Механическое движение материальная точка система отсчета кратко

Обновлено: 05.07.2024

Темы кодификатора ЕГЭ: механическое движение и его виды, относительность механического движения, скорость, ускорение.

Понятие движения является чрезвычайно общим и охватывает самый широкий круг явлений. В физике изучают различные виды движения. Простейшим из них является механическое движение. Оно изучается в механике.
Механическое движение — это изменение положение тела (или его частей) в пространстве относительно других тел с течением времени.

Если тело A меняет своё положение относительно тела B, то и тело B меняет своё положение относительно тела A. Иначе говоря, если тело A движется относительно тела B, то и тело B движется относительно тела A. Механическое движение является относительным — для описания движения необходимо указать, относительно какого тела оно рассматривается.

Так, например, можно говорить о движении поезда относительно земли, пассажира относительно поезда, мухи относительно пассажира и т. д. Понятия абсолютного движения и абсолютного покоя не имеют смысла: пассажир, покоящийся относительно поезда, будет двигаться с ним относительно столба на дороге, совершать вместе с Землёй суточное вращение и двигаться вокруг Солнца.
Тело, относительно которого рассматривается движение, называется телом отсчёта.

Основной задачей механики является определение положения движущегося тела в любой момент времени. Для решения этой задачи удобно представить движение тела как изменение координат его точек с течением времени. Чтобы измерить координаты, нужна система координат. Чтобы измерять время, нужны часы. Всё это вместе образует систему отсчёта.


Рисунок 1.

Вектор называется радиус-вектором точки . Координаты точки являются в то же время координатами её радиус-вектора .
Решение основной задачи механики для точки состоит в нахождении её координат как функций времени: .
В ряде случаев можно отвлечься от формы и размеров изучаемого объекта и рассматривать его просто как движущуюся точку.

Материальная точка — это тело, размерами которого можно пренебречь в условиях данной задачи.
Так, поезд можно считать материальной точкой при его движении из Москвы в Саратов, но не при посадке в него пассажиров. Землю можно считать материальной точкой при описании её движения вокруг Солнца, но не её суточного вращения вокруг собственной оси.

К характеристикам механического движения относятся траектория, путь, перемещение, скoрость и ускорение.

Траектория, путь, перемещение.

В дальнейшем, говоря о движущемся (или покоящемся) теле, мы всегда полагаем, что тело можно принять за материальную точку. Случаи, когда идеализацией материальной точки пользоваться нельзя, будут специально оговариваться.

Траектория — это линия, вдоль которой движется тело. На рис. 1 траекторией точки является синяя дуга, которую описывает в пространстве конец радиус-вектора .
Путь — это длина участка траектории, пройденного телом за данный промежуток времени.
Перемещение — это вектор, соединяющий начальное и конечное положение тела.
Предположим, что тело начало движение в точке и закончило движение в точке (рис. 2). Тогда путь, пройденный телом, это длина траектории . Перемещение тела — это вектор .


Рисунок 2.

Скорость и ускорение.

Рассмотрим движение тела в прямоугольной системе координат с базисом (рис. 3).


Рисунок 3.

Пусть в момент времени тело находилось в точке с радиус-вектором

Спустя малый промежуток времени тело оказалось в точке с
радиус-вектором

Мгновенная скорость в момент времени - это предел отношения перемещения к интервалу времени , когда величина этого интервала стремится к нулю; иными словами, скорость точки - это производная её радиус-вектора:

Из (2) и (1) получаем:

Коэффициенты при базисных векторах в пределе дают производные:

(Производная по времени традиционно обозначается точкой над буквой.) Итак,

Мы видим, что проекции вектора скорости на координатные оси являются производными координат точки:

Когда стремится к нулю, точка приближается к точке и вектор перемещения разворачивается в направлении касательной. Оказывается, что в пределе вектор направлен точно по касательной к траектории в точке . Это и показано на рис. 3.

Понятие ускорения вводится похожит образом. Пусть в момент времени скорость тела равна , а спустя малый интервал скорость стала равна .
Ускорение - это предел отношения изменения скорости к интервалу , когда этот интервал стремится к нулю; иначе говоря, ускорение - это производная скорости:

Ускорение, таким образом, есть "cкорость изменения скорости". Имеем:

Следовательно, проекции ускорения являются производными проекций скорости (и, стало быть, вторыми производными координат):

Закон сложения скоростей.

Пусть имеются две системы отсчёта. Одна из них связана с неподвижным телом отсчёта . Эту систему отсчёта обозначим и будем называть неподвижной.
Вторая система отсчёта, обозначаемая , связана с телом отсчёта , которое движется относительно тела со скоростью . Эту систему отсчёта называем движущейся. Дополнительно предполагаем, что координатные оси системы перемещаются параллельно самим себе (нет вращения системы координат), так что вектор можно считать скоростью движущейся системы относительно неподвижной.

Неподвижная система отсчёта обычно связана с землёй. Если поезд плавно едет по рельсам со скоростью , это система отсчёта, связанная с вагоном поезда, будет движущейся системой отсчёта .

Заметим, что скорость любой точки вагона (кроме вращающихся колёс!) равна . Если муха неподвижно сидит в некоторой точке вагона, то относительно земли муха движется со скоростью . Муха переносится вагоном, и потому скорость движущейся системы относительно неподвижной называется переносной скоростью.

Предположим теперь, что муха поползла по вагону. Скорость мухи относительно вагона (то есть в движущейся системе ) обозначается и называется относительной скоростью. Скорость мухи относительно земли (то есть в неподвижной системе ) обозначается и называется абсолютной скоростью.

Выясним, как связаны друг с другом эти три скорости - абсолютная, относительная и переносная.
На рис. 4 муха обозначена точкой .Далее:
- радиус-вектор точки в неподвижной системе ;
- радиус-вектор точки в движущейся системе ;
- радиус-вектор тела отсчёта в неподвижной системе .


Рисунок 4.

Как видно из рисунка,

Дифференцируя это равенство, получим:

(производная суммы равна сумме производных не только для случая скалярных функций, но и для векторов тоже).
Производная есть скорость точки в системе , то есть абсолютная скорость:

Аналогично, производная есть скорость точки в системе , то есть относительная скорость:


А что такое ? Это скорость точки в неподвижной системе, то есть - переносная скорость движущейся системы относительно неподвижной:

В результате из (3) получаем:

Закон сложения скоростей. Скорость точки относительно неподвижной системы отсчёта равна векторной сумме скорости движущейся системы и скорости точки относительно движущейся системы. Иными словами, абсолютная скорость есть сумма переносной и относительной скоростей.

Таким образом, если муха ползёт по движущемуся вагону, то скорость мухи относительно земли равна векторной сумме скорости вагона и скорости мухи относительно вагона. Интуитивно очевидный результат!

Виды механического движения.

Простейшими видами механического движения материальной точки являются равномерное и прямолинейное движения.
Движение называется равномерным, если модуль вектора скорости остаётся постоянным (направление скорости при этом может меняться).

Движение называется прямолинейным, если направление вектора скорости остаётся постоянным (а величина скорости при этом может меняться). Траекторией прямолинейного движения служит прямая линия, на которой лежит вектор скорости.
Например, автомобиль, который едет с постоянной скоростью по извилистой дороге, совершает равномерное (но не прямолинейное) движение. Автомобиль, разгоняющийся на прямом участке шоссе, совершает прямолинейное (но не равномерное) движение.

А вот если при движении тела остаются постоянными как модуль скорости, так и его направление, то движение называется равномерным прямолинейным.

В терминах вектора скорости можно дать более короткие определения данным типам движения:

    • равномерное движение
    • прямолинейное движение
    • равномерное прямолинейное движение

    Важнейшим частным случаем неравномерного движения является равноускоренное движение, при котором остаются постоянными модуль и направление вектора ускорения:

    Наряду с материальной точкой в механике рассматривается ещё одна идеализация - твёрдое тело.
    Твёрдое тело - это система материальных точек, расстояния между которыми не меняются со временем. Модель твёрдого тела применяется в тех случаях, когда мы не можем пренебречь размерами тела, но можем не принимать во внимание изменение размеров и формы тела в процессе движения.

    Простейшими видами механического движения твёрдого тела являются поступательное и вращательное движения.
    Движение тела называется поступательным, если всякая прямая, соединяющая две какие-либо точки тела, перемещается параллельно своему первоначальному направлению. При поступательном движении траектории всех точек тела идентичны: они получаются друг из друга параллельным сдвигом (рис. 5).


    Рисунок 5.

    Движение тела называется вращательным, если все его точки описывают окружности, лежащие в параллельных плоскостях. При этом центры данных окружностей лежат на одной прямой, которая перпендикулярна всем этим плоскостям и называется осью вращения.

    На рис. 6 изображён шар, вращающийся вокруг вертикальной оси. Так обычно рисуют земной шар в соответствующих задачах динамики.

    Кинематика. Механическое движение. Система отсчета. Материальная точка. Траектория. Путь

    Сегодня мы поговорим о систематическом изучении физики и первом ее разделе – механике. Физика изучает разные виды изменений или процессов, происходящих в природе, а какие процессы в первую очередь интересовали наших предков? Конечно, это процессы, связанные с движением. Им было интересно, долетит ли копье, которое они бросили, и попадет ли оно в мамонта; им было интересно, успеет ли гонец с важной вестью добежать до заката к соседней пещере. Все эти виды движения и вообще механическое движение как раз и изучает раздел, который называется механика.


    Мир полон движения. Мы часто говорим, что прошли какое-то количество километров, оплачиваем штрафы за превышение скорости и выбираем самый быстрый маршрут в навигаторе. Давайте учиться его характеризовать.

    О чем эта статья:

    Механическое движение

    Когда мы идем в школу или на работу, автобус подъезжает к остановке или сладкий корги гуляет с хозяином, мы имеем дело с механическим движением.

    Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.

    • тело отсчета
    • система координат
    • часы

    В совокупности эти три параметра образуют систему отсчета.

    В механике есть такой раздел — кинематика. Он отвечает на вопрос, как движется тело. Дальше мы с помощью кинематики опишем разные виды механического движения. Не переключайтесь 😉

    Прямолинейное равномерное движение

    Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.

    Например, если у вас ограничение скорости на дороге 60 км/ч, и у вас нет никаких препятствий на пути — скорее всего, вы будете двигаться прямолинейно равномерно.

    Мы можем охарактеризовать это движение следующими величинами.

    Скалярные величины (определяются только значением)

    • Время — в международной системе единиц СИ измеряется в секундах [с].
    • Путь — длина траектории (линии, по которой движется тело). В случае прямолинейного равномерного движения — длина отрезка [м].

    Векторные величины (определяются значением и направлением)

    • Скорость — характеризует быстроту перемещения и направление движения материальной точки [м/с].
    • Перемещение — вектор, проведенный из начальной точки пути в конечную [м].

    Проецирование векторов

    Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.

    Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.

    Скорость может определяться по вектору перемещения и пути, только это будут две разные характеристики.

    Скорость — это векторная физическая величина, которая характеризует быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.

    Скорость

    — скорость [м/с]
    — перемещение [м]
    — время [с]

    Средняя путевая скорость

    V ср.путевая = S/t

    V ср.путевая — средняя путевая скорость [м/с]
    S — путь [м]
    t — время [с]

    что такое пермещение

    Перемещение — это вектор, проведенный из начальной точки в конечную, а путь — это длина траектории.

    Задача

    Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.

    Решение:

    Возьмем формулу средней путевой скорости
    V ср.путевая = S/t

    Подставим значения:
    V ср.путевая = 210/2,5 = 84 км/ч

    Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч

    Уроки физики в онлайн-школе Skysmart не менее увлекательны, чем наши статьи!

    Уравнение движения

    Одной из основных задач механики является определение положения тела относительно других тел в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).

    Уравнение движения

    x(t) — искомая координата в момент времени t [м]
    x0 — начальная координата [м]
    vx — скорость тела в данный момент времени [м/с]
    t — момент времени [с]

    Уравнение движения при движении против оси

    x(t) — искомая координата в момент времени t [м]
    x0 — начальная координата [м]
    vx — скорость тела в данный момент времени [м/с]
    t — момент времени [с]

    Прямолинейное равноускоренное движение

    Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.

    Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.

    Итак, равноускоренное прямолинейное движение — это движение с ускорением по прямой линии. Движение, при котором скорость тела меняется на равную величину за равные промежутки времени.

    Уравнение движения и формула конечной скорости

    Основная задача механики не поменялась по ходу текста — определение положения тела относительно других тел в данный момент времени. У равноускоренного движения в уравнении появляется ускорение.

    Уравнение движения для равноускоренного движения

    x(t) — искомая координата в момент времени t [м]
    x0 — начальная координата [м]
    v0x — начальная скорость тела в [м/с]
    t — время [с]
    ax — ускорение [м/с 2 ]

    Для этого процесса также важно уметь находить конечную скорость — решать задачки так проще. Конечная скорость находится по формуле:

    Формула конечной скорости

    — конечная скорость тела [м/с]
    — начальная скорость тела [м/с]
    — время [с]
    — ускорение [м/с 2 ]

    Задача

    Найдите местоположение автобуса, который разогнался до скорости 60 км/ч за 3 минуты, через 0,5 часа после начала движения из начала координат.

    Решение:

    Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:

    Так как автобус двигался с места, . Значит

    Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.

    3 минуты = 3/60 часа = 1/20 часа = 0,05 часа

    Подставим значения:
    a = v/t = 60/0,05 = 1200 км/ч 2
    Теперь возьмем уравнение движения.
    x(t) = x0 + v0xt + axt 2 /2

    Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:

    Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.

    Подставим циферки:
    км

    Ответ: через полчаса координата автобуса будет равна 150 км.

    Движение по вертикали

    Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с 2 , а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).

    Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с 2 . В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с 2 .

    Все просто: для кого решается задача, тот и главный. В экзаменах берем g = 10 , в школе при решении задач (если в условии задачи не написано что-то другое) берем g = 9,8 м/с 2 .

    Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.

    Помните о том, что свободное падение — это не всегда движение по вертикали из состояния покоя. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.


    1. Механическим движением называют изменение положения тела в пространстве относительно других тел с течением времени. Существуют различные виды механического движения. Если все точки тела движутся одинаково и любая прямая, проведённая в теле, при его движении остаётся параллельной самой себе, то такое движение называется поступательным (рис. 1).

    Точки вращающегося колеса описывают окружности относительно оси этого колеса. Колесо как целое и все его точки совершают вращательное движение (рис. 2).

    Если тело, например шарик, подвешенный на нити, отклоняется от вертикального положения то в одну, то в другую сторону, то его движение является колебательным (рис. 3).



    Для определения положения тела в пространстве вводят систему координат, которую связывают с телом отсчёта. При рассмотрении движения тела вдоль прямой линии используют одномерную систему координат, т.е. с телом отсчёта связывают одну координатную ось, например ось ОХ (рис. 5).


    Если тело движется по криволинейной траектории, то система координат будет уже двухмерной, поскольку положение тела характеризуют две координаты X и Y (рис. 6). Таким движением является, например, движение мяча от удара футболиста или стрелы, выпущенной из лука.


    Если рассматривается движение тела в пространстве, например движение летящего самолёта, то система координат, связанная с телом отсчёта, будет состоять из трёх взаимно перпендикулярных координатных осей (OX, OY и OZ) (рис. 7).


    Поскольку при движении тела его положение в пространстве, т.е. его координаты, изменяются с течением времени, то необходим прибор (часы), который позволяет измерять время и определить, какому моменту времени соответствует та или иная координата.

    Таким образом, для определения положения тела в пространстве и изменения этого положения с течением времени необходимы тело отсчёта, связанная с ним система координат и способ измерения времени, т.е. часы, которые все вместе представляют собой систему отсчёта (рис. 7).

    3. Изучить движение тела — это значит определить, как изменяется его положение, т.е. координата, с течением времени.

    Если известно, как изменяется координата со временем, можно определить положение (координату) тела в любой момент времени.

    Основная задача механики состоит в определении положения (координаты) тела в любой момент времени.

    Чтобы указать, как изменяется положение тела с течением времени, нужно установить связь между величинами, характеризующими это движение, т.е. найти математическое описание движения или, иными словами, записать уравнение движения тела.

    Раздел механики, изучающий способы описания движения тел, называют кинематикой.

    4. Любое движущееся тело имеет определённые размеры, и его различные части занимают разные положения в пространстве. Возникает вопрос, как в таком случае определить положение тела в пространстве. В делом ряде случаев нет необходимости указывать положение каждой точки тела и для каждой точки записывать уравнение движения.

    Так, поскольку при поступательном движении все точки тела движутся одинаково, то нет необходимости описывать движение каждой точки тела.

    Движение каждой точки тела не нужно описывать и при решении таких задач, когда размерами тела можно пренебречь. Например, если нас интересует, с какой скоростью пловец проплывает свою дистанцию, то рассматривать движение каждой точки пловца нет необходимости. Если же необходимо определить действующую на мяч выталкивающую силу, то пренебречь размерами пловца уже нельзя. Если мы хотим вычислить время движения космического корабля от Земли до космической станции, то корабль можно считать единым целым и представить в виде некоторой точки. Если же рассчитывается режим стыковки корабля со станцией, то, представив корабль в виде точки, решить эту задачу невозможно.

    Таким образом, для решения ряда задач, связанных с движением тел, вводят понятие материальной точки.

    Материальной точкой называют тело, размерами которого можно пренебречь в условиях данной задачи.

    В приведённых выше примерах материальной точкой можно считать пловца при расчёте скорости его движения, космический корабль при определении времени его движения.

    Материальная точка — это модель реальных объектов, реальных тел. Считая тело материальной точкой, мы отвлекаемся от несущественных для решения конкретной задачи признаков, в частности, от размеров тела.

    5. При перемещении тело последовательно проходит точки пространства, соединив которые, можно получить линию. Эта линия, вдоль которой движется тело, называется траекторией. Траектория может быть видимой или невидимой. Видимую траекторию описывают трамвай при движении по рельсам, лыжник, скользя по лыжне, мел, которым пишут на доске. Траектория летящего самолёта в большинстве случаев невидима, невидимой является траектория ползущего насекомого.

    Траектория движения тела относительна: её форма зависит от выбора системы отсчёта. Так, траекторией точек обода колеса велосипеда, движущегося по прямой дороге, относительно оси колеса является окружность, а относительно Земли — винтовая линия (рис. 8 а, б).


    6. Одной из характеристик механического движения является путь, пройденный телом. Путём называют физическую величину, равную расстоянию, пройденному телом вдоль траектории.

    Если известны траектория тела, его начальное положение и пройденный им путь за время ​ \( t \) ​, то можно найти положение тела в момент времени ​ \( t \) ​. (рис. 9)


    Путь обозначают буквой ​ \( l \) ​ (иногда ​ \( s \) ​), основная единица пути 1 м: \( [\,\mathrm\,] \) = 1 м. Кратная единица пути — километр (1 км = 1000 м); дольные единицы — дециметр (1 дм = 0,1 м), сантиметр (1 см = 0,01 м) и миллиметр (1 мм = 0,001 м).

    Путь — величина относительная, значение пути зависит от выбора системы отсчёта. Так, путь пассажира, переходящего из конца движущегося автобуса к его передней двери, равен длине автобуса в системе отсчёта, связанной с автобусом. В системе отсчёта, связанной с Землёй, он равен сумме длины автобуса и пути, который проехал автобус относительно Земли.

    7. Если траектория движения тела неизвестна, то значение пути не позволит установить его положение в любой момент времени, поскольку направление движения тела не определено. В этом случае используют другую характеристику механического движения — перемещение.

    Перемещение — вектор, соединяющий начальное положение тела с его конечным положением (рис. 10)


    Перемещение — векторная физическая величина, имеет направление и числовое значение, обозначается ​ \( \overrightarrow \) ​. Единица перемещения \( [\,\mathrm\,] \) = 1 м.

    Зная начальное положение тела, его перемещение (направление и модуль) за некоторый промежуток времени, можно определить положение тела в конце этого промежутка времени.

    Следует иметь в виду, что перемещение в общем случае не совпадает с траекторией, а модуль перемещения — с пройденным путём. Это совпадение имеет место лишь при движении тела по прямолинейной траектории в одну сторону. Например, если пловец проплыл 100-метровую дистанцию в бассейне, длина дорожки которого 50 м, то его путь равен 100 м, а модуль перемещения равен нулю.

    Перемещение, так же как и путь, величина относительная, зависит от выбора системы отсчёта.

    При решении задач пользуются проекциями вектора перемещения. На рисунке 10 изображены система координат и вектор перемещения в этой системе координат.

    Координаты начала перемещения — \( x_0, y_0 \) ; координаты конца перемещения — \( x_1, y_1 \) . Проекция вектора перемещения на ось ОХ равна: ​ \( s_x=x_1-x_0 \) ​. Проекция вектора перемещения на ось OY равна: \( s_y=y_1-y_0 \) .

    Модуль вектора перемещения равен: ​ \( s=\sqrt \) ​.

    ПРИМЕРЫ ЗАДАНИЙ

    Часть 1

    1. В состав системы отсчёта входят

    1) только тело отсчёта
    2) только тело отсчёта и система координат
    3) только тело отсчёта и часы
    4) тело отсчёта, система координат, часы

    2. Относительной величиной является: А. Путь; Б. Перемещение. Правильный ответ

    1) только А
    2) только Б
    3) и А, и Б
    4) ни А, ни Б

    3. Пассажир метро стоит на движущемся вверх эскалаторе. Он неподвижен относительно

    1) пассажиров, стоящих на другом эскалаторе, движущемся вниз
    2) других пассажиров, стоящих на этом же эскалаторе
    3) пассажиров, шагающих вверх по этому же эскалатору
    4) светильников на баллюстраде эскалатора

    4. Относительно какого тела покоится автомобиль, движущийся по автостраде?

    1) относительно другого автомобиля, движущегося с такой же скоростью в противоположную сторону
    2) относительно другого автомобиля, движущегося с такой же скоростью в ту же сторону
    3) относительно светофора
    4) относительно идущего вдоль дороги пешехода

    5. Два автомобиля движутся с одинаковой скоростью 20 м/с относительно Земли в одном направлении. Чему равна скорость одного автомобиля в системе отсчёта, связанной с другим автомобилем?

    1) 0
    2) 20 м/с
    3) 40 м/с
    4) -20 м/с

    6. Два автомобиля движутся с одинаковой скоростью 15 м/с относительно Земли навстречу друг другу. Чему равна скорость одного автомобиля в системе отсчёта, связанной с другим автомобилем?

    1) 0
    2) 15 м/с
    3) 30 м/с
    4) -15 м/с

    7. Какова относительно Земли траектория точки лопасти винта летящего вертолёта?

    1) прямая
    2) окружность
    3) дуга
    4) винтовая линия

    8. Мяч падает с высоты 2 м и после удара о пол поднимается на высоту 1,3 м. Чему равны путь ​ \( l \) ​ и модуль перемещения ​ \( s \) ​ мяча за всё время движения?

    1) \( l \) = 3,3 м, ​ \( s \) ​ = 3,3 м
    2) \( l \) = 3,3 м, \( s \) = 0,7 м
    3) \( l \) = 0,7 м, \( s \) = 0,7 м
    4) \( l \) = 0,7 м, \( s \) = 3,3 м

    9. Решают две задачи. 1. Рассчитывают скорость движения поезда между двумя станциями. 2. Определяют силу трения, действующую на поезд. При решении какой задачи поезд можно считать материальной точкой?

    1) только первой
    2) только второй
    3) и первой, и второй
    4) ни первой, ни второй

    10. Точка обода колеса при движении велосипеда описывает половину окружности радиуса ​ \( R \) ​. Чему равны при этом путь ​ \( l \) ​ и модуль перемещения ​ \( s \) ​ точки обода?

    1) \( l=2R \) , ​ \( s=2R \) ​
    2) \( l=\pi R \) , \( s=2R \)
    3) \( l=2R \) , \( s=\pi R \)
    4) \( l=\pi R \) , \( s=\pi R \) .

    11. Установите соответствие между элементами знаний в левом столбце и понятиями в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами понятия правого столбца.

    ЭЛЕМЕНТ ЗНАНИЙ
    A) физическая величина
    Б) единица величины
    B) измерительный прибор

    ПОНЯТИЕ
    1) траектория
    2) путь
    3) секундомер
    4) километр
    5) система отсчёта

    12. Установите соответствие между величинами в левом столбце и характером величины в правом столбце. В таблице под номером элемента знаний левого столбца запишите соответствующий номер выбранного вами понятия правого столбца.

    ВЕЛИЧИНА
    A) путь
    Б) перемещение
    B) проекция перемещения

    ХАРАКТЕР ВЕЛИЧИНЫ
    1) скалярная
    2) векторная

    Часть 2

    13. Автомобиль свернул на дорогу, составляющую угол 30° с главной дорогой, и совершил по ней перемещение, модуль которого равен 20 м. Определите проекцию перемещения автомобиля на главную дорогу и на дорогу, перпендикулярную главной дороге.

    Читайте также: