Метод индукции кратко и понятно

Обновлено: 05.07.2024

Дедукция или Дедуктивное умозаключение – это одна из двух основных форм логического рассуждения основанная на идеи о том, что если что-то справедливо для целого класса вещей, то это является справедливым и для всех членов данного класса.

Что такое ДЕДУКЦИЯ – простыми словами. МЕТОД ДЕДУКЦИИ

Простыми словами, Дедукция – это вариант мышления, при котором человек делает определенные логические выводы, основываясь на знаниях о классе вещей в целом, и переносит определенные черты на конкретную вещь. Другими словами, можно сказать что дедукция, это вариант логических рассуждений, направленных от общего к частному.

Несмотря на витиеватость определения, само понятие дедукции является весьма простым, особенно если понимать принцип работы дедуктивного метода. Итак, Дедуктивный метод работает следующим образом: Если мы знаем, что все представители определенного класса обладают каким-то свойством, то при рассмотрении одного из представителей этого класса, справедливо будет предположить, что и он обладает этим свойством. Так к примеру: Если мы знаем, что все люди смертны, а гипотетический Сережа — человек, то, следовательно, он тоже смертен.

Пример ДЕДУКЦИИ

  • У всех птиц есть перья. Попугай – это птица, следовательно, у попугая есть перья;
  • В красном мясе содержится железо. Говядина — красное мясо, поэтому в говядине есть железо;
  • Рептилии – холоднокровные, а змеи, это рептилии. Следовательно, змеи – холоднокровные;
  • Если A = B и B = C, то A = C;

Что такое ИНДУКЦИЯ – простыми словами определение, значение.

Индукция или Индуктивное рассуждение — это метод построения логического умозаключения основанный на принципе: от частного к общему. Так к примеру, если мы видим, что гипотетический Сережа умер, и он является человеком, то можно предположить, что все люди смертны .

Подведя итог, про дедукцию и индукцию можно сказать что:

Индуктивные и дедуктивные рассуждения — это два противоположных, но не исключающих друг друга подхода, которые можно использовать для оценки выводов. Дедуктивное рассуждение предполагает наличие общего утверждения, из которого в дальнейшем и строится вывод о частном случае. С другой стороны, индуктивное рассуждение берет за основу серию частных случаев из которых и формируется общая теория. Подходы имеют различия, но важно понимать, что как индуктивное, так и дедуктивное рассуждение может оказаться ложным особенно если исходная предпосылка аргументации неверна. Оптимальным вариантом при построении логических выводов является использование комбинации этих методов.

На заметку: Шерлок Холмс ( литературный персонаж, созданный Артуром Конан Дойлом ) – не использовал только дедуктивный метод. В большинстве случаев он строил свои выводы используя модель индуктивных рассуждений.

Метод полного перебора конечного числа случаев, исчерпывающих все возможности, называется полной индукцией. Этот метод имеет крайне ограниченную область применения в математике, так как обычно математические утверждения касаются бесконечного множества объектов (например, натуральных чисел, простых чисел, квадратов и т.п.) и перебрать их невозможно.

Существует метод рассуждений, который позволяет заменить неосуществимый бесконечный перебор доказательством того, что если утверждение истинно в одном случае, то оно окажется истинным и в следущем за ним случае. Этот метод носит название математической индукции (или рассуждением от $n$ к $n+1$)

Основы метода математической индукции

В основе метода математической индукции (ММИ) лежит принцип математической индукции: утверждение $P(n)$ (где $n$ - натуральное число) справедливо при $\forall n \in N$, если:

  • Утверждение $P(n)$ справедливо при $n=1$.
  • Для $\forall k \in N$ из справедливости $P(k)$ следует справедливость $P(k+1)$.

Доказательство с помощью метода математической индукции проводится в два этапа:

  1. База индукции (базис индукции). Проверяется истинность утверждения при $n=1$ (или любом другом подходящем значении $n$)
  2. Индуктивный переход (шаг индукции). Считая, что справедливо утверждение $P(k)$ при $n=k$, проверяется истинность утверждения $P(k+1)$ при $n=k+1$.

Метод математической индукции применяется в разных типах задач:

  • Доказательство делимости и кратности
  • Доказательство равенств и тождеств
  • Задачи с последовательностями
  • Доказательство неравенств
  • Нахождение суммы и произведения

Ниже вы найдете примеры решения задач, иллюстрирующие применение метода математической индукции, а также ссылки на полезные сайты и учебник и небольшой видеоурок по ММИ.

Математическая индукция: задачи и решения

Доказательство кратности и делимости

Задача 1. Докажите, что $5^n-4n+15$ делится на 16 при всех $n \in N_0$.

Задача 2. Доказать, что при любом натуральном $n$ число $a_n$ делится на $b$.

Задача 3. Докажите методом математической индукции: $4^ + 1$ кратно 5 для всех $n \ge 1$.

Задача 4. Используя метод математической индукции, докажите, что для любого натурального числа истинно следующее утверждение: $6^+3^+3^$ кратно 11.

Доказательство равенств и неравенств

Задача 5. Доказать равенство

Задача 6. Доказать методом математической индукции:

Задача 7. Доказать неравенство:

Задача 8. Доказать утверждение методом математической индукции:

$$ \left(1-\frac\right)\left(1-\frac\right)\left(1-\frac\right)\cdot . \cdot\left(1-\frac\right) =\frac \quad (n \ge 2). $$

Задача 9. Доказать неравенство:

$$ 2!\cdot 4! \cdot . \cdot (2n)! \gt [(n+1)!]^n \quad (n \gt 2).$$

Задача 10. Докажите методом математической индукции неравенство Бернулли: $(1+a)^n \gt 1 + a\cdot n$ для всех $n\in N$ и $a \gt -1$, $a \in R$.

Вычисление сумм

Задача 11. Доказать методом математической индукции:

Задача 12. Найдите сумму

$$1 \cdot 1! + 2 \cdot 2! + . . . + 2012 \cdot 2012! + 2013 \cdot 2013!$$

Заказать решение

Если вам нужна помощь с решением задач по любым разделам математики, обращайтесь в МатБюро. Выполняем контрольные и практические работы, ИДЗ и типовые расчеты на заказ. Стоимость задания от 60 рублей , оформление производится в Word, срок от 2 дней.

Математическая индукция лежит в основе одного из самых распространенных методов математических доказательств. С его помощью можно доказать большую часть формул с натуральными числами n , например, формулу нахождения суммы первых членов прогрессии S n = 2 a 1 + n - 1 d 2 · n , формулу бинома Ньютона a + b n = C n 0 · a n · C n 1 · a n - 1 · b + . . . + C n n - 1 · a · b n - 1 + C n n · b n .

В первом пункте мы разберем основные понятия, потом рассмотрим основы самого метода, а затем расскажем, как с его помощью доказывать равенства и неравенства.

Понятия индукции и дедукции

Для начала рассмотрим, что такое вообще индукция и дедукция.

Индукция – это переход от частного к общему, а дедукция наоборот – от общего к частному.

Например, у нас есть утверждение: 254 можно разделить на два нацело. Из него мы можем сделать множество выводов, среди которых будут как истинные, так и ложные. Например, утверждение, что все целые числа, которые имеют в конце цифру 4 , могут делиться на два без остатка – истинное, а то, что любое число из трех знаков делится на 2 – ложное.

В целом можно сказать, что с помощью индуктивных рассуждений можно получить множество выводов из одного известного или очевидного рассуждения. Математическая индукция позволяет нам определить, насколько справедливы эти выводы.

Допустим, у нас есть последовательность чисел вида 1 1 · 2 , 1 2 · 3 , 1 3 · 4 , 1 4 · 5 , . . . , 1 n ( n + 1 ) , где n обозначает некоторое натуральное число. В таком случае при сложении первых элементов последовательности мы получим следующее:

S 1 = 1 1 · 2 = 1 2 , S 2 = 1 1 · 2 + 1 2 · 3 = 2 3 , S 3 = 1 1 · 2 + 1 2 · 3 + 1 3 · 4 = 3 4 , S 4 = 1 1 · 2 + 1 2 · 3 + 1 3 · 4 + 1 4 · 5 = 4 5 , . . .

Используя индукцию, можно сделать вывод, что S n = n n + 1 . В третьей части мы докажем эту формулу.

В чем заключается метод математической индукции

В основе этого метода лежит одноименный принцип. Он формулируется так:

Некое утверждение будет справедливым для натурального значения n тогда, когда 1 ) оно будет верно при n = 1 и 2 ) из того, что это выражение справедливо для произвольного натурального n = k , следует, что оно будет верно и при n = k + 1 .

Применение метода математической индукции осуществляется в 3 этапа:

  1. Для начала мы проверяем верность исходного утверждения в случае произвольного натурального значения n (обычно проверка делается для единицы).
  2. После этого мы проверяем верность при n = k .
  3. И далее доказываем справедливость утверждения в случае, если n = k + 1 .

Как применять метод математической индукции при решении неравенств и уравнений

Возьмем пример, о котором мы говорили ранее.

Докажите формулу S n = 1 1 · 2 + 1 2 · 3 + . . . + 1 n ( n + 1 ) = n n + 1 .

Решение

Как мы уже знаем, для применения метода математической индукции надо выполнить три последовательных действия.

  1. Для начала проверяем, будет ли данное равенство справедливым при n , равном единице. Получаем S 1 = 1 1 · 2 = 1 1 + 1 = 1 2 . Здесь все верно.
  2. Далее делаем предположение, что формула S k = k k + 1 верна.
  3. В третьем шаге нам надо доказать, что S k + 1 = k + 1 k + 1 + 1 = k + 1 k + 2 , основываясь на справедливости предыдущего равенства.

Мы можем представить k + 1 в качестве суммы первых членов исходной последовательности и k + 1 :

S k + 1 = S k + 1 k + 1 ( k + 2 )

Поскольку во втором действии мы получили, что S k = k k + 1 , то можно записать следующее:

S k + 1 = S k + 1 k + 1 ( k + 2 ) .

Теперь выполняем нужные преобразования. Нам потребуется выполнить приведение дроби к общему знаменателю, приведение подобных слагаемых, применить формулу сокращенного умножения и сократить то, что получилось:

S k + 1 = S k + 1 k + 1 ( k + 2 ) = k k + 1 + 1 k + 1 ( k + 2 ) = = k ( k + 2 ) + 1 k + 1 ( k + 2 ) = k 2 + 2 k + 1 k + 1 ( k + 2 ) = ( k + 1 ) 2 k + 1 ( k + 2 ) = k + 1 k + 2

Таким образом, мы доказали равенство в третьем пункте, выполнив все три шага метода математической индукции.

Ответ: предположение о формуле S n = n n + 1 является верным.

Возьмем более сложную задачу с тригонометрическими функциями.

Приведите доказательство тождества cos 2 α · cos 4 α · . . . · cos 2 n α = sin 2 n + 1 α 2 n sin 2 α .

Решение

Как мы помним, первым шагом должна быть проверка верности равенства при n , равном единице. Чтобы это выяснить, нам надо вспомнить основные тригонометрические формулы.

cos 2 1 = cos 2 α sin 2 1 + 1 α 2 1 sin 2 α = sin 4 α 2 sin 2 α = 2 sin 2 α · cos 2 α 2 sin 2 α = cos 2 α

Следовательно, при n , равном единице, тождество будет верным.

Теперь предположим, что его справедливость сохранится при n = k , т.е. будет верно, что cos 2 α · cos 4 α · . . . · cos 2 k α = sin 2 k + 1 α 2 k sin 2 α .

Доказываем равенство cos 2 α · cos 4 α · . . . · cos 2 k + 1 α = sin 2 k + 2 α 2 k + 1 sin 2 α для случая, когда n = k + 1 , взяв за основу предыдущее предположение.

Согласно тригонометрической формуле,

sin 2 k + 1 α · cos 2 k + 1 α = = 1 2 ( sin ( 2 k + 1 α + 2 k + 1 α ) + sin ( 2 k + 1 α - 2 k + 1 α ) ) = = 1 2 sin ( 2 · 2 k + 1 α ) + sin 0 = 1 2 sin 2 k + 2 α

cos 2 α · cos 4 α · . . . · cos 2 k + 1 α = = cos 2 α · cos 4 α · . . . · cos 2 k α · cos 2 k + 1 α = = sin 2 k + 1 α 2 k sin 2 α · cos 2 k + 1 α = 1 2 · sin 2 k + 1 α 2 k sin 2 α = sin 2 k + 2 α 2 k + 1 sin 2 α

Ответ: На этом тождество можно считать доказанным. Мы успешно применили для этого метод математической индукции. Точно так же мы можем доказать справедливость формулы бинома Ньютона.

Пример решения задачи на доказательство неравенства с применением этого метода мы привели в статье о методе наименьших квадратов. Прочтите тот пункт, в котором выводятся формулы для нахождения коэффициентов аппроксимации.

Индукция (лат. inductio — наведение) — процесс логического вывода на основе перехода от частного положения к общему. Индуктивное умозаключение связывает частные предпосылки с заключением не столько через законы логики, а скорее через некоторые фактические, психологические или математические представления. [1] В преобладании индуктивного мышления восточные народы отличаются от европейских, разрабатывавших прежде всего дедуктивное умозаключение.

Различают полную индукцию — метод доказательства, при котором утверждение доказывается для конечного числа частных случаев, исчерпывающих все возможности, и неполную индукцию — наблюдения за отдельными частными случаями наводит на гипотезу, которая, конечно, нуждается в доказательстве. Также для доказательств используется метод математической индукции.

Содержание

История

Термин впервые встречается у Сократа (др.-греч. Έπαγωγή ). Но индукция Сократа имеет мало общего с современной индукцией. Сократ под индукцией подразумевает нахождение общего определения понятия путём сравнения частных случаев и исключения ложных, слишком узких определений.

Аристотель указал на особенности индуктивного умозаключения(Аналит. I, кн. 2 § 23, Анал. II, кн. 1 § 23; кн. 2 § 19 etc.). Он определяет его как восхождение от частного к общему. Он отличал полную индукцию от неполной, указал на роль индукции при образовании первых принципов, но не выяснил основы неполной индукции и её права. Он рассматривал её как способ умозаключения, противоположный силлогизму. Силлогизм, по мнению Аристотеля, указывает посредством среднего понятия на принадлежность высшего понятия третьему, а индукция третьим понятием показывает принадлежность высшего среднему.

Индуктивный метод

Различают двоякую индукцию: полную (induction complete) и неполную (inductio incomplete или per enumerationem simplicem). В первой мы заключаем от полного перечисления видов известного рода ко всему роду; очевидно, что при подобном способе умозаключения мы получаем вполне достоверное заключение, которое в то же время в известном отношении расширяет наше познание; этот способ умозаключения не может вызвать никаких сомнений. Отождествив предмет логической группы с предметами частных суждений, мы получим право перенести определение на всю группу. Напротив, неполная И., идущая от частного к общему (способ умозаключения, запрещённый формальной логикой), должна вызвать вопрос о праве. Неполная И. по построению напоминает третью фигуру силлогизма, отличаясь от неё, однако, тем, что И. стремится к общим заключениям, в то время как третья фигура дозволяет лишь частные.

Таким же орудием служит и всякое сравнение и аналогия, указывающие на общие черты в явлениях, общность же явлений заставляет предположить, что мы имеем дело и с общими причинами; таким образом, сосуществование явлений, на которое указывает аналогия, само по себе ещё не заключает в себе объяснения явления, но доставляет указание, где следует искать объяснения. Главное отношение явлений, которое имеет в виду И., — отношение причинной связи, которая, подобно самому индуктивному выводу, покоится на тождестве, ибо сумма условий, называемая причиной, если она дана в полноте, и есть не что иное, как вызванное причиной следствие. Правомерность индуктивного заключения не подлежит сомнению; однако логика должна строго установить условия, при которых индуктивное заключение может считаться правильным; отсутствие отрицательных инстанций ещё не доказывает правильности заключения. Необходимо, чтобы индуктивное заключение основывалось на возможно большем количестве случаев, чтобы эти случаи были по возможности разнообразны, чтобы они служили типическими представителями всей группы явлений, которых касается заключение, и т. д.

При всём том индуктивные заключения легко ведут к ошибкам, из которых самые обычные проистекают от множественности причин и от смешения временного порядка с причинным. В индуктивном исследовании мы всегда имеем дело со следствиями, к которым должно подыскать причины; находка их называется объяснением явления, но известное следствие может быть вызвано целым рядом различных причин; талантливость индуктивного исследователя в том и заключается, что он постепенно из множества логических возможностей выбирает лишь ту, которая реально возможна. Для человеческого ограниченного познания, конечно, различные причины могут произвести одно и то же явление; но полное адекватное познание в этом явлении умеет усмотреть признаки, указывающие на происхождение его лишь от одной возможной причины. Временное чередование явлений служит всегда указанием на возможную причинную связь, но не всякое чередование явлений, хотя бы и правильно повторяющееся, непременно должно быть понято как причинная связь. Весьма часто мы заключаем post hoc — ergo propter hoc [2] , таким путём возникли все суеверия, но здесь же и правильное указание для индуктивного вывода.

Индукция — способ проверки гипотезы. Индукция в философии — это метод мышления, с помощью которого можно найти один общий признак и, таким образом, классифицировать предметы и явления. Для уточнения результатов индуктивного мышления в науке также применяется дедукция — противопоставляемый индукции метод мышления, для которого необходимо от общего заключения прийти к частному.

История появления термина

фото 899

В эпоху Возрождения наследие Аристотеля переоценивается и критикуется. В научных кругах силлогизм, как метод исследования, отрицается, а индуктивный метод считается единственным способом получения достоверной информации. Создателем современного индуктивного метода считается Ф. Бэкон. Он отказывается от использования силлогизма, но при этом его теория индукции вовсе не противоречит силлогизму. В основе индуктивного метода Бэкона, лежит принцип сравнения. Чтобы прийти к заключению, необходимо провести анализ всех случаев и вывести закономерность, т. е. сделать обобщение.

Следующей попыткой отказаться от силлогизма в пользу индукции было исследование Дж. Милля. Он полагал, что для получения силлогического заключения необходимо идти от частного к частному, не стремясь к общему. Индуктивное заключение видится ему анализом явлений одного порядка. Все умозаключения требуют применения четырех методов:

  1. Метод согласия. Если у исследуемых явлений есть хотя бы один общий признак, вероятно, он является первопричиной.
  2. Метод различия. Если у двух сравниваемых случаев имеется только одно различие, а в остальном они сходны, то это различие — причина явления.
  3. Метод остатков. Для той части явления, которую невозможно объяснить очевидной причиной, необходимо искать обоснование среди оставшихся версий. На первый взгляд они часто кажутся невероятными, но одна в конечном итоге окажется достоверным объяснением.
  4. Метод соответствующих изменений. Если несколько явлений изменяются под влиянием одного обстоятельства, вероятно, между ними есть причинная связь.

Примечательно, что методы, которые Бэкон представляет, как индуктивные, имеют дедуктивную составляющую. В частности, метод остатков работает по принципу исключения версий, продвигаясь от общего к частному.

Особенности индуктивного метода

В науке различают два вида индуктивного метода: полная индукция и неполная индукция.

Полная индукция

При полной индукции, мыслительному анализу поочередно подвергаются все предметы из группы. Они отождествляются с заданным признаком. Если каждый предмет будет соответствовать поставленному условию, можно с уверенностью предположить, что предметы имеют общую природу.

Неполная индукция

Главное отличие неполной индукции — отсутствие возможности сделать достоверное умозаключение. При неполной индукции сравнению подвергаются отдельные элементы предметов, и на основании результата делает предположение. Неполная индукция позволяет сделать только частное заключение, тогда как полная индукция стремится к общему.

Как правильно использовать дедуктивный и индуктивный подход

Использование индукции, как единственного метода поиска информации не дает объективной картины.

Индуктивный и дедуктивный методы рассуждения имеют противоположный способ движения мысли, но они не противоречат друг другу, а дополняют. Для дедуктивного рассуждения нужно общее утверждение, а индуктивное собирает частные случаи, подводя их под одну теорию. Чтобы получить результат, приближенный к истине, необходимо использовать оба метода сразу. Это позволяет проверить каждую теорию и отсеять неправдоподобные. А из оставшихся путем сравнения выбрать одну, которая будет отвечать все заданным требованиям.

900

Предполагается, что сам Декарт и другие представители научного сообщества, использовавшие метод индукции, на самом деле применяли комбинацию методов. Использование одного метода повышает риск формулировки ложных выводов. Если исследователь не может подвести все предметы к общему фактору, у него возникнет желание отбросить несоответствия и тем самым исказить условия эксперимента, и получить неправильный результат.

Роль методов мышления в психологии

Дедукция и индукция — методы мышления, которые нужно применять в комплексе. Изучение психических процессов, отвечающих за развитие, взаимосвязь и взаимодействие мыслительных процессов — одна из задач психологии. Форма проявления дедукции и индукции в психологии называется дедуктивным мышлением.

Такое неосознанное применение индуктивного мышления называется фиксацией. Способом избавления от фиксации станет правильное дедуктивное мышление, но его развитие, как и любой другой метод терапии, должен проходить под наблюдением психотерапевта.

Психологи рекомендуют людям, склонным к нервозности, развивать у себя дедуктивное мышление. Для этого используются простые способы:

  1. Решение логических задач. Классический метод дедуктивного мышления — это математическое мышление. Чтобы решить задачу, человек использует логику, а это способствует развитию навыка отличать ложное суждение от правдоподобного.
  2. Расширение кругозора. По сути, это пополнение багажа знаний любой информацией, которая интересна конкретному человеку. Для этого необязательно читать учебники. Новую информацию можно получить, просматривая фильмы или сайты, общаясь с другими людьми, путешествуя.
  3. Развитие точности. Умение конкретизировать помогает подобрать правильный критерий, по которому оценивается явления.
  4. Гибкость ума. Малый объем знаний способствует закостенелости ума. Имея ограниченный набор типовых ситуаций, человек выбирает не наиболее вероятную, а ту, которая вспомнится ему первой. А поскольку выбор у него невелик, она вряд ли будет подходящей.
  5. Наблюдательность. Это инструмент, с помощью которого человек пополняет внутреннюю копилку личного опыта. Именно на его основе, делаются умозаключения.

Минусы индуктивного подхода

Применение индуктивного метода имеет границы. Задача логики — обозначить их. Проведение аналогии не является доказательным методом, но дает возможность для поиска общих черт предметов и явлений. Для получения достоверного результата, необходимо иметь достаточное количество разнообразных примеров, чтобы представлять всю группу явлений.

Учитывая это, индуктивные заключения часто приводят к ошибочному выводу. Использование индукции предполагает работу со следствием, которое может быть вызвано разными причинами или их сочетанием. Поэтому достоверность полученной информации напрямую зависит от интеллектуальных способностей исследователя. Формируя умозаключения, он опирается только на свою логику и рационализм.

Неспособность отделить правдоподобные версии приводит к ошибочному выводу. А поскольку познавательные возможности человека ограничены, всегда существует риск анализа по ошибочному признаку и получения ложного результата.

В чем отличие дедукции от индукции?

Дедукция в философии — особый способ мышления, используя который человек делает логические выводы, основываясь на общей информации и выбирая из нее наиболее подходящий ситуации вариант развития событий. Применение дедуктивного метода требует умения составлять логические цепочки, в которых из одного явления последовательно вытекает второе. Этот способ обработки информации получил известность благодаря книгам о Шерлоке Холмсе, который использовал его для раскрытия преступлений.

О дедукции было известно еще мыслителям античного периода. Дедукция использовалась в философии для формирования умозаключений на основании уже имеющихся знаний. У каждого философа было свое представление о правильной дедукции. Например, Декарт называл дедукцию интуитивным способом получения информации, который в результате продолжительных размышлений, обязательно приводит к единственной правильной версии. Лейбниц полагал, что дедукция — единственный способ достичь истинного знания.

Дедукция превосходит большинство методов, поскольку выполняет такие функции:

  • помогает быстрее найти верное решение;
  • используется в тех областях, знания о которых поверхностны;
  • способствует развитию логического мышления;
  • помогает анализировать гипотезы, оценивая их правдоподобность;
  • ускоряет мышление.

К минусам дедуктивного метода относятся:

  • невозможность применять метод для изучения новых явлений;
  • некоторые частные случаи очень сложно привести к общему знаменателю;
  • полученные, благодаря дедукции, знания сложнее усвоить, поскольку человек получает готовый ответ, не утруждая себя сбором предварительной информации.

Использование дедукции в философии позволяет быстро и достоверно проверять информацию при условии правильного употребления законов логики.

Применение индукции в философии

фото 901

Исследователь К. Поппер, в процессе проверки гипотез, отводит индукции ключевое значение. Индукция не может определить истинно ли утверждение, но помогает с точностью отобрать те версии, которые не выдерживают проверки экспериментом. Если в результате проведения опытов часть теорий подтвердилась, а другая часть была опровергнута, предпочитаемыми будут те теории, которые дали положительный результат. Но при этом следует помнить, что индукция не помогает найти универсальное подтверждение, которое подойдет всем выдвинутым версиям.

Читайте также: