Культивирование водорослей и кратко опишите методику приготовления жидких питательных сред

Обновлено: 04.07.2024

Среда — это твердая или жидкая субстанция, содержащая питательные вещества для культивирования (роста) микроорганизмов, а также клеток животных или тканей растений. Культурой называют совокупность микробных клеток, растущих на среде (или в среде).

Твердые и жидкие среды

Микроорганизмы можно выращивать на твердой среде или в жидкой среде (бульоне).

Твердые среды

Твердые среды очень удобны для выращивания бактерий и грибов; их готовят путем смешивания жидкого питательного раствора с гелеобразующим компонентом (обычно агаром) в концентрации 1—2%; при этом получается питательный агар. Агар представляет собой экстракт из красных водорослей. В концентрации 1—2% агар плавится при 90—100 °С и застывает примерно при 44 °С. Агар можно предварительно простерилизовать нагреванием и затем остудить. Микроорганизмы рассевают по поверхности агара после его застывания, либо, если они выдерживают температуру около 44 °С, добавляют к агару непосредственно перед застыванием; тогда они равномерно распределяются по всей среде. Агар прозрачен и, будучи сложным полисахаридом, устойчив к разрушению микроорганизмами; это относится к его преимуществам. Примеры использования твердых и жидких сред будут приведены в последующих разделах. На твердых средах иногда выращивают и культуры тканей растений.

Жидкие среды

Жидкие среды часто используют для изучения роста популяции. Клетки помещают в пробирку, закрытую ватной пробкой или металлической крышкой, или в стеклянный флакон с завинчивающейся крышкой, такой как универсальный сосуд Маккартни, в который помещается около 25 см3 среды — как раз для заливки одной чашки. Перед тем, как среда будет использована для выращивания культуры клеток, она должна быть простерилизована. Добавление небольшого количества клеток к среде называется посевом (или инокуляцией). После инокуляции среду оставляют в термостате при оптимальной для роста данного микроорганизма температуре. Растущие клетки распределяются в среде случайным образом.

При использовании больших объемов среды культуру перемешивают, чтобы предотвратить оседание клеток. Для этой цели применяют механические встряхиватели или магнитные мешалки. Кроме того, пропускают стерильный воздух через среду, чтобы обеспечить поддержание оптимальной концентрации кислорода по всей среде. Для фильтрации воздуха и его стерилизации используют имеющиеся в продаже фильтры либо фильтры из стеклянной или неабсорбирующей хлопковой ваты. Воздух поступает через распылитель — устройство с множеством маленьких отверстий, позволяющее получать идеальные пузырьки. Его крепят на конце трубки, идущей ко дну сосуда с культурой. Жидкие культуры можно выращивать в виде периодических культур или непрерывных культур.

питательные среды

Обогащенные и селективные среды

Селективная среда — это среда, в которую добавляются вещества, подавляющие рост всех организмов, за исключением одного или нескольких. Примером может служить добавление пенициллина к культуре с целью отбора устойчивых к нему организмов, или отбор гибридных клеток в процессе производства моноклональных антител.

Индикаторные среды

Готовые среды

Сухие среды, содержащие агар и все необходимые компоненты, имеются в продаже. Обычно их выдерживают 15 мин в воде и затем, чтобы простерилизовать, автоклавируют в колбах или флаконах в течение 15 мин при 121 °С. В процессе автоклавирования среда перемешивается и растворяется. Внутри автоклава под давлением кипит вода. Автоклав закрывается крышкой с защитным клапаном, выпускающим пар, когда достигнуто необходимое давление. Чем выше давление, тем выше температура кипения воды. Так стерилизуют растворы и оборудование, например, стеклянную посуду. Чтобы убить всех бактерий и их устойчивые споры, обычно достаточно 15—20 мин инкубации при давлении 103 кПа (кН/м2). При таком давлении температура внутри автоклава достигает 121 °С.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.


На практике наиболее распространенными методами биотестирования являются такие, в которых фиксируются, главным образом, такие интегральные параметры, как показатели выживаемости, роста, плодовитости тест-организмов.

Все методы биотестирования характеризуются своими особенностями. Это и доступность тест-объекта, которая определяется возможностью их культивирования в лабораторных условиях, поддержанием необходимых условий температуры, освещенности, сложностью состава питательных сред, чистотой воздуха и пр. Это и оперативность получения ответа.

Наиболее быстрые реакции на токсическое воздействие равных концентраций удается регистрировать у простых организмов – бактерий, водорослей и инфузорий. Наступление таких реакций ограничивается минутами или несколькими часами. Сутками измеряется проявление ответных реакций более крупных объектов (у ракообразных – дафний), а так называемая хроническая токсичность оценивается в течение многих суток и даже недель. Каждый метод характеризуется и своими техническими способами реализации. Общим правилом для всех методик является оценка надежности тест-культур.


.

Рис.2.2. Культиватор КВ-05

Наращивание исходной культуры водоросли производится в специальном культиваторе КВ-05, рис.2.2. В качестве реактора используется прозрачная бутыль из бесцветного стекла емкостью 400 мл. В реактор заливается суспензия водоросли в объеме 150мл. Для обеспечения углекислым газом, за счет растворения содержащегося в воздухе CO2 и перемешивания суспензии непрерывно вращается вокруг своей продольной оси. В процессе культивирования суспензия водоросли облучается светом лампы накаливания 40 Вт, 220В, установленный над реактором. Постоянная температура поддерживается автоматическим включением и выключением встроенного вентилятора по команде блока термостабилизации прибора.


.

Рис.2.3. Измеритель плотности ИПТ-02


.

Рис.2.4. Многокюветный культиватор водорослей (Фитотестор-03)

Для предотвращения перегрева реакторов в центре вращающей кассеты установлен вентилятор, который включается каждый раз, когда температура в корпусе прибора превышает установленный уровень. Последний задается термостатирующим устройством, также размещенным в культиваторе. После включения вентилятора происходит быстрое охлаждение внутреннего пространства культиватора более холодным внешним воздухом. При снижении температуры ниже требуемого вентилятор автоматически выключается. Таким образом, с помощью команд, подаваемых вентилятору, осуществляется процесс поддержания необходимой температуры в течение всего периода культивирования проб тест-организма [11].



Штаммы коллекции поддерживаются в виде растущих или покоящихся культур на жидких или агаризованных синтетических питательных средах.

Основные питательные среды 1, 3, 6, 12, 16 и 17 разработаны в лаборатории микробиологии (Громов Б.В., Титова Н.Н, 1983).

Состав питательных сред:

Среда № 1. K2HPO4 - 66,7 мг/л; MgSO4х7 H2O - 33,3 мг/л; KNO3 - 100 мг/л; Раствор микроэлементов - 1 мл/л.

Среда № 3. K2HPO4 - 66,7мг/л; MgSO4х7H2O - 33,3 мг/л; KNO3 - 100 мг/л; раствор микроэлементов - 1 мл/л; пептон - 1 г/л; глюкоза - 1 г/л; дрожжевая вода -1 мл/л.

0,15 г/л; NaHCO3 - 0,2 г/л; раствор микроэлементов 1мл/л.

Среда №12. KCl - 16г/л; NaCl - 12,5 г/л; MgSO4х7H2O - 2,46 г/л; KNO3 - 1,24 г/л; K2HPO4 – 0, 496 г/л, Ca (NO3)2 х4H2O - 0,26 г/л; KBr - 0,05г/л; KJ - 0,05г/л; раствор микроэлементов -0,5мл/л.

Среда №16. NaHCO3 -16,8 г/л; K2HPO4 - 0,5 г/л; NaNO3 - 2,5 г/л; K2SO4 - 0,5 г/л; NaCl – 1 г/л; MgSO4х7H2O - 0,2 г/л; CaCl2 - 0,04 г/л; FeSO4 - 0,01 г/л; Na2ЭДТА (ТрилонБ) - 0,08 г/л; раствор микроэлементов 1 мл/л.

Среда №17. (NH4)2SO4 - 1,3 г/л; K2HPO4 - 0,3г/л; MgSO4х7H2O - 0,25 г/л; CaCl2 - 0,05 г/л; раствор микроэлементов -1 мл/л.

Раствор микроэлементов для сред № 1, 3, 6, 12, 16 и 17. ZnSO4х7H2O - 0,22 г/л; MnSO4 -1,81 г/л; CuSO4х5H2O - 0,079 г/л; NaBO3 х 4H2O - 2,63 г/л; (NH4)6Mo7O24 х 4H2O - 1г/л; FeSO4х7H2O - 9,3 г/л; CaCl2 - 1,2 г/л; Co(NO3)2х4H2O - 0,02г/л; Na2ЭДТА (ТрилонБ) 10 г/л.

Среды стерилизуются в автоклаве при температуре 121°С в течение 45 минут. Коллекция зеленых водорослей ведется в жидкой среде №1, а цианобактерий – в полужидкой агаризованной (0,8%) среде №6 в пробирках под ватными пробками. Некоторые штаммы водорослей и цианобактерий выращиваются в колбах на 50 мл.

После посева по два одновременно засеянных и параллельно выращиваемых экземпляра культуры каждого штамма в течение нескольких дней подращиваются на стеклянных витринах при непрерывном освещении люминесцентными лампами при 25°С. Затем хранятся при 14°С (за исключением термофилов) и постоянном освещении 2000 люкс.

Пересев осуществляется с периодичностью 2-3 месяца.

Громов Б.В., Титова Н.Н. Коллекция культур водорослей лаборатории Микробиологии Биологического института Ленинградского университета // Межвузовский сборник. Л. 1983. С. 3-27.

Для культивирования микроорганизмов используют различные питательные среды. Это необходимо для дифференциации инфекцион­ных болезней, для приготовления вакцин, антибиотиков и др.

К питательным средам предъявляют следующие требования: должны содержать все необходимые вещества для питания микробов, иметь определенную реакцию среды, быть стерильными и обязательно влажными. Питательные среды подразделяют на Простые и сложные.

К простым средам относятся мясопептонный бульон, мясо­пептонный агар, мясопептонный желатин (МПЖ). Все простые питатель­ные среды готовят на мясной воде. Для ее приготовления мясо отде­ляют от жира и фасций, измельчают, заливают водой в соотношении 1:2 и кипятят в течение 30-60 мин. Затем фильтруют, доливают до перво­начального объема и стерилизуют при давлении 0,1 МПа в течение 30 мин.

Приготовление МПБ состоит в следующем. К 1 л мясной воды добавляют 1 % Пептона, 0,5 % Поваренной соли. Устанавливают реак­цию среды (рН 7,2-7,4), кипятят, фильтруют, разливают по колбам и стерилизуют при давлении 0,1 МПа 15-20 мин.

По консистенции питательные среды могут быть Жидкими, полу­жидкими и плотными. Для приготовления полужидких и плотных сред к МПБ добавляют агар (соответственно 0,2-0,3 и 2-3 %). Агар - это вещество, получаемое из морских водорослей. В его состав входят пектиновые вещества. Агар плавится при 90-100 °С и застывает при температуре ниже 45 "С. Как питательное вещество агар микроорга­низмами не используется.

Сложные (специальные) питательные среды готовят для культивирования микробов, которые не растут на обычных, простых средах. Например, яичную среду Петраньяни используют для выращивания туберкулезной палочки. В состав среды входят молоко, картофельная мука, пептон, яичный белок, 2 %-ный водный раствор малахитовой зелени.

К сложным питательным средам относятся дифференциально-диаг­ностические среды (Эндо, Плоскирева и др.), которые служат для отличия одних групп или видов микробов от других. Например, среда Эндо состоит из МПА, лактозы, фуксина основного, обесцвеченного щелочью. На этой среде кишечная палочка растет в виде темно-крас­ных колоний с металлическим блеском, так как сбраживает лактозу с образованием молочной кислоты, которая восстанавливает обесцве­ченный фуксин. Сальмонеллы на среде Эндо растут в виде бесцветных колоний. Они не ферментируют лактозу.

Для выращивания анаэробов готовят среду Китта-Тароцци (МППВ), состоящую из печеночного бульона, кусочков печени на дне пробирки и вазелинового масла, налитого сверху.

Для изучения способности микробов сбраживать сахара в лабора­ториях используют полужидкие углеводные среды, состоящие из пептонной поды, 0,2-0,3 % Агара, моноуглевода и индикатора.

Протеолитнческие свойства микробов (способность расщеплять белки) изучают на желатине, свернутой кровяной сыворотке и молоке.

Среды накопления используют для подавления одних видов микробов и создания благоприятных условий для развития других. Наиболее часто в лабораториях используют накопительные среды (Кауфмана, Мюллера, селенитовую, хлористомагниевую М), которые задерживают рост гнилостных микробов и не препятствуют размноже­нии) сальмонелл.

Для культивирования микробов применяют также синтети­ческие среды, которые включают определенные химические вещества, необходимые для питания микроорганизмов.

Заводы выпускают некоторые питательные среды (МПА, среда Эндо и др.) в высушенном виде, что значительно облегчает метод их приготовления в лабораториях.

Читайте также: