Логические основы компьютера лекция кратко

Обновлено: 08.07.2024

Любая цифровая вычислительная машина состоит из логических схем - таких схем, которые могут находиться только в одном из двух возможных состояний - либо "логический ноль", либо "логическая единица". За логический 0 и логическую 1 можно принять любое выражение , в том числе и словесное, которое можно характеризовать как " истина " и " ложь ". В вычислительной технике логические 0 и 1 - это состояние электрических схем с определенными параметрами. Так, для логических элементов и схем, выполненных по технологии транзисторно-транзисторной логики (ТТЛ-схемы), логический 0 - это напряжение в диапазоне 0 … + 0,4 В, а логическая 1 - это напряжение в диапазоне + 2,4 … + 5 В [1]. Работа логических схем описывается посредством специального математического аппарата, который называется логической (булевой) алгеброй или алгеброй логики. Булева алгебра была разработана Джорджем Булем (1815 - 1864 гг.), она является основой всех методов упрощения булевых выражений.

Логические переменные и логические функции - это такие переменные и функции, которые могут принимать только два значения - либо логический 0, либо логическая 1.

Основные логические функции и элементы

Логический элемент - графическое представление элементарной логической функции.

Логическое умножение (конъюнкция) - функция И

Рассмотрим ключевую схему представленную на рис. 1.1,а. Примем за логический 0 [2]:

Таблица истинности - это таблица, содержащая все возможные комбинации входных логических переменных и соответствующие им значения логической функции.

Таблица истинности для логической схемы, представленной на рис. 1.1,б, состоит из 8 строк, поскольку данная схема имеет три входа - , и . Каждая из этих логических переменных может находиться либо в состоянии логического 0, либо логической 1. Соответственно количество сочетаний этих переменных равно =8" />
. Очевидно, что через сопротивление R ток протекает только тогда, когда замкнуты все три ключа - и , и , и . Отсюда еще одно название логического умножения - логический элемент И. В логических схемах этот элемент независимо от того, на какой элементной базе он реализован, обозначается так, как показано на рис. 1.1,в.

Правило логического умножения :если на вход логического элемента И подается хотя бы один логический 0, то на его выходе будет логический 0.

Уровень логического 0 является решающим для логического умножения .

В логических выражениях применяется несколько вариантов обозначения логического умножения. Так, для приведенного на рис. 1.1,в трёх-входового элемента И, логическое выражение можно представить в виде:

Логическое сложение (дизъюнкция) - функция ИЛИ

Рассмотрим ключевую схему, представленную на рис. 1.2,а. Таблица истинности для данной логической схемы (рис. 1.2,б) состоит из 4 строк, поскольку данная схема имеет два входа - и . Количество сочетаний этих переменных равно =4" />
. Очевидно, что через сопротивление R ток протекает тогда, когда замкнуты или , или . Отсюда еще одно название логического сложения - логическое ИЛИ. В логических схемах соответствующий логический элемент независимо от того, на какой элементной базе он реализован, обозначается так, как показано на рис. 1.2,в.

1

Правило логического сложения: если на вход логического элемента ИЛИ подается хотя бы одна логическая , то на его выходе будет логическая 1.

Для логического сложения решающим является уровень логической 1.

В логических выражениях применяется два варианта обозначения логического сложения. Так, для приведенного двух-входового элемента ИЛИ, логическое выражение можно представить в виде:

Логическое отрицание (инверсия) - функция НЕ

Рассмотрим ключевую схему, представленную на рис. 1.3,а. Таблица истинности для данной схемы (рис. 1.3,б) самая простая и состоит всего из 2 строк, поскольку она (единственная из всех логических элементов) имеет только один вход - . Количество вариантов для единственной логической переменной равно =2" />
. Очевидно, что через сопротивление R ток протекает ( ) тогда, когда не замкнут, т.е. . Еще одно название этой логической функции - отрицание, а соответствующий логический элемент называется инвертором. В логических схемах этот элемент независимо от того, на какой элементной базе он реализован, обозначается так, как показано на рис. 1.3,в. Поскольку он имеет только один вход, в его обозначении допустимым является и знак логического сложения, и знак логического умножения.

Правило инверсии: проходя через инвертор, сигнал меняет свое значение на противоположное.

В логических выражениях применяется единственный вариант обозначения инверсии:

F =\overline

К основным логическим элементам относятся еще два элемента, которые являются комбинацией элементов И, ИЛИ и НЕ: элемент И-НЕ и ИЛИ-НЕ.

Логическая функция и элемент И-НЕ

Данная функция производит логическое умножение значений входных сигналов, а затем инвертирует результат этого умножения. В логических схемах этот элемент независимо от того, на какой элементной базе он реализован, обозначается так, как показано на рис. 1.4,а. Таблица истинности приведена на рис. 1.4,б.

Если на вход логического элемента И-НЕ подается хотя бы один логический 0, то на его выходе будет логическая 1.

В логических выражениях применяются обозначения:

Логическая функция и элемент ИЛИ-НЕ

В логических схемах этот элемент независимо от того, на какой элементной базе он реализован, обозначается так, как показано на рис. 1.5,а. Таблица истинности приведена на рис. 1.5,б.

Если на вход логического элемента ИЛИ-НЕ подается хотя бы одна логическая 1, то на его выходе будет логический 0.В логических выражениях применяются обозначения:

Процессор выполняет арифметические и логические операции над двоичными кодами. Поэтому необходимо познакомиться с основными логическими элементами, лежащими в основе его построения. Начнем с алгебры логики. Алгеброй логики называется аппарат, который позволяет выполнять действия над высказываниями. Высказывание – это предложение, относительно которого имеет смысл говорить истинно оно или ложно. Высказывания могут быть представлены с помощью математических, химических и прочих знаков.

Алгебру логики называют также алгеброй Буля, или булевой алгеброй, по имени английского математика Джорджа Буля, разработавшего в XIX веке ее основные положения. В булевой алгебре высказывания принято обозначать прописными латинскими буквами: А, В, X, Y. В алгебре Буля введены три основные логические операции с высказываниями: сложение, умножение, отрицание. Определены аксиомы (законы) алгебры логики для выполнения этих операций. Действия, которые производятся над высказываниями, записываются в виде логических выражений.

Алгебра логики рассматривает высказывания не с точки зрения их содержания, а с точки зрения их истинности или ложности. И в этом смысле можно сказать, что высказывание может принимать только два значения: ИСТИНА (обозначим 1) или ЛОЖЬ (обозначим 0).

Логическое отрицание является одноместной операцией, так как в ней участвует одно высказывание. Логическое сложение и умножение — двуместные операции, в них участвует два высказывания. Существуют и другие операции, например операции следования и эквивалентности, правило работы которых можно вывести на основании основных операций.

· если исходное выражение истинно, то результат его отрицания будет ложным;

· если исходное выражение ложно, то результат его отрицания будет истинным.

A ┐A
ложь истина
истина ложь

A ┐A
0 1
1 0


2. Высказывание «Уравнение у = 4х + 3 в промежутке -2

A B A \/ B
0 0 0
0 1 1
1 0 1
1 1 1

Применяемые обозначения: А или В; A \/ В; A or В.

Примеры логического сложения.


3. Кто хоть однажды использовал елочную гирлянду с параллельным соединением лампочек, знает, что гирлянда будет светить до тех пор, пока цела хотя бы одна лампочка.

A B A /\ B
0 0 0
0 1 0
1 0 0
1 1 1

Примеры логического умножения.

Достижение цели возможно только при одновременной истинности двух предпосылок — умения и настойчивости.

Применяемые обозначения: если А, то В; А влечет В; if A then В; А –> В.

A B Если A, то B
0 0 1
0 1 1
1 0 0
1 1 1

Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Примеры операции следования.

· А — истинно, В — ложно (3-я строка таблицы истинности). Невозможно найти такие числа, которые делились бы на 9, но не делились на 3. Истинная предпосылка не может приводить к ложному результату импликации.

Применяемое обозначение: А ~ В.

A B А ~ В
0 0 1
0 1 0
1 0 0
1 1 1

Результат операции эквивалентность истинен только тогда, когда А и В одновременно истинны или одновременно ложны.

Примеры операции эквивалентности.

1. Что такое алгебра логики? Какие логические операции вы знаете?

2. Что такое высказывание? Приведите примеры высказываний.

3. Какие виды логических выражений вы знаете?

4. Что такое таблица истинности?

5. В чем отличие одноместной и двуместной операции?

6. Что такое логическое отрицание? Приведите свои примеры.

7. Что такое логическое сложение? Приведите свои примеры.

8. Что такое логическое умножение? Приведите свои примеры.

9. Что такое импликация? Приведите свои примеры.

10. Что такое эквивалентность? Приведите свои примеры.

Лекция №9.

ЛОГИЧЕСКИЕ ОСНОВЫ РАБОТЫ КОМПЬЮТЕРА.

Логические основы работы компьютера

Процессор выполняет арифметические и логические операции над двоичными кодами. Поэтому необходимо познакомиться с основными логическими элементами, лежащими в основе его построения. Начнем с алгебры логики. Алгеброй логики называется аппарат, который позволяет выполнять действия над высказываниями. Высказывание – это предложение, относительно которого имеет смысл говорить истинно оно или ложно. Высказывания могут быть представлены с помощью математических, химических и прочих знаков.

Алгебру логики называют также алгеброй Буля, или булевой алгеброй, по имени английского математика Джорджа Буля, разработавшего в XIX веке ее основные положения. В булевой алгебре высказывания принято обозначать прописными латинскими буквами: А, В, X, Y. В алгебре Буля введены три основные логические операции с высказываниями: сложение, умножение, отрицание. Определены аксиомы (законы) алгебры логики для выполнения этих операций. Действия, которые производятся над высказываниями, записываются в виде логических выражений.

Алгебра логики рассматривает высказывания не с точки зрения их содержания, а с точки зрения их истинности или ложности. И в этом смысле можно сказать, что высказывание может принимать только два значения: ИСТИНА (обозначим 1) или ЛОЖЬ (обозначим 0).

Логическое отрицание является одноместной операцией, так как в ней участвует одно высказывание. Логическое сложение и умножение — двуместные операции, в них участвует два высказывания. Существуют и другие операции, например операции следования и эквивалентности, правило работы которых можно вывести на основании основных операций.

· если исходное выражение истинно, то результат его отрицания будет ложным;

· если исходное выражение ложно, то результат его отрицания будет истинным.

A ┐A
ложь истина
истина ложь

A ┐A
0 1
1 0

2. Высказывание «Уравнение у = 4х + 3 в промежутке -2 В.

A B Если A, то B
0 0 1
0 1 1
1 0 0
1 1 1

Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Примеры операции следования.

· А — истинно, В — ложно (3-я строка таблицы истинности). Невозможно найти такие числа, которые делились бы на 9, но не делились на 3. Истинная предпосылка не может приводить к ложному результату импликации.

Применяемое обозначение: А ~ В.

A B А ~ В
0 0 1
0 1 0
1 0 0
1 1 1

Результат операции эквивалентность истинен только тогда, когда А и В одновременно истинны или одновременно ложны.

Примеры операции эквивалентности.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

МОУ «Средняя общеобразовательная школа № 6

Логические основы компьютера

Учебное пособие по информатике

для 10 класса

Содержание

§1. Основы логики…………………………………..…….………3

§ 2. Логические операции……………………………..…..….…..5

§ 3. Логические формулы. Таблица истинности логической формулы……………………………………………..…..…. ….….8

§ 4. Основные законы алгебры логики. Упрощение логических формул……………………. ……………. ………11

§ 5. Решение логических задач…………………………. …….13

§ 6. Логическая функция…………………………. ………..….18

§ 7. Логические основы ЭВМ. Базовые логические элементы………………………………..………………………….21

§ 8. Логические элементы компьютера. Триггер и сумматор. 25

Вопросы для самоконтроля…………..……. …………….29

§ 1. Основы логики.

В процессе обработки двоичной информации компьютер выполняет арифметические и логические операции. Поэтому для получения представлений об устройстве компьютера необходимо познакомится с основными логическими элементами, лежащими в основе построения компьютера. Начнем это знакомство с основных начальных понятий логики.

Логика – наука о законах и формах мышления.

Первые учения о формах и способах рассуждений возникли в странах Древнего Востока (Китай, Индия), но в основе современной логики лежат учения, созданные древнегреческими мыслителями. Аристотель впервые отделил логические формы речи от ее содержания, исследовал терминологию логики, подробно разобрал теорию умозаключений и доказательств, описал ряд логических операций, сформулировал основные законы мышления.

К основным понятиям логики относятся следующие.

Логическое высказывание — это любое повествовательное предложение, в отношении кoтopoгo можно однoзначнo сказать, истинно oнo или лoжнo.

Так, например, предложение "6 — четное число" следует считать высказыванием, так как оно истинное. Предложение "Рим — столица Франции" тоже высказывание, так как оно ложное.

Утверждение — это суждение, которое требуется доказать или опровергнуть.

Например, любая теорема – это утверждение, требующее доказательства.

Рассуждение — это последовательность высказываний или утверждений, определенным образом связанных друг с другом.

Например, ход доказательства какой-либо теоремы можно назвать рассуждением.

Умозаключение — это форма мышления, посредством которой из одного или нескольких суждений выводится новое суждение. Умозаключения бывают дедуктивные, индуктивные и по аналогии.

В индуктивных умозаключениях рассуждения ведутся от частного к общему. Например, установив, что отдельные металлы – железо, медь, цинк, алюминий и др. - обладают свойством электропроводности, мы делаем вывод, что все металлы электропроводны.

Умозаключение по аналогии переносит знание об одних объектах на другие. Например, химический состав Солнца и Земли сходен по многим показателям. Поэтому, когда на солнце обнаружили неизвестный еще на Земле химический элемент гелий, то по аналогии заключили, что такой элемент есть и на Земле.

Разумеется, не всякое предложение является логическим высказыванием. Высказываниями не являются, например, предложения "ученик десятого класса" и "информатика — интересный предмет". Первое предложение ничего не утверждает об ученике, а второе использует слишком неопределённое понятие "интересный предмет". Вопросительные и восклицательные предложения также не являются высказываниями, поскольку говорить об их истинности или ложности не имеет смысла.

Предложения типа "в городе A более миллиона жителей", "у него голубые глаза" не являются высказываниями, так как для выяснения их истинности или ложности нужны дополнительные сведения: о каком конкретно городе или человеке идет речь. Такие предложения называются логическими выражениями.

Логическое выражение — это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями.

Область знаний, которая изучает истинность или ложность высказываний, называется математической логикой.

Подобно тому, как для описания действий над переменными величинами был разработан раздел математики – алгебра, так и для обработки логических выражений в математической логике была создана алгебра высказываний или алгебра логики.

Алгебра логики — это раздел математической логики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними.

Алгебра логики возникла в середине ХIХ века в трудах английского математика Джорджа Буля. Ее создание представляло собой попытку решать традиционные логические задачи алгебраическими методами.

Алгебра логики рассматривает любое высказывание только с одной точки зрения — является ли оно истинным или ложным. Заметим, что зачастую трудно установить истинность высказывания. Так, например, высказывание "площадь поверхности Индийского океана равна 75 млн. кв. км" в одной ситуации можно посчитать ложным, а в другой — истинным. Ложным — так как указанное значение неточное и вообще не является постоянным. Истинным — если рассматривать его как некоторое приближение, приемлемое на практике.

§ 2. Логические операции.

Употребляемые в обычной речи слова и словосочетания "не", "и", "или", "если. то", "тогда и только тогда" и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.

Высказывания, образованные из других высказываний с помощью логических связок, называются составными. Высказывания, не являющиеся составными, называются элементарными.

Так, например, из элементарных высказываний "Петров — врач", "Петров — шахматист" при помощи связки "и" можно получить составное высказывание "Петров — врач и шахматист", понимаемое как "Петров — врач, хорошо играющий в шахматы".

При помощи связки "или" из этих же высказываний можно получить составное высказывание "Петров — врач или шахматист", понимаемое в алгебре логики как "Петров или врач, или шахматист, или и врач и шахматист одновременно".

Истинность или ложность получаемых таким образом составных высказываний зависит от истинности или ложности элементарных высказываний.

Чтобы обращаться к логическим высказываниям, им назначают имена. Пусть через А обозначено высказывание "Тимур поедет летом на море", а через В — высказывание "Тимур летом отправится в горы". Тогда составное высказывание "Тимур летом побывает и на море, и в горах" можно кратко записать как А и В. Здесь "и" — логическая связка, А, В — логические переменные, которые могут принимать только два значения — "истина" или "ложь", обозначаемые, соответственно, "1" и "0".

Операция, выражаемая связкой "и", называется конъюнкцией (лат. conjunctio — соединение) или логическим умножением и обозначается точкой " . " (может также обозначаться знаками  или &).

Высказывание А . В истинно тогда и только тогда, когда оба высказывания А и В истинны.

Например, высказывание "10 делится на 2 и 5 больше 3" истинно, а высказывания "10 делится на 2 и 5 не больше 3", "10 не делится на 2 и 5 больше 3", "10 не делится на 2 и 5 не больше 3" — ложны.

Операция, выражаемая связкой "или" (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio — разделение) или логическим сложением и обозначается знаком v (или плюсом).

Высказывание А v В ложно тогда и только тогда, когда оба высказывания А и В ложны.

Например, высказывание "10 не делится на 2 или 5 не больше 3" ложно, а высказывания "10 делится на 2 или 5 больше 3", "10 делится на 2 или 5 не больше 3", "10 не делится на 2 или 5 больше 3" — истинны.

Операция, выражаемая словом "не", называется логическим отрицанием или инверсией и обозначается чертой над высказыванием (или знаком  ).

Высказывание  А истинно, когда A ложно, и ложно, когда A истинно.

Например, "Луна — спутник Земли" (А) - истинно; "Луна — не спутник Земли" (  А) - ложно.

Операция, выражаемая связками "если . то", "из . следует", ". влечет . ", называется импликацией (лат. implico — тесно связаны) и обозначается знаком  .

Высказывание А  В ложно тогда и только тогда, когда А истинно, а В ложно.

Каким же образом импликация связывает два элементарных высказывания?

Покажем это на примере высказываний: "данный четырёхугольник — квадрат" (А) и "около данного четырёхугольника можно описать окружность"(В). Рассмотрим составное высказывание А  В, понимаемое как "если данный четырёхугольник квадрат, то около него можно описать окружность".

Есть три варианта, когда высказывание А  В истинно:

А истинно и В истинно, то есть данный четырёхугольник квадрат, и около него можно описать окружность;

А ложно и В истинно, то есть данный четырёхугольник не является квадратом, но около него можно описать окружность (разумеется, это справедливо не для всякого четырёхугольника);

A ложно и B ложно, то есть данный четырёхугольник не является квадратом, и около него нельзя описать окружность.

Ложен только один вариант, когда А истинно, а В ложно, то есть данный четырёхугольник является квадратом, но около него нельзя описать окружность.

В обычной речи связка "если . то" описывает причинно-следственную связь между высказываниями. Но в логических операциях смысл высказываний не учитывается. Рассматривается только их истинность или ложность. Поэтому не надо смущаться "бессмысленностью" импликаций, образованных высказываниями, совершенно не связанными по содержанию. Например, такими: "если президент США — демократ, то в Африке водятся жирафы", "если арбуз — ягода, то в бензоколонке есть бензин".

Операция, выражаемая связками "тогда и только тогда", "необходимо и достаточно", ". равносильно. ", называется эквиваленцией или двойной импликацией и обозначается знаком  или ~.

Высказывание А  В истинно тогда и только тогда, когда значения А и В совпадают.

Например, высказывания "24 делится на 6 тогда и только тогда, когда 24 делится на 3", "23 делится на 6 тогда и только тогда, когда 23 делится на 3" истинны, а высказывания "24 делится на 6 тогда и только тогда, когда 24 делится на 5", "21 делится на 6 тогда и только тогда, когда 21 делится на 3" ложны.

Высказывания А и В, образующие составное высказывание А  В, могут быть совершенно не связаны по содержанию, например: "три больше двух" (А), "пингвины живут в Антарктиде" (В). Отрицаниями этих высказываний являются высказывания "три не больше двух" (  А), "пингвины не живут в Антарктиде" (  В). Образованные из высказываний А и В составные высказывания A  B и  A   B истинны, а высказывания A   B и  A  B — ложны.

§ 3. Логические формулы. Таблица истинности логической

формулы.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой.

Определение логической формулы:

Всякая логическая переменная и символы "истина" ("1") и "ложь" ("0") — формулы.

Если А и В — формулы, то  A, А . В , А v В , А  B , А  В — формулы.

3. Никаких других формул в алгебре логики нет.

В п. 1 определены элементарные формулы; в п. 2 даны правила образования из любых данных формул новых формул.

В качестве примера рассмотрим высказывание "если я куплю яблоки или абрикосы, то приготовлю фруктовый пирог". Это высказывание формализуется в виде (A v B)  C. Такая же формула соответствует высказыванию "если Игорь знает английский или японский язык, то он получит место переводчика".

Как показывает анализ формулы (A v B)  C, при определённых сочетаниях значений переменных A, B и C она принимает значение "истина", а при некоторых других сочетаниях — значение "ложь". Такие формулы называются выполнимыми.

Некоторые формулы принимают значение "истина" при любых значениях истинности входящих в них переменных. Например, формула А v  А, соответствующая высказыванию "Этот треугольник прямоугольный или непрямоугольный" истинна и тогда, когда треугольник прямоугольный, и тогда, когда треугольник не прямоугольный. Такие формулы называются тождественно истинными формулами или тавтологиями. Высказывания, которые формализуются тавтологиями, называются логически истинными высказываниями.

В качестве другого примера рассмотрим формулу А .  А, которой соответствует, например, высказывание "Катя самая высокая девочка в классе, и в классе есть девочки выше Кати". Очевидно, что эта формула ложна, так как либо А, либо  А обязательно ложно. Такие формулы называются тождественно ложными формулами или противоречиями. Высказывания, которые формализуются противоречиями, называются логически ложными высказываниями.

Если две формулы А и В одновременно, то есть при одинаковых наборах значений входящих в них переменных, принимают одинаковые значения, то они называются равносильными.

Равносильность двух формул алгебры логики обозначается символом " justify"> Нами рассмотрены пять логических операций: отрицание, конъюнкция, дизъюнкция, импликация и эквиваленция.

Импликацию можно выразить через дизъюнкцию и отрицание:

А  В =  Аv В.

Эквиваленцию можно выразить через отрицание, дизъюнкцию и конъюнкцию:

А  В = (  А v В) . (  Вv А).

Таким образом, операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.

Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания ("не"), затем конъюнкция ("и"), после конъюнкции — дизъюнкция ("или") и в последнюю очередь — импликация.

Таблица истинности логической формулы – таблица, выражающая соответствие между всевозможными наборами значений переменных и значениями формулы.

Для формулы, которая содержит две переменные, таких наборов значений переменных всего четыре: (0, 0), (0, 1), (1, 0), (1, 1).

Если формула содержит три переменные, то таких наборов восемь: (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).

Количество наборов для формулы с четырьмя переменными равно шестнадцати и т.д. Т.е., если N – количество переменных, то 2 N – количество наборов значений переменных.

Тема: Логические основы компьютера.

1. Основы логики.

Логика – наука о законах и формах мышления.

Высказывание (суждение) – некоторое предложение, которое может быть истинно (верно) или ложно.

Утверждение – суждение, которое требуется доказать или опровергнуть.

Рассуждение – цепочка высказываний или утверждений, определенным образом связанных друг с другом.

Умозаключение – логическая операция, в результате которой из одного или нескольких данных суждений получается (выводится) новое суждение.

Логическое выражение – запись или устное утверждение, в которое, наряду с постоянными, обязательно входят переменные величины (объекты). В зависимости от значений этих переменных логическое выражение может принимать одно из двух возможных значений: ИСТИНА (логическая 1) или ЛОЖЬ (логический 0).

Сложное логическое выражение – логическое выражение, составленное из одного или нескольких простых (или сложных) логических выражений, связанных с помощью логических операций.

2. Логические элементы компьютера. Схемы логических элементов и их таблицы истинности.

Как при строительстве дома применяют различного рода типовые блоки – кирпичи, рамы, двери и т.п., так и при разработке компьютера используют типовые электронные схемы. Каждая схема состоит из определенного набора типовых электронных элементов.

Электронным элементом называется соединение различных деталей, в первую очередь – диодов и транзисторов, а также резисторов и конденсаторов, в виде электрической схемы, выполняющей некоторую простейшую функцию.

Электронный элемент, реализующий логическую функцию, называется логическим элементом.

Логический элемент компьютера – это часть электронной логической схемы, которая реализует элементарную логическую функцию.

Тысячи микроскопических электронных переключателей в кристалле интегральной схемы сгруппированы в системы, выполняющие логические операции, т.е. операции с предсказуемыми результатами, и арифметические операции над двоичными числами. Соединенные в различные комбинации, логические элементы дают возможность компьютеру решать задачи, используя язык двоичных кодов.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и др. (называемые также вентилями), а также триггер, регистр, сумматор.

Триггер – это логическая схема, способная сохранять одно из двух состояний до подачи нового сигнала на вход. Это, по сути, разряд памяти, способный хранить 1 бит информации.

Регистр – это устройство, состоящее из последовательности триггеров. Регистр предназначен для хранения многоразрядного двоичного числового кода, которым можно представлять и адрес, и команду, и данные.

Сумматор – это устройство, предназначенное для суммирования двоичных кодов.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Работу логических элементов описывают с помощью таблиц истинности.

Таблица истинности – это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значениями истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

Читайте также: