Логарифмическая функция определение кратко

Обновлено: 05.07.2024

Подлогарифмическое выражение - положительное. График не пересекает ось O y .

График пересекает ось O x в точке (1; 0).

Интервалы монотонности:

При a > 1 функция возрастает на интервале (0; +∞).

При 0 a Экстремумы функции: функция не имеет экстремумов.

Интервалы выпуклости / вогнутости:

При a > 1 график функции выпуклый на интервале (0; +∞).

При 0 a График логарифмической функции:

log a x = log a y => x = y , a > 0, a ≠ 1.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Заданная формулой f(x) = logax функция является логарифмической.

  • основание a должно быть строго положительным и, одновременно, не равным единице ( a>0, a≠1 );
  • подлогарифмическое выражение или аргумент функции – больше нуля ( x>0 ).

Свойства логарифмической функции

  1. Область определения: функция определена при всех неотрицательных x .
    D(y): x∈(0;+∞) .
  2. Область значений: все множество действительных чисел.
    E(y): y∈(−∞;+∞) .
  3. Функция не относится ни к четным, ни к нечетным.
  4. Значение любой логарифмической функции равно нулю при аргументе x=1 .
  5. Логарифмическая функция y = logax является обратной функцией к показательной x=a y .

График логарифмической функции

Непрерывную кривую логарифмической функции часто называется логарифмикой. Она не имеет экстремума и является:

Примечание: График логарифмической функции всегда пересекает ось абсцисс в точке с координатами (1;0).


Логарифм числа b по основанию a определяется как показатель степени, в которую надо возвести число a, чтобы получить число b. Обозначение: . Из определения следует, что записи и a x = b равносильны.

\log_2 8 = 3\,

Пример: , потому что 2 3 = 8 .

Содержание

Вещественный логарифм

a>0, a \ne 1, b>0

Логарифм вещественного числа logab имеет смысл при .

Наиболее широкое применение нашли следующие виды логарифмов.

y = \ln\, x

Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию, например: . Эта функция определена в правой части числовой прямой: x > 0 , непрерывна и дифференцируема там (см. рис. 1).

Свойства

Натуральные логарифмы

Для производной натурального логарифма справедлива простая формула:

(\ln x )

По этой причине в математических исследованиях преимущественно используют именно натуральные логарифмы. Они нередко появляются при решении дифференциальных уравнений, исследовании статистических зависимостей (например, распределения простых чисел) и т. п.

-1 < x \leqslant 1

При справедливо равенство

\ln(1+x) = x - \frac<x^2> + \frac - \frac + \dots
(1)

\ln 2 = 1 - \frac + \frac - \frac + \dots

Формула (1) не имеет большой практической ценности из-за того, что ряд очень медленно сходится и значение x ограничено весьма узким диапазоном. Однако нетрудно получить из неё более удобную формулу:

\ln \left(\frac<1+x>\right)=2\left(x+\frac+\frac+\frac+\dots\right)
(2)

Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа.

\ln x \approx 2</p>
<p>Связь с десятичным логарифмом: 30259\ \lg x;\ \ \lg x \approx 043429\ \ln x
.

Десятичные логарифмы

Логарифмы по основанию 10 (обозначение: lg a) до изобретения калькуляторов широко применялись для вычислений. Неравномерная шкала десятичных логарифмов обычно наносится и на логарифмические линейки. Подобная шкала широко используется в различных областях науки, например:

    — интенсивность звука (децибелы). — шкала яркости звёзд. — активность водородныхионов (pH). — шкала Рихтера. — нотная шкала, по отношению к частотам нотных звуков.

Логарифмическая шкала также широко применяется для выявления показателя степени в степенных зависимостях и коэффициента в показателе экспоненты. При этом график, построенный в логарифмическом масштабе по одной или двум осям, принимает вид прямой, более простой для исследования.

Комплексный логарифм

Многозначная функция

Для комплексных чисел логарифм определяется так же, как вещественный. Начнём с натурального логарифма, который обозначим \, w" width="" height="" />
и определим как множество всех комплексных чисел z таких, что e z = w . Комплексный логарифм существует для любого , и его вещественная часть определяется однозначно, в то время как мнимая имеет бесконечное множество значений. По этой причине его называют многозначной функцией. Если представить w в показательной форме:

w=r \cdot e^<i \varphi></p>
<p>
,

\mathrm<Ln></p>
<p>то логарифм \,w
находится по формуле:

\mathrm<Ln></p>
<p>\,w = \ <\ln r + i \left ( \varphi + 2 \pi k \right ),\,k\in\Z \>.

Здесь — вещественный логарифм, r = | w | , k — произвольное целое число. Значение, получаемое при k = 0 , называется главным значением комплексного натурального логарифма; принято брать в нём значение аргумента в интервале ( − π,π] . Соответствующая (уже однозначная) функция называется главной ветвью логарифма и обозначается . Иногда через также обозначают значение логарифма, лежащее не на главной ветви.

Из формулы следует:

Примеры (приведено главное значение логарифма):

Аналогично рассматриваются комплексные логарифмы с другим основанием. Следует, однако, быть осторожным при преобразованиях комплексных логарифмов, принимая во внимание, что они многозначны, и поэтому из равенства логарифмов каких-либо выражений не следует равенство этих выражений. Пример ошибочного рассуждения:

iπ = ln( − 1) = ln(( − i) 2 ) = 2ln( − i) = 2( − iπ / 2) = − iπ — явная нелепость.

\log_a<(b^p)></p>
<p>Отметим, что слева стоит главное значение логарифма, а справа — значение из нижележащей ветви ( <i>k</i> = − 1 ). Причина ошибки — неосторожное использования свойства = p~\log_a b
, которое, вообще говоря, подразумевает в комплексном случае весь бесконечный набор значений логарифма, а не только главное значение.

Аналитическое продолжение


Логарифм комплексного числа также может быть определён как аналитическое продолжение вещественного логарифма на всю комплексную плоскость. В явном виде продолжение логарифма вдоль кривой Γ , не проходящей через 0, можно осуществить по формуле (соответствующую функцию также обозначаем ln )

\ln z = \int\limits_\Gamma <dz \over z></p>
<p>

При этом, если Γ — простая кривая (без самопересечений), то для чисел, лежащих на ней, логарифмические тождества можно применять без опасений, например

\ln (wz) = \ln w + \ln z, ~\forall z,w\in\Gamma\colon zw\in \Gamma

Из формулы аналитического продолжения следует, что на любой ветви логарифма

\ln

Для любой окружности S , охватывающей точку 0 :

\oint\limits_S <dz \over z></p>
<p> = 2\pi i

Интеграл берётся в положительном направлении (против часовой стрелки). Это тождество лежит в основе теории вычетов.

Риманова поверхность

z=\infty

Комплексная логарифмическая функция — пример римановой поверхности; её мнимая часть (рис. 3) состоит из бесконечного числа ветвей, закрученных наподобие спирали. Эта поверхность односвязна; её единственный нуль (первого порядка) получается при z = 1 , особые точки: z = 0 и (точки разветвления бесконечного порядка).

Риманова поверхность логарифма является универсальной накрывающей для комплексной плоскости без точки 0 .

Исторический очерк

Вещественный логарифм

Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = -dy/M, где M — масштабный множитель, введенный для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000.

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом следующим образом:

\operatorname<LogNap></p>
<p>(x) = M \cdot (\ln(M) - \ln(x))

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма.

Например, LogNap(ab) = LogNap(a) + LogNap(b) — LogNap(1).

К сожалению, все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера.

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — незаменимый инструмент инженера.

Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

Комплексный логарифм

Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII—XVIII веков Лейбниц и Иоганн Бернулли, однако создать целостную теорию им не удалось — в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века — между Даламбером и Эйлером. Бернулли и Даламбер считали, что следует определить log(-x) = log(x). Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747—1751 годах и по существу ничем не отличается от современной.

Логарифмические таблицы


При переносе десятичной запятой в числе на n разрядов значение десятичного логарифма этого числа изменяется на n . Например, lg8314,63 = lg8,31463 + 3 . Отсюда следует, что достаточно составить таблицу десятичных логарифмов для чисел в диапазоне от 1 до 10.

Первые таблицы логарифмов опубликовал Джон Непер (1614), и они содержали только логарифмы тригонометрических функций, причём с ошибками. Независимо от него свои таблицы опубликовал Иост Бюрги, друг Кеплера (1620). В 1617 году оксфордский профессор математики Генри Бригс опубликовал таблицы, которые уже включали десятичные логарифмы самих чисел, от 1 до 1000, с 8 (позже — с 14) знаками. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега (1783) появилось только в 1857 году в Берлине (таблицы Бремивера).

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого. В СССР выпускались несколько сборников таблиц логарифмов.

    Четырехзначные математические таблицы. 44-е издание, М., 1973.

Таблицы Брадиса (1921) использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.

Логарифмической функцией называется функция вида y = log ax , где a > 0 и a ≠ 1.

График функции имеет следующий вид:

1

Рассмотрим свойства функции:

  1. Областью определения функции является множество всех положительных чисел D(y) = (0; +∞).
  2. Множеством значений функции являются все действительные числа R.
  3. Наименьшего и наибольшего значений функция не имеет.
  4. Функция не является ни нечетной, ни четной. Имеет общий вид.
  5. Функция непереодическая.
  6. Нули функции: функция пересекает координатную ось Ox в точке (1; 0).
  7. При a > 1 функция возрастает, при 0

Примеры решения задач

Задание 1.

В одной координатной плоскости построить графики функций:

Решение.

Для начала построим график функции y = log2x. Для этого найдем значения функции при x = , , , 1, 2, 4, 8.

x 1
2
3
1 2 4 8
y(x) -3 -2 -1 0 1 2 3

Отметим полученные точки на координатной плоскости, соединив их плавной линией.

4

Большему значению аргумента х соответствует и большее значение функции у. Функция y = log2x возрастает на всей области определения D(y)=R+, так как основание функции 2 > 1.

Подобным образом построим графики остальных функций.

5

Переменная х может принимать только положительные значения (D(y) = R+), при этом значение у может быть любым (E(y) = R).

Графики всех данных функций пересекают ось Оx в точке (0; 1), так как логарифм по любому основанию от единицы равен нулю. C осью Оy графики не пересекаются, так как логарифм по положительному основанию не может быть равен нулю.

Чем больше основание a (если a > 1) логарифмической функции y = logax, тем ближе расположена кривая к оси Оx.

Все данные функции являются возрастающими, так как большему значению аргумента соответствует и большее значение функции.

Задание 2.

В одной координатной плоскости построить графики функций:

Решение.

Для начала построим график функции . Для этого найдем значения функции при x = , , , 1, 2, 4, 8.

x 1
2
3
1 2 4 8
y(x) 3 2 1 0 -1 -2 -3

Отметим полученные точки на координатной плоскости, соединив их плавной линией.

10

6

Большему значению аргумента х соответствует меньшее значение функции y. Функция убывает на всей своей области определения: D(y) = R, так как основание функции 0

Подобным образом построим графики остальных функций.

12

Переменная х может принимать только положительные значения (D(y) = R+), при этом значение у может быть любым (E(y) = R).

Графики всех данных функций пересекают ось Оx в точке (0; 1), так как логарифм по любому основанию от единицы равен нулю. С осью Оy графики не пересекаются, так как логарифм по положительному основанию не может быть равен нулю.

Чем меньше основание a (если 0

Все данные функции являются убывающими, так как большему значению аргумента соответствует меньшее значение функции.

Задание 3.

Найти обасть определеления функции:

Решение

Область определения данной функции задается следующим неравенством:

Решим это линейное неравенство:

Логарифм определен, если подлогарифмическая функция является положительной, то есть искомая область определения: D(y): (x-1)(x+5) > 0.

Решим полученное уравнение методом интервалов. Для этого найдем нули каждого из сомножителей:

Наносим их на координатную прямую и определяем знак неравенства на каждом из полученных промежутков.

13

Читайте также: