Основные положения квантовой механики кратко

Обновлено: 25.06.2024

Квантовая механика часто противоречит нашим понятиям о здравом смысле. А всё потому, что здравый смысл подсказывает нам вещи, которые берутся из повседневного опыта, а в своем повседневном опыте нам приходится иметь дело только с крупными объектами и явлениями макромира, а на атомарном и субатомном уровне материальные частицы ведут себя совсем иначе. Принцип неопределенности Гейзенберга как раз и очерчивает смысл этих различий. В макромире мы можем достоверно и однозначно определить местонахождение (пространственные координаты) любого объекта (например, этой книги). Не важно, используем ли мы линейку, радар, сонар, фотометрию или любой другой метод измерения, результаты замеров будут объективными и не зависящими от положения книги (конечно, при условии вашей аккуратности в процессе замера). То есть некоторая неопределенность и неточность возможны — но лишь в силу ограниченных возможностей измерительных приборов и погрешностей наблюдения. Чтобы получить более точные и достоверные результаты, нам достаточно взять более точный измерительный прибор и постараться воспользоваться им без ошибок.

Теперь если вместо координат книги нам нужно измерить координаты микрочастицы, например электрона, то мы уже не можем пренебречь взаимодействиями между измерительным прибором и объектом измерения. Сила воздействия линейки или другого измерительного прибора на книгу пренебрежимо мала и не сказывается на результатах измерений, но чтобы измерить пространственные координаты электрона, нам нужно запустить в его направлении фотон, другой электрон или другую элементарную частицу сопоставимых с измеряемым электроном энергий и замерить ее отклонение. Но при этом сам электрон, являющийся объектом измерения, в результате взаимодействия с этой частицей изменит свое положение в пространстве. Таким образом, сам акт замера приводит к изменению положения измеряемого объекта, и неточность измерения обусловливается самим фактом проведения измерения, а не степенью точности используемого измерительного прибора. Вот с какой ситуацией мы вынуждены мириться в микромире. Измерение невозможно без взаимодействия, а взаимодействие — без воздействия на измеряемый объект и, как следствие, искажения результатов измерения.

О результатах этого взаимодействия можно утверждать лишь одно:

или, говоря математическим языком:

где Δx и Δv — неопределенность пространственного положения и скорости частицы соответственно, h — постоянная Планка, а m — масса частицы.

Соответственно, неопределенность возникает при определении пространственных координат не только электрона, но и любой субатомной частицы, да и не только координат, но и других свойств частиц — таких как скорость. Аналогичным образом определяется и погрешность измерения любой такой пары взаимно увязанных характеристик частиц (пример другой пары — энергия, излучаемая электроном, и отрезок времени, за который она испускается). То есть если нам, например, удалось с высокой точностью измерили пространственное положение электрона, значит мы в этот же момент времени имеем лишь самое смутное представление о его скорости, и наоборот. Естественно, при реальных измерениях до этих двух крайностей не доходит, и ситуация всегда находится где-то посередине. То есть если нам удалось, например, измерить положение электрона с точностью до 10 –6 м, значит мы одновременно можем измерить его скорость, в лучшем случае, с точностью до 650 м/с.

Картина квантовых событий в микромире, рисуемая уравнением Шрёдингера, такова, что частицы уподобляются отдельным приливным волнам, распространяющимся по поверхности океана-пространства. Со временем гребень волны (соответствующий пику вероятности нахождения частицы, например электрона, в пространстве) перемещается в пространстве в соответствии с волновой функцией, являющейся решением этого дифференциального уравнения. Соответственно, то, что нам традиционно представляется частицей, на квантовом уровне проявляет ряд характеристик, свойственных волнам.

Согласование волновых и корпускулярных свойств объектов микромира (см. Соотношение де Бройля) стало возможным после того, как физики условились считать объекты квантового мира не частицами и не волнами, а чем-то промежуточным и обладающим как волновыми, так и корпускулярными свойствами; в ньютоновской механике аналогов таким объектам нет. Хотя и при таком решении парадоксов в квантовой механике всё равно хватает (см. Теорема Белла), лучшей модели для описания процессов, происходящих в микромире, никто до сих пор не предложил.


Квантовая механика — это раздел современной физики, который активно изучается в настоящее время. Познакомимся с основными определениями, понятиями, положениями и представлениями этого раздела подробнее.

Что такое квантовая механика

Квантовой механикой называют раздел теоретической физики, который составляет часть корпускулярной теории и описывает все физические явления в окружающем мире на уровне мельчайших частиц (корпускулов или квантов).

История создания, область применимости

Помимо этого, он выдвинул гипотезу, что любая энергия способна поглощаться или испускаться лишь дискретными порциями (т.е квантами). Но данная гипотеза, по мнению Планка, действительна только для элементарных частиц. Вышеупомянутые порции состоят из некоторого целого числа квантов, обладающих энергией, эта энергия прямо пропорциональна частоте v и коэффициенту пропорциональности, который определен по формуле:

где \(\epsilon\) — энергия излучения, \(h\) — постоянная Планка, а \(\nu\) — частота.

Планк

Гипотеза Планка использовалась Альбертом Эйнштейном, когда тот объяснял явление фотоэффекта. Он предположил, что свет — это кванты. В наше время кванты называют фотонами. По-другому, свет — это фотоны. Корпускулярная теория развивалась усилиями таких ученых, как Нильс Бор, Луи де Бройль, Эрвин Шредингер и Вернер Гейзенберг.

Квантовая механика развивается и сегодня. Исследуется квантовый хаос, квантовая информатика, что служит постоянным дополнением к знаниям о корпускулярной механике. Тем не менее современная физика не может ответить на все, стоящие перед ней вопросы.

Основные понятия и формализм квантовой механики

Корпускулярная механика на данный момент делится на два раздела:

К основным понятиям корпускулярной кинематики относятся понятия:

  1. Квантовой наблюдаемой.
  2. Квантового состояния.

К корпускулярной динамике относятся следующие основные понятия:

  • уравнение Шредингера;
  • уравнение Гейзенберга;
  • уравнение Паули;
  • уравнение Линдблада;
  • уравнение фон Неймана.

Одним из самых важных открытий в квантовой механике, по мнению многих физиков-теоретиков, является корпускулярно-волновой дуализм. После появлялись новые теории, совершались новые открытия, но основой все равно остается корпускулярно-волновой дуализм, о котором подробнее рассказано ниже.

Корпускулярно-волновой дуализм

По-другому явление называется квантово-волновым дуализмом. Такое название получило свойство материальных тел микроскопических размеров при разных условиях проявлять свойства как классических волн, так и классических частиц. Одним из примеров дуализма выступает свет, который одновременно несет в себе свойства волн и свойства частицы. Принцип дуализма справедлив и для объектов крупнее фотонов. Однако волновые свойства проявляются меньше при увеличении самого объекта исследования.

Теория квантово-волнового дуализма использовалась для интерпретации окружающих явлений, которые наблюдались в микромире. Дуализм не может быть объяснен в классической физике, поэтому изучается только в квантовой механике.

Вероятностный характер результатов измерений в корпускулярной механике

Вероятностный характер квантовой механики вытекает из самого акта измерения. Главная идея заключена в том, что при взаимодействии корпускулярной системы с измерительными приборами, их волновые функции становятся запутанными и исходная квантовая система прекращает свое существование как самостоятельная сущность.

Поэтому квантовая механика не дает определенных значений, а делает предсказание, ориентируясь на распределение вероятностей (описывает вероятность получения возможных результатов, зависящих от измерения физической величины).

Принцип соответствия

В физике принципом соответствия называют утверждение, которое гласит, что та или иная новая теория в науке обязана включать в себя старую, а результаты последней воспринимать как частный случай.

В квантовой механике принцип соответствия — это принцип Нильса Бора, который он ввел в 1923 году. Согласно данному принципу, поведение системы корпускулярной механики стремится к физике Ньютона (то есть классической), но в пределах больших квантовых чисел.

Правила из раздела корпускулярной механики используются для описания атомов или элементарных частиц, однако некоторые системы в микронаблюдении возможно описать и с помощью классической физики, электродинамики или механики. Но есть макроскопические системы, которые демонстрируют конкретно квантовое поведение, к ним можно отнести сверхпроводники или сверхтекучий гелий в жидком агрегатном состоянии. Один из фрагментов принципа Бора заявляет, что классическая физика обязана постепенно приблизиться к квантовой, так как некоторые системы огромны.

Существует понятие классического предела в физике, которое означает условия, при которых классическая и квантовая механики совпадают. Нильс Бор выставил следующий критерий для данного предела: если квантовые числа, которые описывают систему, являются большими, переход осуществляется, означая либо возбуждение вышеупомянутой системы до больших квантовых чисел, либо тот факт, что система описана большим набором чисел кванта.

Возможен вариант осуществления обоих случаев. На сегодняшний день существует формулировка современнее, которая гласит, что при больших значениях чисел классическое приближение справедливо.

Принцип соответствия служит неким инструментом для физиков, помогающим выбрать корпускулярную теорию, которая будет соответствовать действительности. Таким образом, данный принцип ограничивает выбор теми пространствами, которые воспроизводят классическую механику в классическом пределе.

Формулировка Дирака

Принцип суперпозиции состояний и вероятностная интерпретация

Принцип суперпозиций

Туннельный эффект и резонансное рассеяние

Туннельным эффектом называется преодоление микрочастицей потенциального барьера в случае, когда ее полная энергия меньше высоты барьера. Туннельный эффект — явление исключительно корпускулярной природы, которое противоречит классической механике.

В волновой оптике аналогом туннельного эффекта может служить проникновение световой волны внутрь отражающей среды в тех условиях, когда происходит полное внутреннее отражение с точки зрения геометрической оптики. Явление туннелирования лежит в основе многих важных процессов в молекулярной и атомной физике.

Туннельный эффект

Спин, тождественность частиц и обменное взаимодействие

Спин

Взаимодействие между магнитными моментами носит чисто квантовый характер и называется обменным взаимодействием. Для ансамбля одинаковых квантовых частиц выполняется принцип тождественности — они должны быть неразличимы в силу принципа неопределенности.

Если имеются всего две частицы, то состояния системы, получающиеся друг из друга просто перестановкой обеих частиц, должны быть физически полностью эквивалентны. Это значит, что в результате такой перестановки новая функция системы может измениться только на несущественный фазовый множитель. Поэтому есть всего две возможности:

  1. Волновая функция или симметрична (статистика Бозе).
  2. Или антисимметрична (статистика Ферми).

Корпускулярная физика — наиболее сложный для понимания и изучения раздел. Если столкнулись с трудностями в ее освоении, обязательно обращайтесь за помощью на образовательный ресурс Феникс.Хелп.

Двойственность свойств микрообъектов обусловливает невозможность описания их движения и взаимодействия в рамках классической механики. Потребовалась разработка новой механической теории - квантовой механики, основные принципы и законы которой установлены в конце 20-х годов ХХ в.

Соотношение неопределенностей связывает также энергию (Е) и время (t):

. (4.8) Данное соотношение объясняет возможность виртуального состояния микрообъектов.

Эти соотношения свидетельствуют об объективно существующих ограничениях в возможности описания микрообъектов на языке классической механики.

Принцип дополнительности Н. Бора. Волновая функция. Н. Бор показал, что корпускулярная и волновая модели микрообъектов никогда не предстают одновременно: получение информации об одних характеристиках микрообъекта неизбежно связано с потерей информации о других, дополнительных к первым. В зависимости от эксперимента микрообъект проявляет либо свою корпускулярную природу, либо волновую, но не обе сразу. Эти две взаимоисключающие стороны природы микрообъекта следует рассматривать как диалектически дополнительные (единство противоположностей).

Особые свойства микрочастиц. Развитие релятивистской квантовой механики, описывающей движение микрообъектов со скоростями, сравнимыми со скоростью света, уже в конце двадцатых годов, привело к новым открытиям. В 1927 г. английский ученый Поль Дирак установил возможность существования у всех микрочастиц двойников – античастиц. Античастицы отличаются от частиц знаком электрического (или другого) заряда. Античастица электрона (е - ) – позитрон(е + ), имеющая положительный электрический заряд, была открыта в 1932 г. Взаимодействие частицы и античастицы приводит к аннигиляции (исчезновению) обеих и превращению их в кванты электромагнитного излучения:




е - + е + → 2γ (4.9)

Возможна и обратная реакция:

2γе - + е + (4.10)

Однако она становится реальной только в силовом поле ядра атома. В отсутствии такого поля электрон и позитрон появляются как виртуальные частицы.

В микро-мире могут возникать виртуальные частицы. В соответствии с принципом неопределенности в течение некоторого времени:

возможно существование частиц с полной энергией ΔЕ = 2 . Если это время слишком мало (меньше, чем 10 -22 с), частицы невозможно экспериментально обнаружить, они виртуальны. Виртуальными являются все переносчики фундаментальных взаимодействий, фигурирующие в модели обменного взаимодействия.

Описание взаимодействия микрообъектов в настоящее время реализуется на основе развивающейся квантовой теории взаимодействий, которая является ядром всей современной физики. Она дает общий подход ко всем известным типам взаимодействий.

Физический вакуум. Одним из важнейших результатов такого подхода является представление о физическом вакууме.

Взаимодействие микрообъектов с вакуумом по современным воззрениям свидетельствует о целостности мира, о несведении его к отдельным элементам. Если согласно классической науке мир рассматривался как совокупность независимых отдельных частей, взаимодействующих по детерминистским законам, то в квантовой теории ни один объект не может быть полностью индивидуализирован. По словам Борна, Вселенная является неделимым целым, отдельные частицы которого имеют смысл абстракций или приближений, справедливых лишь в классическом пределе. Во второй половине XX в. основное внимание уделяется созданию единой квантово-релятивистской теории структуры материи и фундаментальных взаимодействий.

Взаимосвязь классической и квантовой механики. Согласно существующему в науке принципу соответствия, разные, но верные теории, относящиеся к одному кругу явлений, должны быть взаимосвязаны. В наличии такой связи мы убедились на примере релятивисткой и классической механики: вторая имеет более узкие рамки применимости и является частным случаем первой при выполнении условия (2.14). Аналогичная связь имеет место и в случае квантовой механики. Если произведение энергии объекта и времени соответствующего процесса слишком велико по сравнению с постоянной Планка

волновые свойства объектов не проявляются, и соотношения квантовой механики переходят в формулы классической механики, которая является ее частным случаем. Наиболее общей теорией, имеющей самые большие границы применимости, является релятивистская квантовая механика. Выше названные три теории - ее частные случаи, которые реализуются при следующих условиях: при выполнении (2.14) – квантовая механика, при выполнении (4.11) – релятивистская, при выполнении обоих условий одновременно – классическая.

Двойственность свойств микрообъектов обусловливает невозможность описания их движения и взаимодействия в рамках классической механики. Потребовалась разработка новой механической теории - квантовой механики, основные принципы и законы которой установлены в конце 20-х годов ХХ в.

Соотношение неопределенностей связывает также энергию (Е) и время (t):

. (4.8) Данное соотношение объясняет возможность виртуального состояния микрообъектов.

Эти соотношения свидетельствуют об объективно существующих ограничениях в возможности описания микрообъектов на языке классической механики.

Принцип дополнительности Н. Бора. Волновая функция. Н. Бор показал, что корпускулярная и волновая модели микрообъектов никогда не предстают одновременно: получение информации об одних характеристиках микрообъекта неизбежно связано с потерей информации о других, дополнительных к первым. В зависимости от эксперимента микрообъект проявляет либо свою корпускулярную природу, либо волновую, но не обе сразу. Эти две взаимоисключающие стороны природы микрообъекта следует рассматривать как диалектически дополнительные (единство противоположностей).

Особые свойства микрочастиц. Развитие релятивистской квантовой механики, описывающей движение микрообъектов со скоростями, сравнимыми со скоростью света, уже в конце двадцатых годов, привело к новым открытиям. В 1927 г. английский ученый Поль Дирак установил возможность существования у всех микрочастиц двойников – античастиц. Античастицы отличаются от частиц знаком электрического (или другого) заряда. Античастица электрона (е - ) – позитрон(е + ), имеющая положительный электрический заряд, была открыта в 1932 г. Взаимодействие частицы и античастицы приводит к аннигиляции (исчезновению) обеих и превращению их в кванты электромагнитного излучения:

е - + е + → 2γ (4.9)

Возможна и обратная реакция:

2γе - + е + (4.10)

Однако она становится реальной только в силовом поле ядра атома. В отсутствии такого поля электрон и позитрон появляются как виртуальные частицы.

В микро-мире могут возникать виртуальные частицы. В соответствии с принципом неопределенности в течение некоторого времени:

возможно существование частиц с полной энергией ΔЕ = 2 . Если это время слишком мало (меньше, чем 10 -22 с), частицы невозможно экспериментально обнаружить, они виртуальны. Виртуальными являются все переносчики фундаментальных взаимодействий, фигурирующие в модели обменного взаимодействия.

Описание взаимодействия микрообъектов в настоящее время реализуется на основе развивающейся квантовой теории взаимодействий, которая является ядром всей современной физики. Она дает общий подход ко всем известным типам взаимодействий.

Физический вакуум. Одним из важнейших результатов такого подхода является представление о физическом вакууме.

Взаимодействие микрообъектов с вакуумом по современным воззрениям свидетельствует о целостности мира, о несведении его к отдельным элементам. Если согласно классической науке мир рассматривался как совокупность независимых отдельных частей, взаимодействующих по детерминистским законам, то в квантовой теории ни один объект не может быть полностью индивидуализирован. По словам Борна, Вселенная является неделимым целым, отдельные частицы которого имеют смысл абстракций или приближений, справедливых лишь в классическом пределе. Во второй половине XX в. основное внимание уделяется созданию единой квантово-релятивистской теории структуры материи и фундаментальных взаимодействий.

Взаимосвязь классической и квантовой механики. Согласно существующему в науке принципу соответствия, разные, но верные теории, относящиеся к одному кругу явлений, должны быть взаимосвязаны. В наличии такой связи мы убедились на примере релятивисткой и классической механики: вторая имеет более узкие рамки применимости и является частным случаем первой при выполнении условия (2.14). Аналогичная связь имеет место и в случае квантовой механики. Если произведение энергии объекта и времени соответствующего процесса слишком велико по сравнению с постоянной Планка

волновые свойства объектов не проявляются, и соотношения квантовой механики переходят в формулы классической механики, которая является ее частным случаем. Наиболее общей теорией, имеющей самые большие границы применимости, является релятивистская квантовая механика. Выше названные три теории - ее частные случаи, которые реализуются при следующих условиях: при выполнении (2.14) – квантовая механика, при выполнении (4.11) – релятивистская, при выполнении обоих условий одновременно – классическая.

КВА́НТОВАЯ МЕХА́НИКА, раз­дел тео­ре­тич. фи­зи­ки, пред­став­ляю­щий со­бой сис­те­му по­ня­тий и ма­те­ма­тич. ап­па­рат, не­об­хо­ди­мые для опи­са­ния фи­зич. яв­ле­ний, обу­слов­лен­ных су­ще­ст­во­ва­ни­ем в при­ро­де наи­мень­ше­го кван­та дей­ст­вия $h$ ( План­ка по­сто­ян­ной ). Чис­лен­ное зна­че­ние $h=$ 6,62607·10 –34 Дж · с (и дру­гое, час­то ис­поль­зуе­мое зна­че­ние $\hbar=h/2\pi=$ 1,05457 · 10 –34 Дж · с) чрез­вы­чай­но ма­ло, но тот факт, что оно ко­неч­но, прин­ци­пи­аль­но от­ли­ча­ет кван­то­вые яв­ле­ния от всех дру­гих и оп­ре­де­ля­ет их осн. осо­бен­но­сти. К кван­то­вым яв­ле­ни­ям от­но­сят­ся про­цес­сы из­лу­че­ния, яв­ле­ния атом­ной и ядер­ной фи­зи­ки, фи­зи­ки кон­ден­си­ров. сред, хи­мич. связь и др.

Читайте также: