решите уравнение: `x^3 +4x^2 - 2x-3=0`.

Заметим, что `x=1` является корнем уравнения (значение многочлена при `x=1` равно сумме коэффициентов многочлена). Тогда по теореме Безу многочлен `x^3 +4x^2 -2x -3` делится на многочлен `x-1`. Выполнив деление, получаем:

`x^3 +4x^2 -2x -3=0 hArr (x-1)(x^2 + 5x +3) =0 hArr`

Если несократимая дробь `p//q` (`p` - целое, `q` - натуральное) является корнем многочлена с целыми коэффициентами , то сво бодный член делится на `p` , а старший коэффициент делится на `q`.

Пусть несократимая дробь `p//q` - корень многочлена (8). Это означает, что

`a_n (p/q)^n +a_(n-1)(p/q)^(n-1) + a_(n-2) (p/q)^(n-2)+ . ``+a_2 (p/q)^2 +a_1(p/q)+0=0`.

Умножим обе части на `q^n`, получаем:

`a_n p^n + a_(n-1) p^(n-1) q+a_(n-2) p^(n-2) q^2 + . + a_2 p^2 q^(n-2) +a_1 pq^(n-1)+a_0q^n=0`.

Перенесём в правую часть, а из оставшихся слагаемых вынесем `p` за скобки:

Справа и слева в (14) записаны целые числа. Левая часть делится на `p=>` правая часть также делится на `p`. Числа `p` и `q` взаимно просты (т. к. дробь `p//q` несократимая), откуда следует, что `a_0 vdotsp`.

Аналогично доказывается, что `a_n vdotsq`. Теорема доказана.

Как правило, предлагаемые вам уравнения имеют целые корни, поэтому в большинстве задач используется следующее: если у многочлена с целыми коэффициентами есть целые корни, то они являются делителями свободного члена.

а) `x^4+4x^3-102x^2-644x-539=0`; (15)

б) `6x^4-35x^3+28x^2+51x+10=0`. (16)

а) Попробуем найти целые корни уравнения. Пусть `p` - корень. Тогда `539vdotsp`; чтобы найти возможные значения `p`, разложим число `539` на простые множители:

Поэтому `p` может принимать значения:

Подстановкой убеждаемся, что `x=-1` является корнем уравнения. Разделим многочлен в левой части (15) уголком на `x+1` и получим:

1) После того, как найден первый корень, лучше сначала выполнить деление уголком, и только потом приступать к поиску последующих корней. Тогда вычислений будет меньше.

б) Если уравнение имеет рациональный корень `x_0=p/q`, то `10vdotsp`, `6vdotsq`, т. е. `p in`; `qin`.Возможные варианты для `x_0`:

Начинаем перебирать числа из этого списка. Первым подходит число `x=5/2`. Делим многочлен в левой части (16) на `(2x-5)` и получаем

Заметим, что для получившегося кубического уравнения выбор рациональных корней заметно сузился, а именно, следующие числа могут быть корнями: `x_0=+-1,+-2,+-1/3,+-2/3`, причём мы уже знаем, что числа `+-1` и `+-2` корнями не являются (так как мы их подставляли раньше, и они не подошли). Находим, что `x=-2/3` - корень; делим `3x^3-10x^2-11x-2` на `3x+2` и получаем:

Решаем квадратное уравнение: `x^2-4x-1=0 iff x=2+-sqrt5`.

К сожалению, уравнения не всегда имеют рациональные корни. Тогда приходится прибегать к другим методам.

Разложите на множители:

а) `x^4+4=x^4+4x^2+4-4x^2=(x^2+2)^2-(2x)^2=`

Таким образом, сумму четвёртых степеней, в отличие от суммы квадратов, можно разложить на множители:

в) Вынесем `x^2` за скобки и сгруппируем:

Обозначим `x+2/x=t`. Тогда `x^2+4+4/x^2=t^2`, `x^2+4/x^2=t^2-4`, выражение в скобках принимает вид:

В итоге получаем:

Этот приём иногда используется для решения уравнений четвёртой степени; в частности, с его помощью решают возвратные уравнения (см. пример 12 е).

г)* Можно убедиться, что никакой из рассмотренных выше методов не помогает решить задачу, а именно: рациональных корней уравнение не имеет (числа `+-1` и `+-2` – не корни); вынесение числа `x^2` за скобки и группировка слагаемых приводит к выражению

Если здесь обозначить `4x-13/x=t`, то `x^2-2/x^2` через `t` рационально не выражается.

Прибегнем к методу неопределённых коэффициентов. Пусть

Попробуем подобрать коэффициенты `a`, `b`, `c`, `d` так, чтобы (17) обратилось в верное равенство. Для этого раскроем скобки в правой части и приведём подобные слагаемые:

Приравняем в (18) коэффициенты при одинаковых степенях в обеих частях уравнения. Получим систему уравнений:

Мы будем пытаться найти целочисленные решения системы (19). Найти все решения системы (19) не проще, чем решить исходную задачу, однако нахождение целочисленных решений – разумеется, если они есть – нам по силам.

Рассмотрим четвёртое уравнение. Возможны только два принципиально различных случая:

2) `b=2` и `d=-1`. Рассмотрим каждый из них. Подставляем значения `b` и `d` в первые три уравнения:

Из первого и третьего уравнений системы получаем `c=5/3`; `a=-17/3`, что не удовлетворяет второму уравнению, поэтому система решений не имеет; пара чисел `b=1` и `d=-2` не подходит.

Эта система имеет одно решение `a=-7`, `c=3`. Значит, числа `a=-7`, `b=2`, `c=3`, `d=-1` являются решением системы (19), поэтому

Далее каждый из квадратных трёхчленов можно разложить на множители.

Во многих ситуациях степень уравнения можно понизить с помощью замены переменных.


организовать деятельность учащихся по доказательству утверждений с помощью метода неопределенных коэффициентов, применению метода неопределенных коэффициентов при решении олимпиадных задач.

Развивающая: Содействовать формированию научного мировоззрения, развитию исследовательских навыков, умения аргументировать, классифицировать.

Воспитательная: Содействовать развитию внимательности, инициативности, трудолюбия, творческих способностей.

Тип урока: изучение нового материала.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Выберите документ из архива для просмотра:

Выбранный для просмотра документ MНK.doc

МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РЕСПУБЛИКИ БАШКОРТО СТАН

ГАОУ СПО Башкирский архитектурно-строительный колледж

hello_html_m783cf4f4.jpg

Халиуллин Асхат Адельзянович,

преподаватель математики Башкирского

ОГЛАВЛЕНИЕ

Введение ___________________________________________________ 3

Глава I . Теоретические аспекты использования метода неопределенных коэффициентов______________________________________________ 4

Глава II . Поиски решения задач с многочленами методом неопределенных коэффициентов_______________________________ 7

2.1.Разложение многочлена на множители____________________ _ 7

2.2. Задачи с параметрами__________________________________ 10

2.3. Решение уравнений____________________________________ 14

2.4. Функциональные уравнения_____________________________ 19

Список использованной литературы____________________________ 24

Данная работа посвящена теоретическим и практическим аспектам внедрения в школьный курс математики метода неопределенных коэффициентов. Актуальность данной темы определяется следующими обстоятельствами.

Никто не будет спорить с тем, что математика как наука не стоит на одном месте, все время развивается, появляются новые задачи повышенной сложности, что часто вызывает определенные трудности, поскольку эти задачи, как правило, связаны с исследованием. Такие задачи в последние годы предлагались на школьных, районных и республиканских математических олимпиадах, они также имеются в вариантах ЕГЭ. Поэтому потребовалось специальный метод, который позволял бы наиболее быстро, эффективно и доступно решать хотя бы часть из них. В этой работе доступно излагается содержание метода неопределенных коэффициентов, широко применяющегося в самых разнообразных разделах математики, начиная от вопросов, входящих в курс общеобразовательной школы, и до самых продвинутых ее частей. В частности, применения метода неопределенных коэффициентов в решении задач с параметрами, дробно-рациональных и функциональных уравнений особенно интересны и эффективны; они легко могут заинтересовать любого, кто интересуется математикой. Главная цель предлагаемой работы и подборки задач состоит в том, чтобы предоставить широкие возможности для оттачивания и развития способности находить короткие и нестандартные решения.

Данная работа состоит из двух глав. В первой рассматриваются теоретические аспекты использования

метода неопределенных коэффициентов, во второй-практико-методологические аспекты такого использования.

В приложении к работе приведены условия конкретных задач для самостоятельного решения.

Глава I . Теоретические аспекты использования метод а неопределенных коэффициентов

«Человек … родился быть господином,

повелителем, царем природы, но мудрость,

Н.И.Лобачевский

Существуют различные способы и методы решения задач, но одним из самым удобным, наиболее эффективным, оригинальным, изящным и вместе с тем очень простым и понятным всем является метод неопределенных коэффициентов. Метод неопределенных коэффициентов —метод, применяемый в математике для отыскания коэффициентов выражений, вид которых заранее известен.

Прежде чем рассмотреть применение метода неопределенных коэффициентов к решению различного рода задач, приведем ряд сведений теоретического характера.

An(x) = a0x n + a1x n-1 + a2x n-2 + ··· + an-1x + an

B m ( x ) = b 0 x m + b 1 x m -1 + b 2 x m -2 + ··· + b m-1 x + b m ,

многочлены относительно х с любыми коэффициентами.

Теорема. Два многочлена, зависящие от одного и того же аргумента,тождественно равны в том и только в том случае, если n = m и их соответственные коэффициенты равны a 0= b 0 , a 1= b 1 , a 2 = b 2 ,··· , a n -1 = b m -1 , a n = b m и т . д .

Очевидно, что равные многочлены принимают при всех значениях х одинаковые значения. И наоборот, если значения двух многочленов равны при всех значениях х, то многочлены равны, то есть их коэффициенты при одинаковых степенях х совпадают.

Следовательно, идея применения метода неопределенных коэффициентов к решению задач состоит в следующем.

Пусть нам известно, что в результате некоторых преобразований получается выражение определенного вида и неизвестны лишь коэффициенты в этом выражении. Тогда эти коэффициенты обозначают буквами и рассматривают как неизвестные. Затем для определения этих неизвестных составляется система уравнений.

Например, в случае многочленов эти уравнения составляют из условия равенства коэффициентов при одинаковых степенях х у двух равных многочленов.

Покажем сказанное выше на следующих конкретных примерах, причем начнем с самого простого.

Так, например, на основании теоретических соображений дробь

может быть представлена в виде суммы

, где a , b и c - коэффициенты, подлежащие определению. Чтобы найти их, приравниваем второе выражение первому :

и освобождаясь от знаменателя и собирая слева члены с одинаковыми степенями х , получаем :

( a + b + c )х 2 + ( b - c )х - а = 2х 2 – 5 х – 1

Так как последнее равенство должно выполняться для всех значений х , то коэффициенты при одинаковых степенях х справа и слева должны быть одинаковы. Таким образом, получаются три уравнения для определения трех неизвестных коэффициентов:

a + b + c = 2

b - c = - 5

а = 1 , откуда a = 1 , b = - 2 , c = 3

справедливость этого равенства легко проверить непосред-ственно.

Пусть ещё нужно представить дробь

в виде a + b + c + d , где a , b , c и d - неизвестные рациональные коэффициенты. Приравниваем второе выражение первому :

a + b + c + d = или , освобождаясь от знаменателя, вынося, где можно, рациональные множители из-под знаков корней и приводя подобные члены в левой части, получаем :

( a - 2 b + 3 c ) + ( - a + b +3 d ) + ( a + c - 2 d ) +

+ ( b - c + d ) = 1 + - .

Но такое равенство возможно лишь в случае, когда равны между собой рациональные слагаемые обеих частей и коэффициенты при одинаковых радикалах. Таким образом, получаются четыре уравнения для нахождения неизвестных коэффициентов a , b , c и d :

a -2 b + 3c = 1

- a + b +3 d = 1

a + c - 2 d = - 1

b - c + d = 0 , откуда a = 0 ; b = - ; c = 0 ; d = , то есть = - + .

Глава II . Поиски решения задач с многочленами методом неопределенных коэффициентов .

«Ничто так не содействует усвоению предме-

Академик Б.В.Гнеденко

2. 1. Разложение многочлена на множители.

Способы разложения многочленов на множители:

1) вынесение общего множителя за скобки;2) метод груп - пировки; 3) применение основных формул умножения; 4) введение вспомогательных членов;5)предварительное преобразование данного многочлена с помощью тех или иных формул; 6) разложение с помощью отыскания корней данного многочлена; 7) метод введения параметра; 8)метод неопределенных коэффициентов.

З а д а ч а 1. Разложить на действительные множители многочлен х 4 + х 2 + 1 .

Решение. Среди делителей свободного члена данного многочлена нет корней. Другими элементарными средствами корни многочлена найти не можем. Поэтому выполнить требуемое разложение с помощью предварительного отыскания корней данного многочлена не представляется возможным. Остается искать решение задачи либо методом введения вспомогательных членов, либо методом неопределенных коэффициентов. Очевидно, что х 4 + х 2 + 1 = х 4 + х 3 + х 2 - х 3 - х 2 - х + х 2 + х + 1 =

= х 2 ( х 2 + х + 1 ) - х ( х 2 + х + 1 ) + х 2 + х + 1 =

= ( х 2 + х + 1 )( х 2 - х + 1 ).

Полученные квадратные трёхчлены не имеют корней, а потому неразложимы на действительные линейные множители.

Изложенный способ технически прост, но труден вследствие своей искусственности. Действительно, очень трудно придумать требующиеся вспомогательные члены. Найти это разложение нам помогла всего лишь догадка. Но

существуют и более надёжные способы решения таких задач.

Можно было бы действовать так: предположить, что данный многочлен разлагается в произведение

( х 2 + а х + b )( х 2 + c х + d )

двух квадратных трёхчленов с целыми коэффициентами.

Таким образом, будем иметь, что

х 4 + х 2 + 1 = ( х 2 + а х + b )( х 2 + c х + d )

Остается определить коэффициенты a , b , c и d .

Перемножив многочлены, стоящие в правой части последнего равенства, получим : х 4 + х 2 + 1 = х 4 +

+ ( а + с ) х 3 + ( b + а c + d ) х 2 + ( ad + bc ) х + bd .

Но поскольку нам необходимо, чтобы правая часть этого равенства превратилась в такой же многочлен, который стоит в левой части, потребуем выполнения следующих условий :

b + а c + d = 1

ad + bc = 0

Получилась система четырех уравнений с четырьмя неизвестными a , b , c и d . Легко найти из этой системы коэффициенты a = 1 , b = 1 , c = -1 и d = 1.

Теперь задача решена полностью. Мы получили :

х 4 + х 2 + 1 = ( х 2 + х + 1 )( х 2 - х + 1 ).

З а д а ч а 2. Разложить на действительные множители многочлен х 3 – 6 х 2 + 14 х – 15 .

Решение. Представим данный многочлен в виде

х 3 – 6 х 2 + 14 х – 15 = ( х + а )( х 2 + bx + c ) , где a , b и с - не определённые пока коэффициенты. Так как два многочлена тождественно равны тогда и только тогда, когда коэффициенты при одинаковых степенях х равны, то, приравнивая коэффициенты соответственно при х 2 , х и свободные члены , получим систему трёх уравнений с тремя неизвестными:

Решение этой системы значительно упростится, если учесть, что число 3 (делитель свободного члена) является корнем данного уравнения, и, следовательно, a = - 3 ,

b = - 3 и с = 5 .

Тогда х 3 – 6 х 2 + 14 х – 15 = ( х – 3 )( х 2 – 3 x + 5).

Примененный метод неопределенных коэффициентов по сравнению с изложенным выше методом введения вспомогательных членов не содержит ничего искусственного, но зато требует применения многих теоретических положений и сопровождается довольно большими выкладками. Для многочленов более высокой степени такой метод неопределенных коэффициентов приводит к громоздким системам уравнений.

Итак, в качестве примера возьмем правильную дробь (степень многочлена числителя меньше, чем степень многочлена знаменателя), которую постараемся разложить на простейшие.

В первую очередь необходимо разложить знаменатель. Такое разложение всегда возможно, при чем известно, что оно будет единственным и представлять собой комбинацию двучленов и одночленов. В нашем случае применяем схему Горнера, которую я описал в прошлой статье :

Схему Горнера применяем, пока не получится остаток, отличный от нуля. Два нулевых остатка - кратность корня х=-1 равна 2. что выражается в возведении в квадрат одночлена (x-1) в итоговом разложении. Оставшийся двучлен неприводимый над R - вещественных корней не имеет (посчитайте дискриминант).

Схему Горнера применяем, пока не получится остаток, отличный от нуля. Два нулевых остатка - кратность корня х=-1 равна 2. что выражается в возведении в квадрат одночлена (x-1) в итоговом разложении. Оставшийся двучлен неприводимый над R - вещественных корней не имеет (посчитайте дискриминант).

Ну что ж, применяем метод неопределенных коэффициентов, а затем приводим все дроби в одну монструозную:

Обратите внимание, что для двучлена имеющего вещественные корни (х-1)^2 в числителе ставим коэффициенты А и B. Для неприводимого над полем R двучлена в третьем слагаемом в числителе ставим линейную функцию Cx+D. Других вариантов нет, просто запомните.

Обратите внимание, что для двучлена имеющего вещественные корни (х-1)^2 в числителе ставим коэффициенты А и B. Для неприводимого над полем R двучлена в третьем слагаемом в числителе ставим линейную функцию Cx+D. Других вариантов нет, просто запомните.

Теперь наша задача приравнять коэффициенты при степенях у числителей исходной и полученной дроби. Чтобы не ошибиться. я всегда делаю разные линии подчеркивания: прямые, волнистые и т.д. В итоге получим вот такую систему линейных уравнений:

Получив коэффициенты, конечно же необходимо подставить и проверить решение системы. В нашем случае всё сходится великолепно, поэтому с чистой душой можно писать ответ:

Теперь осталось перевести дух и проинтегрировать всё это безобразие. Но на сегодня хватит. Спасибо за внимание!

Читайте также: