Метод гаусса кратко и понятно самое важное

Обновлено: 03.07.2024

В данной публикации мы рассмотрим, что такое метод Гаусса, зачем он нужен, и в чем заключается его принцип. Также мы на практическом примере продемонстрируем, как метод можно применить для решения системы линейных уравнений.

Описание метода Гаусса

Метод Гаусса – классический способ последовательного исключения переменных, применяемый для решения системы линейных уравнений. Назван так в честь немецкого математика Карла Фридриха Гаусса (1777 – 1885).

Но для начала напомним, что СЛАУ может:

  • иметь одно единственное решение;
  • иметь бесконечное множество решений;
  • быть несовместной, т.е. не иметь решений.

Практическая польза

Метод Гаусса – отличный способ решить СЛАУ, которая включает более трех линейных уравнений, а также систем, не являющихся квадратными.

Принцип метода Гаусса

Метод включает следующие этапы:

    прямой – расширенная матрица, соответствующая системе уравнений, путем элементарных преобразований над строками приводится к верхнему треугольному (ступенчатому) виду, т.е. под главной диагональю должны находиться только элементы, равные нулю.

Пример решения СЛАУ

Давайте решим систему линейных уравнение ниже, воспользовавшись методом Гаусса.

Решение

1. Для начала представим СЛАУ в виде расширенной матрицы.

2. Теперь наша задача – это обнулить все элементы под главной диагональю. Дальнейшие действия зависят от конкретной матрицы, ниже мы опишем те, что применимы к нашему случаю. Сначала поменяем строки местами, таким образом расположив их первые элементы в порядке возрастания.

3. Вычтем из второй строки удвоенную первую, а из третьей – утроенную первую.

Элементарные преобразования над расширенной матрицей

4. Прибавим к третьей строке вторую.

Элементарные преобразования над расширенной матрицей

5. Отнимем из первой строки вторую, и одновременно с этим действием разделим третью строку на -10.

Элементарные преобразования над расширенной матрицей

6. Первый этап завершен. Теперь нам нужно получить нулевые элементы над главной диагональю. Для этого из первой строки вычтем третью, умноженную на 7, а ко второй прибавим третью, умноженную на 5.

Элементарные преобразования над расширенной матрицей

7. Финальная расширенная матрица выглядит следующим образом:

8. Ей соответствует система уравнений:

Пример системы линейных уравнений

Ответ: корни СЛАУ: x = 2, y = 3, z = 1.


Благодаря великим ученым было открыто множество эффективных теорем для работы со сложными математическими задачами. Один из таких примеров — метод Гаусса.

Метод Гаусса — что это такое

Метод Гаусса представляет собой методику эквивалентного преобразования исходной системы линейных уравнений в систему, решаемую существенно проще, чем исходный вариант.

Метод Гаусса используют для решения систем линейных алгебраических формул. Такой способ обладает рядом важных преимуществ:

  1. Нет необходимости сравнивать уравнения для оценки совместимости.
  2. Решение систем равенств, в которых число определителей совпадает или не совпадает с количеством неизвестных переменных.
  3. Поиск решений для уравнений с нулевым определителем.
  4. Сравнительно небольшое количество вычислительных операций для получения результата.

Основные определения и обозначения

Матрицы: определение и свойства

Такие системы являются наиболее удобным способом представления данных, с которыми впоследствии производят манипуляции. Матрица имеет вид прямоугольника для удобства расчетов. При использовании метода Гаусса работа осуществляется с треугольными матрицами, при записи которых применяется прямоугольник с нулями на тех местах, где числа отсутствуют. Часто нули не записывают, а только подразумевают.

Важным параметром матрицы является размер:

  • ширина — это количество строк, обозначают буквой m;
  • длину выражают числом столбцов, записывают буквой n.

Решение уравнений

Размер матрицы будет записан в формате А m*n. В случае, когда m=n, матрица является квадратной, а m=n служит ее порядком. Номера строк и столбцов изменяются.

Определитель

Матрица обладает крайне важной характеристикой. Таким параметром является определитель. Данную величину рассчитывают с помощью диагонали. Для этого в матрице необходимо провести воображаемые диагональные линии. Затем следует найти произведение элементов, которые располагаются на этих диагоналях, а полученные значения суммировать таким образом:

Матрица

Рассчитать определитель представляется возможным лишь в случае работы с квадратной матрицей.

Если необходимо определить данный параметр для прямоугольной матрицы, то следует выполнить следующие манипуляции:

  • из числа строк и числа столбцов выбрать наименьшее и обозначить его k;
  • отметить в матрице произвольным образом k столбцов и k строк.

Элементы, которые расположены на пересечении отмеченных столбцов и строк, образуют новую квадратную матрицу. В случае, когда определитель является числом, не равным нулю, то данный параметр будет обозначен как базисный минор первоначальной прямоугольной матрицы. Перед решением систем уравнений методом Гаусса полезно рассчитать определитель. Если данная характеристика равна нулю, то матрица имеет бесконечное множество решений либо не имеет их вовсе. В таком случае потребуется определить ранг матрицы.

Классификация систем

Ранг матрицы является распространенным понятием. Он обозначает максимальный порядок ее определителя, который не равен нулю. По-другому можно сказать, что ранг матрицы представляет собой порядок базисного минора. Исходя из данного критерия, СЛАУ классифицируют на несколько типов. В совместных системах, которые состоят лишь из коэффициентов, ранг основной матрицы совпадает с рангом расширенной. Для подобных систем характерно одно или множество решений. По этой причине совместные системы подразделяют на следующие типы:

  • определенные, обладающие одним решением, в которых наблюдается равенство ранга матрицы и количество неизвестных;
  • неопределенные;
  • обладающие бесконечным числом решений с рангом матрицы, который меньше количества неизвестных.

В несовместных системах ранги, характеризующие основную и расширенную матрицы, отличаются. С помощью метода Гаусса в процессе решения можно прийти либо к однозначному доказательству несовместности системы, либо к решению общего вида для системы, обладающей бесконечным количеством решений.

Основные правила и разрешаемые преобразования при использовании метода Гаусса

Перед тем, как решать систему, необходимо ее упростить. На данном этапе выполняют элементарные преобразования, которые не влияют на конечный результат. Определенные манипуляции справедливы лишь в случае матриц, исходниками которых являются СЛАУ. Список элементарных преобразований:

  1. Перестановка строк. При перемене записей в системе местами ее решение не меняется. Можно менять место строк в матрице, учитывая столбец со свободными членами.
  2. Произведение всех элементов строк и некоторого коэффициента. Сокращаются большие числа в матрице, и исключаются нули. При этом множество решений сохраняется без изменений, а дальнейшие манипуляции существенно упрощаются. Важным условием является отличие от нуля коэффициента.
  3. Удаление строк, которые содержат пропорциональные коэффициенты. Данное преобразование следует из предыдущего пункта. При условии, что две или более строк в матрице обладают пропорциональными коэффициентами, то при произведении или делении одной из строк на коэффициент пропорциональности получают две или более абсолютно одинаковые строки. В этом случае лишние строки исключают, оставляя только одну.
  4. Удаление нулевой строки. Бывают случаи, когда в процессе манипуляций с уравнениями возникает строка, все элементы которой, в том числе свободный член, равны нулю. Нулевую строку допустимо исключать из матрицы.
  5. Суммирование элементов одной строки с элементами другой, умноженными на некоторый коэффициент, в соответствующих столбцах. Данное преобразование имеет наиболее важное значение из всех перечисленных.

Особенности использования метода Гаусса для решения СЛАУ

На первом этапе система уравнений записывается в определенном виде. Пример выглядит следующим образом:

Система уравнений

Коэффициенты необходимо представить в виде таблицы. С правой стороны в отдельном столбце записаны свободные члены. Данный блок отделен для удобства решения. Матрицу со столбцом со свободными членами называют расширенной.

Матрицы

Затем основная матрица с коэффициентами приводится к верхней треугольной форме. Данное действие является ключевым моментом при решении системы уравнений с помощью метода Гаусса. По итогам преобразований матрица должна приобрести такой вид, чтобы слева внизу находились одни нули:

Матрица с нулями

При записи новой матрицы в виде системы уравнений можно отметить, что последняя строка уже содержит значение одного из корней, которое в дальнейшем подставляется в уравнение выше для нахождения следующего корня и так далее. Подобное описание позволяет разобраться в методе Гаусса в общих чертах.

Обратный и прямой ход метода Гаусса

В первом случае необходимо представить запись расширенной матрицы системы. При выполнении обратного метода Гаусса далее в главную матрицу добавляют столбец со свободными членами.

Метод Гаусса

Суть такого способа заключается в выполнении элементарных преобразований, по итогам которых данная матрица приводится к ступенчатому или треугольному виду. В этом случае над или под главной диагональю матрицы располагаются только нули.

Метод Гаусса 2

Варианты дальнейших действий:

  • перемена строк матрицы местами, при наличии одинаковых или пропорциональных строк их можно исключить, кроме одной;
  • деление либо умножение строки на любое число, не равное нулю;
  • удаление нулевых строк;
  • добавление строки, умноженной на число, не равное нулю, к другой строке.

Имея преобразованную систему с одной неизвестной Xn, которая становится известной, можно выполнить поиск в обратном порядке остальных неизвестных с помощью подстановки известных х в уравнения системы, вплоть до первого. Данный способ называют обратным методом Гаусса.

Примеры решений с объяснением

Пример 1

Требуется решить с помощью метода Гаусса систему линейных уравнений, которая выглядит следующим образом:

Пример 1

Необходимо записать расширенную матрицу:

Пример 2

Затем нужно выполнить преобразования. В результате матрица должна приобрести треугольный вид. Для этого следует умножить первую строку на (3) и умножить вторую строку на (-1). В результате суммирования второй и первой строк получается следующее:

Далее следует умножить третью строку на (-1). После добавления третьей строки ко второй получаем следующие преобразования:

Пример 4

После этого необходимо умножить первую строку на (6) и вторую строку на (13). Далее следует добавить вторую строку к первой:

Пример 5

После того, как система преобразована, остается вычислить неизвестные:

Данный пример демонстрирует единственное решение системы.

Доска

Пример 2

Необходимо решить систему уравнений, которая выглядит следующим образом:

Задача 2

Необходимо составить матрицу:

Задача 2-2

Согласно методу Гаусса уравнение первой строки по итогам преобразований не меняется. Удобнее, когда левый верхний элемент матрицы обладает наименьшим значением. В таком случае первые элементы остальных строк после преобразований будут равны нулю. Таким образом, составленная матрица будет решаться проще, если на место первой строки поставить вторую:

b" 2 = b 2 + k×b 1 = 12 + (-3)×12 = -24

\( b"_3 = b_3 + k×b_1 = 3 + (-5)×12 = -57\)

Матрица с промежуточными результатами манипуляций будет иметь следующий вид:

Задача 2-3

Задача 2-4

Далее следует приступить к манипуляциям со второй и третьей строками. Необходимо суммировать третью и вторую строки. Вторая строка при этом умножается на такой коэффициент, при котором элемент а 32 будет равен нулю.

\(a"_ = a_ + k×a_ = 3 + (-3/7)×7 = 3 + (-3) = 0\)

\(b"_3 = b_3 + k×b_2 = 19 + (-3/7)×24 = -61/7\)

Преобразованная матрица будет иметь следующий вид:

Задача 2-5

Затем необходимо представить запись матрицы в виде системы уравнений для вычисления корней.

x + 2y + 4z = 12 (1)

Найти корни можно обратным методом Гаусса. Уравнение (3) содержит значение z:

y = (24 - 11×(61/9))/7 = -65/9

С помощью первого уравнения можно определить х:

x = (12 - 4z - 2y)/1 = 12 - 4×(61/9) - 2×(-65/9) = -6/9 = -2/3

Подобная система является совместной и определенной, для которого характерно единственное решение. Ответ будет следующим:

x 1 = -2/3, y = -65/9, z = 61/9.

Метод преобразований Гаусса (также известный как преобразование методом последовательного исключения неизвестных переменных из уравнения или матрицы) для решения систем линейных уравнений представляет собой классический методом решения системы алгебраических уравнений (СЛАУ). Также этот классический метод используют для решения таких задач как получение обратных матриц и определения ранговости матрицы.

Преобразование с помощью метода Гаусса заключается в совершении небольших (элементарных) последовательных изменениях системы линейных алгебраических уравнений, приводящих к исключению переменных из неё сверху вниз с образованием новой треугольной системы уравнений, являющейся равносильной исходной.

Эта часть решения носит название прямого хода решения Гаусса, так как весь процесс осуществляется сверху вниз.

После приведения исходной системы уравнений к треугольной осуществляется нахождение всех переменных системы снизу вверх (то есть первые найденные переменные занимают находятся именно на последних строчках системы или матрицы). Эта часть решения известна также как обратный ход решения методом Гаусса. Заключается его алгоритм в следующем: сначала вычисляется переменные, находящиеся ближе всего к низу системы уравнений или матрицы, затем полученные значения подставляются выше и таким образом находится ещё одна переменная и так далее.

Описание алгоритма метода Гаусса

Последовательность действий для общего решения системы уравнения методом Гаусса заключается в поочередном применении прямого и обратного хода к матрице на основе СЛАУ. Пусть исходная система уравнений имеет следующий вид:

$\begin a_ \cdot x_1 +. + a_ \cdot x_n = b_1 \\ . \\ a_ \cdot x_1 + a_ \cdot x_n = b_m \end$

Чтобы решить СЛАУ методом Гаусса, необходимо записать исходную систему уравнений в виде матрицы:

Готовые работы на аналогичную тему

$A = \begin a_ & … & a_ \\ \vdots & … & \vdots \\ a_ & … & a_ \end$, $b=\begin b_1 \\ \vdots \\ b_m \end$

Матрица $A$ называется основной матрицей и представляет собой записанные по порядку коэффициенты при переменных, а $b$ называется столбцом её свободных членов. Матрица $A$, записанная через черту со столбцом свободных членов называется расширенной матрицей:

$A = \begin a_ & … & a_ & b_1 \\ \vdots & … & \vdots & . \\ a_ & … & a_ & b_m \end$

Теперь необходимо с помощью элементарных преобразований над системой уравнений (или над матрицей, так как это удобнее) привести её к следующему виду:

$\begin α_> \cdot x_> + α_> \cdot x_>. + α_> \cdot x_> +. α_> \cdot x_> = β_1 \\ α_> \cdot x_>. + α_> \cdot x_> +. α_> \cdot x_> = β_2 \\ . \\ α_> \cdot x_> +. α_> \cdot x_> = β_r \\ 0 = β_(r+1) \\ … \\ 0 = β_m \end$ (1)

Матрица, полученная из коэффициентов преобразованной системы уравнения (1) называется ступенчатой, вот так обычно выглядят ступенчатые матрицы:

$A = \begin a_ & a_ & a_ & b_1 \\ 0 & a_ & a_ & b_2\\ 0 & 0 & a_ & b_3 \end$

Для этих матриц характерен следующий набор свойств:

  1. Все её нулевые строки стоят после ненулевых
  2. Если некоторая строка матрицы с номером $k$ ненулевая, то в предыдущей строчке этой же матрицы нулей меньше, чем в этой, обладающей номером $k$.

После получения ступенчатой матрицы необходимо подставить полученные переменные в оставшиеся уравнения (начиная с конца) и получить оставшиеся значения переменных.

Основные правила и разрешаемые преобразования при использовании метода Гаусса

При упрощении матрицы или системы уравнений этим методом нужно использовать только элементарные преобразования.

Таким преобразованиями считаются операции, которые возможно применять к матрице или системе уравнений без изменения её смысла:

  • перестановка нескольких строк местами,
  • прибавление или вычитание из одной строчки матрицы другой строчки из неё же,
  • умножение или деление строчки на константу, не равную нулю,
  • строчку, состоящую из одних нулей, полученную в процессе вычисления и упрощения системы, нужно удалить,
  • Также нужно удалить лишние пропорциональные строчки, выбрав для системы единственную из них с более подходящими и удобными для дальнейших вычислений коэффициентами.

Все элементарные преобразования являются обратимыми.

Разбор трёх основных случаев, возникающих при решении линейных уравнений используя метод простых преобразований Гаусса

Различают три возникающих случая при использовании метода Гаусса для решения систем:

  1. Когда система несовместная, то есть у неё нет каких-либо решений
  2. У системы уравнений есть решение, причём единственное, а количество ненулевых строк и столбцов в матрице равно между собой.
  3. Система имеет некое количество или множество возможных решений, а количество строк в ней меньше чем количество столбцов.

Исход решения с несовместной системой

Для этого варианта при решении матричного уравнения методом Гаусса характерно получение какой-то строчки с невозможностью выполнения равенства. Поэтому при возникновении хотя бы одного неправильного равенства полученная и исходная системы не имеют решений вне зависимости от остальных уравнений, которые они содержат. Пример несовместной матрицы:

$\begin 2 & -1 & 3 & 0 \\ 1 & 0 & 2 & 0\\ 0 & 0 & 0 & 1 \end$

В последней строчке возникло невыполняемое равенство: $0 \cdot x_ + 0 \cdot x_ + 0 \cdot x_ = 1$.

Система уравнений, у которой есть только одно решение

Данные системы после приведения к ступенчатой матрице и удаления строчек с нулями имеют одинаковое количество строк и столбцов в основной матрице. Вот простейший пример такой системы:

$\begin x_1 - x_2 = -5 \\ 2 \cdot x_1 + x_2 = -7 \end$

Запишем её в виде матрицы:

Чтобы привести первую ячейку второй строчки к нулю, домножим верхнюю строку на $-2$ и вычтем её из нижней строчки матрицы, а верхнюю строчку оставим в исходном виде, в итоге имеем следующее:

$\begin 1 & -1 & -5 \\ 0 & 3 & 10 \end$

Этот пример можно записать в виде системы:

$\begin x_1 - x_2 = -5 \\ 3 \cdot x_2 = 10 \end$

Из нижнего уравнения выходит следующее значение $x$: $x_2 = 3 \frac$. Подставим это значение в верхнее уравнение: $x_1 – 3 \frac$, получаем $x_1 = 1 \frac$.

Система, обладающая множеством возможных вариантов решений

Для этой системы характерно меньшее количество значащих строк, чем количество столбцов в ней (учитываются строки основной матрицы).

Переменные в такой системе делятся на два вида: базисные и свободные. При преобразовании такой системы содержащиеся в ней основные переменные необходимо оставить в левой области до знака “=”, а остальные переменные перенести в правую часть равенства.

У такой системы есть только некое общее решение.

Разберём следующую систему уравнений:

$\begin 2y_1 + 3y_2 + x_4 = 1 \\ 5y_3 - 4y_4 = 1 \end$

Запишем её в виде матрицы:

$\begin 2 & 3 & 0 & 1 & 1 \\ 0 & 0 & 5 & 4 & 1 \\ \end$

Наша задача найти общее решение системы. Для этой матрицы базисными переменными будут $y_1$ и $y_3$ (для $y_1$ - так как он стоит на первом месте, а в случае $y_3$ - располагается после нулей).

В качестве базисных переменных выбираем именно те, которые первые в строке не равны нулю.

Оставшиеся переменные называются свободными, через них нам необходимо выразить базисные.

Используя так называемый обратный ход, разбираем систему снизу вверх, для этого сначала выражаем $y_3$ из нижней строчки системы:

Теперь в верхнее уравнение системы $2y_1 + 3y_2 + y_4 = 1$ подставляем выраженное $y_3$: $2y_1 + 3y_2 - (\fracy_4 + \frac) + y_4 = 1$

Выражаем $y_1$ через свободные переменные $y_2$ и $y_4$:

$2y_1 + 3y_2 - \fracy_4 - \frac + y_4 = 1$

$2y_1 = 1 – 3y_2 + \fracy_4 + \frac – y_4$

$2y_1 = -3y_2 - \fracy_4 + \frac$

$y_1 = -1.5x_2 – 0.1y_4 + 0.6$

Решить слау методом Гаусса. Примеры. Пример решения системы линейных уравнений заданных матрицей 3 на 3 используя метод Гаусса

$\begin 4x_1 + 2x_2 – x_3 = 1 \\ 5x_1 + 3x_2 - 2x^3 = 2\\ 3x_1 + 2x_2 – 3x_3 = 0 \end$

Запишем нашу систему в виде расширенной матрицы:

$\begin 4 & 2 & -1 & 1 \\ 5 & 3 & -2 & 2 \\ 3 & 2 & -3 & 0\\ \end$

Теперь для удобства и практичности нужно преобразовать матрицу так, чтобы в верхнем углу крайнего столбца была $1$.

Для этого к 1-ой строчке нужно прибавляем строчку из середины, умноженную на $-1$, а саму среднюю строчку записываем как есть, выходит:

$\begin -1 & -1 & 1 & -1 \\ 5 & 3 & -2 & 2 \\ 3 & 2 & -3 & 0\\ \end$

Далее к средней строчке прибавим верхнюю, умноженную на $5$, а последнюю строчку преобразуем, умножив первую строчку на 3 и сложив с последней, получаем:

$\begin -1 & -1 & 1 & -1 \\ 0 & -2 & 3 & -3 \\ 0 & -1 & 0 & -3\\ \end$

Домножим верхнюю и последнюю строчки на $-1$, а также поменяем местами последнюю и среднюю строки:

$\begin 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & -2 & 3 & -3\\ \end$

Далее сложим последнюю строчку с удвоенной средней:

$\begin 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 3 & 3\\ \end$

И разделим последнюю строчку на $3$:

$\begin 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1\\ \end$

Получаем следующую систему уравнений, равносильную исходной:

$\begin x_1 + x_2 – x_3 = 1\\ x_2 = 3 \\ x_3 = 1 \end$

Из верхнего уравнения выражаем $x_1$:

$x1 = 1 + x_3 – x_2 = 1 + 1 – 3 = -1$.

Пример решения системы, заданной с помощью матрицы 4 на 4 методом Гаусса

$\begin 2 & 5 & 4 & 1 & 20 \\ 1 & 3 & 2 & 1 & 11 \\ 2 & 10 & 9 & 7 & 40\\ 3 & 8 & 9 & 2 & 37 \\ \end$.

В начале меняем местами верхнюю исследующую за ней строчки, чтобы получить в левом верхнем углу $1$:

$\begin 1 & 3 & 2 & 1 & 11 \\ 2 & 5 & 4 & 1 & 20 \\ 2 & 10 & 9 & 7 & 40\\ 3 & 8 & 9 & 2 & 37 \\ \end$.

Теперь умножим верхнюю строчку на $-2$ и прибавим ко 2-ой и к 3-ьей. К 4-ой прибавляем 1-ую строку, домноженную на $-3$:

$\begin 1 & 3 & 2 & 1 & 11 \\ 0 & -1 & 0 & -1 & -2 \\ 0 & 4 & 5 & 5 & 18\\ 0 & -1 & 3 & -1 & 4 \\ \end$

Теперь к строке с номером 3 прибавляем строку 2, умноженную на $4$, а к строке 4 прибавляем строку 2, умноженную на $-1$.

$\begin 1 & 3 & 2 & 1 & 11 \\ 0 & -1 & 0 & -1 & -2 \\ 0 & 0 & 5 & 1 & 10\\ 0 & 0 & 3 & 0 & 6 \\ \end$

Домножаем строку 2 на $-1$, а строку 4 делим на $3$ и ставим на место строки 3.

$\begin 1 & 3 & 2 & 1 & 11 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 2\\ 0 & 0 & 5 & 1 & 10 \\ \end$

Теперь прибавляем к последней строке предпоследнюю, домноженную на $-5$.

$\begin 1 & 3 & 2 & 1 & 11 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 2\\ 0 & 0 & 0 & 1 & 0 \\ \end$

Решение систем линейных уравнений методом Гаусса.Пусть нам требуется найти решение системы из n линейных уравнений с n неизвестными переменными
определитель основной матрицы которой отличен от нуля.

Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключается x1 из всех уравнений системы, начиная со второго, далее исключается x2из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменная xn. Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса. После завершения прямого хода метода Гаусса из последнего уравнения находитсяxn, с помощью этого значения из предпоследнего уравнения вычисляется xn-1, и так далее, из первого уравнения находится x1. Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса.

Кратко опишем алгоритм исключения неизвестных переменных.

Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-омууравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид

К такому же результату мы бы пришли, если бы выразили x1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

Будем считать, что (в противном случае мы переставим местами вторую строку с k-ой, где ). Приступаем к исключению неизвестной переменной x2 из всех уравнений, начиная с третьего.

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-омууравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид

где , а . Таким образом, переменная x2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x3, при этом действуем аналогично с отмеченной на рисунке частью системы

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем xn из последнего уравнения как , с помощью полученного значения xn находим xn-1 из предпоследнего уравнения, и так далее, находим x1 из первого уравнения.

Решите систему линейных уравнений методом Гаусса.

Исключим неизвестную переменную x1 из второго и третьего уравнения системы. Для этого к обеим частям второго и третьего уравнений прибавим соответствующие части первого уравнения, умноженные на и на соответственно:

Теперь из третьего уравнения исключим x2, прибавив к его левой и правой частям левую и правую части второго уравнения, умноженные на :

На этом прямой ход метода Гаусса закончен, начинаем обратный ход.

Из последнего уравнения полученной системы уравнений находим x3:

Из второго уравнения получаем .

Из первого уравнения находим оставшуюся неизвестную переменную и этим завершаем обратный ход метода Гаусса .

Решение систем линейных уравнений методом Гаусса.Пусть нам требуется найти решение системы из n линейных уравнений с n неизвестными переменными
определитель основной матрицы которой отличен от нуля.

Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключается x1 из всех уравнений системы, начиная со второго, далее исключается x2из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменная xn. Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса. После завершения прямого хода метода Гаусса из последнего уравнения находитсяxn, с помощью этого значения из предпоследнего уравнения вычисляется xn-1, и так далее, из первого уравнения находится x1. Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса.




Кратко опишем алгоритм исключения неизвестных переменных.

Будем считать, что , так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на , к третьему уравнению прибавим первое, умноженное на , и так далее, к n-омууравнению прибавим первое, умноженное на . Система уравнений после таких преобразований примет вид

К такому же результату мы бы пришли, если бы выразили x1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы, которая отмечена на рисунке

Будем считать, что (в противном случае мы переставим местами вторую строку с k-ой, где ). Приступаем к исключению неизвестной переменной x2 из всех уравнений, начиная с третьего.

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-омууравнению прибавим второе, умноженное на . Система уравнений после таких преобразований примет вид

где , а . Таким образом, переменная x2 исключена из всех уравнений, начиная с третьего.

Далее приступаем к исключению неизвестной x3, при этом действуем аналогично с отмеченной на рисунке частью системы

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем xn из последнего уравнения как , с помощью полученного значения xn находим xn-1 из предпоследнего уравнения, и так далее, находим x1 из первого уравнения.

Решите систему линейных уравнений методом Гаусса.

Исключим неизвестную переменную x1 из второго и третьего уравнения системы. Для этого к обеим частям второго и третьего уравнений прибавим соответствующие части первого уравнения, умноженные на и на соответственно:

Теперь из третьего уравнения исключим x2, прибавив к его левой и правой частям левую и правую части второго уравнения, умноженные на :

На этом прямой ход метода Гаусса закончен, начинаем обратный ход.

Из последнего уравнения полученной системы уравнений находим x3:

Из второго уравнения получаем .

Из первого уравнения находим оставшуюся неизвестную переменную и этим завершаем обратный ход метода Гаусса .

Читайте также: