Косвенные методы исследования скважин на приток кратко

Обновлено: 02.07.2024

Цель исследования скважин заключается в определении ее продуктивности, получении данных о строении и свойствах продуктивных пластов, оценке технического состояния скважин.

Существуют следующие методы исследований скважин и пластов: гидродинамические, дебитометрические, термодинамические и геофизические.

Гидродинамические исследования. Гидродинамические методы подразделяются на:

  • - исследования скважин при установившихся отборах (снятие индикаторных диаграмм);
  • - исследование скважин при неустановившихся режимах (снятие КВД и КПД);
  • - исследование скважин на взаимодействие (гидропрослушивание).

Сущность метода исследования на установившихся режимах заключается в многократном изменении режима работы скважины и, после установления каждого режима, регистрации дебита и забойного давления. Коэффициент продуктивности скважин определяют с помощью уравнения

где Q – дебит скважины; К – коэффициент продуктивности; Рпл, Рзаб - пластовое и забойное давления, соответственно; n – коэффициент, равный 1, когда индикаторная линия прямая; n 1, когда линия выпуклая относительно оси перепада давления; n > 1, когда линия вогнутая относительно оси перепада давления.

При дальнейшей обработки исследований дополнительно определяют коэффициент проницаемости ПЗП, подвижность нефти в ПЗП, гидропроводность ПЗП, а также ряд дополнительных параметров.

Исследование скважин на неустановившихся режимах заключается в прослеживании скорости подъема уровня жидкости в насосной скважине после ее остановки и скорости восстановления забойного забойного давления после остановки фонтанной скважины (снятие КВД). Таким же образом можно исследовать и нагнетательные скважины, регистрируя скорость падения давления на устье после ее остановки (снятие КПД). По полученным данным определяют коэффициент проницаемости пласта, подвижность нефти в пласте, гидропроводность пласта, пьезопроводность пласта в зоне дренирования скважины, а также скин-эффект (степень загрязнения ПЗП).

Исследование скважин на взаимодействие заключается в наблюдении за изменениями уровня или давления, происходящими в одних скважинах (реагирующих) при изменении отбора жидкости в других соседних скважинах (возмущающих). По результатам этих исследований определяют те же параметры, что и при исследовании скважин на неустановившихся режимах. Отличие заключается в том, что эти параметры характеризуют область пласта в пределах исследуемых скважин.

Для измерения давления на забое скважин используют абсолютные и дифференциальные (регистрируют приращение отклонения от начального давления) манометры.

По принципу действия скважинные манометры подразделяют на:

  • - пружинные, в которых чувствительный элемент – многовитковая, геликсная, трубчатая пружина;
  • - пружинно-поршневые, в которых измеряемое давление передается на поршень, соединенный с винтовой цилиндрической пружиной;
  • - пневматические, в которых измеряемое давление уравновешивается давлением сжатого газа, заполняющего измерительную камеру.

Дебитометрические исследования.

Сущность метода исследований профилей притока и поглощения заключается в измерении расходов жидкостей и газов по толщине пласта. Скважинные приборы, предназначенные для измерения притока жидкости и газа (дебита) называются дебитомерами, а для измерения поглощения (расхода) – расходомерами. По принципу действия скважинные дистанционные дебитомеры (ДГД) и расходомеры (РГД) бывают: турбинные, пружинно-поплавковые и с заторможенной турбинкой на струнной подвеске.

Кроме своего основного назначения, скважинные дебитомеры и расходомеры используют и для установления затрубной циркуляции жидкости, негерметичности и мест нарушения эксплуатационной колонны, перетока жидкости между пластами.

Термодинамические исследования.

Термодинамические исследования основаны на сопоставлении геотермы и термограммы действующей скважины.

Геотерма снимается в простаивающей скважине и дает представление о естественном тепловом поле Земли.

Термограмма фиксирует изменение температуры в стволе скважины. С помощью данных исследований можно определить интервалы поглощающих и отдающих пластов, а также использовать полученные результаты для: определения затрубной циркуляции; перетока закачиваемой воды и места нарушения колонны; определения высоты подъема цементного раствора за колоннами после их цементирования.

Геофизические исследования.

Геофизические методы исследования скважин включают в себя различные виды каротажа электрическими, магнитными, радиоактивными акустическими и другими методами с целью определения характера нефте-, газа- и водонасыщенности пород, а также некоторые способы контроля за техническим состоянием скважин.

Для оценки продуктивности разреза применяют косвенные и прямые методы. Косвенные методы позволяют получить характеристики, косвенным образом указывающие на присутствие нефти или газа в исследованном интервале. К косвенным методам относятся оперативный геологический контроль в процессе бурения и геофизические методы исследования в скважине. Прямые методы базируются на непосредственных свидетельствах о присутствии нефти или газа (отбор пробы, получение притока и т.д.). Прямые методы требуют вызова притока нефти или газа из пласта.

В задачу исследования прямым методом входят такие вопросы, как выявление возможности получения притока нефти или газа из исследуемого объекта, отбор проб пластовой жидкости для изучения ее состава и свойств, установления соотношения компонентов в пластовом флюиде, оценка возможного дебита из исследуемого объекта, измерение пластового давления, получение исходных данных для первоначальной оценки коллекторских свойств объекта, вскрытого скважиной.

В группе прямых методов выделяют стационарные и экспресс-методы. Стационарные методы предполагают, что исследование ведут на установившемся режиме фильтрации. Например, метод пробной эксплуатации, когда наблюдения ведутся в течение длительного времени (до месяца и более), и метод установившихся отборов, когда наблюдения и замеры проводят на нескольких режимах, доведенных до стабилизации притока, позволяют получить характеристику пласта и эксплуатационных возможностей скважины.

Исследования по экспресс-методу требуют значительно меньше времени. В основе его лежит контроль за восстановлением давления в ограниченном объеме, сообщающиеся с продуктивным пластом после вызова притока из него. Иногда в малодебитных скважинах применяют экспресс-метод исследования на приток, когда его контролируют по восстановлению предварительно сниженного уровня жидкости в скважине.

По технологии, применяемым техническим средствам и объему получаемой информации исследования по экспресс-методу можно подразделить на испытание и опробование.

Задача опробования - вызвать приток флюида из пласта, отобрать его пробу для анализа, определить свободный дебит скважины. При проведении испытаний ставятся более широкие задачи.

Практикуют два метода исследования скважин: "снизу вверх" и "сверху вниз".

При исследовании по методу "снизу вверх" скважину доводят до проектной глубины, закрепляют обсадной колонной и цементной оболочкой за ней. Испытания начинают с самого нижнего объекта, для чего обсадную колонну против этого пласта перфорируют, осуществляют вызов притока, отбирают пробы пластовой жидкости и проводят необходимые измерения. После завершения испытания нижнего объекта устанавливают цементный мост или резиновый тампон выше перфорированного участка, рассчитанный на перепад давления до 25 МПа. Затем перфорируют обсадную колонну против выше расположенного объекта, испытывают его и переходят к следующему объекту, перемещаясь вверх. Отсюда и название метода "снизу вверх".

Виды пластоиспыталей: пластоиспытатели, спускаемые в скважину на колонне бурильных или насосно-компрессорных труб; аппараты, сбрасываемые внутрь колонны бурильных труб сразу после вскрытия при бурении намеченного объекта; аппараты, спускаемые в скважину на каротажном кабеле.

Наиболее полную информацию об исследуемом объекте получают с помощью пластоиспытателя на колонне труб. Аппараты второго и третьего типа позволяют осуществить только опробование пласта, поэтому их нередко называют опробователями. Опробователь, сбрасываемый внутри бурильной колонны, позволяет вызывать приток сразу после вскрытия исследуемого объекта и отбирать пробу пластовой жидкости. Для использования данного метода над долотом устанавливают специальное пакерующее устройство. Пробоотборник, спускаемый на каротажном кабеле, применяют в тех случаях, когда необходимо исследовать пласт на отдельных уровнях, например, для прослеживания изменения проницаемости по мощности пласта, определения положения водонефтяного контакта и т. п.

Из экспресс-методов прямых поисков залежей нефти и газа, применяемых при исследованиях в скважине, наибольшее распространение получил метод с использованием испытателя пластов, спускаемого на колонне труб. Его применяют для испытания объектов сразу же после их вскрытия, и поэтому при соблюдении правильной технологии испытания он позволяет получить наиболее достоверную оценку продуктивности разреза. Испытатель пластов применяют и в обсаженных скважинах, в частности, при освоении пластов с низким пластовым давлением, для очистки призабойной зоны, для испытания обсадных колонн на герметичность и выявления в них участков нарушения герметичности и при других работах, когда в ограниченном объеме ствола скважины надо создать депрессию. Современный пластоиспытатель представляет собой совокупность инструментов, аппаратов и приборов, скомпонованных воедино для выполнения ряда функций, необходимых при испытании пласта и проведения измерений. Во время проведения исследований в скважине системами пластоиспытателя управляют с поверхности. В соответствии с командами пластоиспытатель выполняет следующие функции: изоляцию интервала ствола скважины против исследуемого объекта от остальной его части, вызов притока пластового флюида созданием депрессии на пласт, отбор проб пластового флюида на исследование, наблюдение за восстановлением давления в подпакерной зоне. Регистрацию эволюции давления производят автоматически в течение всего периода нахождения пластоиспытателя в скважине в пределах ресурса рабочего времени манометра. На поверхности пластоиспытатель разбирают и извлекают диаграммы регистрирующих приборов. Пластоиспытатели серии КИИ-ГрозУфНИИ имеют ряд существенных недостатков: они относятся к испытателям одноциклового действия и повторное испытание возможно только после подъема и спуска инструмента; ряд узлов недостаточно надежны; область надежной работы пластоиспытателя ограничивается давлениями не свыше 40 МПа. Повышение достоверности испытания связано с возможностью проведения повторных циклов и сопоставления их результатов. Для проведения многоцикловых испытаний разработаны пласто-испытатели серии МИГ. Многоцикловый гидравлический испытатель пластов позволяет при однократном спуске проводить несколько полных циклов испытания объекта. Каждый цикл включает две основные операции: вызов притока из пласта и контроль восстановления давления.

Разработка залежей нефти в нашей стране осуществляется в основном с применением заводнения, которое позволяет увеличить нефтеотдачу пластов почти в 2 раза по сравнению с разработкой на естественных режимах.

1.1 Исследование скважин на приток

Определяют величину депрессии на пласт. Депрессия – это разница между пластовым и забойным давлением.

Где – Депрессия.

- Пластовое давление.

- Забойное давление.

Строят индикаторную диаграмму в координатах (рис.1)

(рис. 1)

где К - Коэффициент продуктивности скважины.

Исследование скважин при неустановившемся режиме фильтрации проводят для определения гидродинамических характеристик пласта

Строят кривые восстановления давления КВД (в остановленной скважине) и КПД (кривая падений давлений в скважине запущенной в работу). Кривые строятся в координатах для построения кривой прослеживают во времени изменения забойного давления:

Где - Давление на любой момент времени.

- Давление на забой до остановки скважины.

(рис.2)

Исследование скважин - комплекс работ по:

  • установлению интенсивности притока жидкости из пласта в скважину
  • определению места поступления воды, притока жидкостей и газов через нарушения в эксплуатационной колонне
  • отбору глубинных проб нефти
  • измерению давлений и температур по стволу скважины, глубины и колебаний уровней
  • контролю за техническим состоянием обсадной колонны и цементного кольца

К косвенным методам исследования скважины на приток относится замер глубины динамического уровня жидкости в межтрубном пространстве, устанавливающегося при том или ином режиме откачки специальными приборами - эхолотами.

Бумажная лента движется с помощью лентопротяжного механизма с постоянной скоростью. Измеряя расстояние между двумя пиками диаграммы, соответствующими начальному импульсу и отраженному от уровня, можно определить глубину этого уровня.

1.2 Виды индикаторных диаграмм

(рис. 3)

  1. Индикаторная линия прямая выходит из начала координат, если движение жидкости в пласте подчиняется закону Дарси то скорость движения жидкости в пласте прямо пропорционально перепаду давлений и обратно пропорционально перепаду давлений.
  2. Выпуклая линия – движение жидкости в пласте не подчиняется закону Дарси.
  3. Вогнутая линия – скважина не вышла на режим или неправильно произведены замеры.
  4. Линия не из начала координат для тяжелых вязких нефтей.
  1. Определение коэффициента продуктивности скважин

По определению коэффициент продуктивности - это отношение дебита скважины к депрессии:

где η - Коэффициент продуктивности [м³/сут/МПа].

Q - Дебит скважины [м³/сут].

ΔP - Депрессия [МПа].

Pk - Пластовое давление (на контуре питания) замеряется в остановленной скважине [МПа].

Pc - Забойное давление (на стенке скважины) замеряется в работающей скважине [МПа].

Продуктивность по нефти

Коэффициент продуктивности определяется по результатам гидродинамических исследований и эксплуатации скважин.

Используя замеры на квазистационарных режимах (установившихся отборах), получают индикаторные диаграммы (ИД), представляющие собой зависимость дебита от депрессии или забойного давления. По наклону индикаторной линии определяют фактическую продуктивность нефтяной скважины.

Продуктивность по газу

При малых депрессиях приблизительно коэффициент продуктивности η по газу связан с фильтрационным коэффициентом a соотношением:

Уравнение Дюпюи

Уравнение Дюпюи является интегральной формой закона Дарси для случая плоскорадиального установившегося потока несжимаемой жидкости к вертикальной скважине.

Уравнение Дюпюи связывает продуктивные характеристики скважины (дебит, продуктивность) и фильтрационные свойства пласта (гидропроводность, проницаемость).

Потенциальная продуктивность и гидропроводность

По уравнению Дюпюи потенциальная продуктивность скважины связана с гидропроводностью выражением:

- Коэффициент гидропроводности пласта (k - проницаемость горной породы [Д], h — эффективная толщина коллектора [см], μ - динамическая вязкость жидкости [сП]).
B - Коэффициент объёмного расширения (для пересчёта объёма жидкости из поверхностных в пластовые условия).
Rk - Радиус контура питания (воронки депрессии) [см], то есть расстояние от скважины до зоны пласта, где давление полагается постоянным и равным текущему пластовому давлению (примерно половина расстояния между скважинами).
rc — Радиус скважины по долоту в интервале вскрытия пласта [см].

Фактическая продуктивность несовершенной скважины

Для несовершенной скважины уравнение Дюпюи принимает следующий вид:

где η - Фактическая продуктивность несовершенной скважины. S - Скин-фактор.

Цель исследования скважин заключается в определении ее продуктивности, получении данных о строении и свойствах продуктивных пластов, оценке технического состояния скважин.

Существуют следующие методы исследований скважин и пластов:

  1. Гидродинамические
  2. Дебитометрические
  3. Термодинамические
  4. Геофизические
  • Исследование скважин при установившихся отборах (снятие индикаторных диаграмм).
  • Исследование скважин при неустановившихся режимах (снятие КВД и КПД).
  • Исследование скважин на взаимодействие (гидропрослушивание).

Сущность метода исследования на установившихся режимах

заключается в многократном изменении режима работы скважины и,

после установления каждого режима, регистрации дебита и забойного

давления. Коэффициент продуктивности скважин определяют с

Где Q - Дебит скважины.

К - Коэффициент продуктивности.

Рпл - Пластовое давления.

Рзаб - Забойное давления.

n - Коэффициент, равный 1, когда индикаторная линия прямая; n 1, когда линия

вогнутая относительно оси перепада давления.

При дальнейшей обработки исследований дополнительно определяют коэффициент проницаемости ПЗП, подвижность нефти в ПЗП, гидропроводность ПЗП, а также ряд дополнительных параметров.

Таким же образом можно исследовать и нагнетательные скважины, регистрируя скорость падения давления на устье после ее остановки (снятие КПД). По полученным данным определяют коэффициент проницаемости пласта, подвижность нефти в пласте, гидропроводность пласта, пьезопроводность пласта в зоне дренирования скважины, а также скин-эффект (степень загрязнения ПЗП).

Исследование скважин на взаимодействие заключается в

наблюдении за изменениями уровня или давления, происходящими в

одних скважинах (реагирующих) при изменении отбора жидкости в

других соседних скважинах (возмущающих).

По результатам этих исследований определяют те же параметры, что и при исследовании скважин на неустановившихся режимах. Отличие заключается в том, что эти параметры характеризуют область пласта в пределах исследуемых скважин.

Для измерения давления на забое скважин используют абсолютные и дифференциальные (регистрируют приращение отклонения от начального давления) манометры.

По принципу действия скважинные манометры подразделяют на:

  • Пружинные, в которых чувствительный элемент – многовитковая, геликсная, трубчатая пружина.
  • Пружинно-поршневые, в которых измеряемое давление передается на поршень, соединенный с винтовой цилиндрической пружиной.
  • Пневматические, в которых измеряемое давление уравновешивается давлением сжатого газа, заполняющего измерительную камеру.

Сущность метода исследований профилей притока и поглощения заключается в измерении расходов жидкостей и газов по толщине пласта.

Скважинные приборы, предназначенные для измерения притока

жидкости и газа (дебита) называются дебитомерами, а для измерения

По принципу действия скважинные дистанционные дебитомеры (ДГД) и расходомеры (РГД) бывают: турбинные, пружинно-поплавковые и с заторможенной турбиной на струнной подвеске. Кроме своего основного назначения, скважинные дебитомеры и расходомеры используют и для установления затрубной циркуляции жидкости, не герметичности и мест нарушения эксплуатационной колонны, перетока жидкости между пластами.

Термодинамические исследования основаны на сопоставлении геотермы и термограммы действующей скважины. Геотерма снимается в простаивающей скважине и дает представление о естественном тепловом поле Земли.

Термограмма фиксирует изменение температуры в стволе скважины.

С помощью данных исследований можно определить интервалы

поглощающих и отдающих пластов, а также использовать полученные

результаты для: определения затрубной циркуляции; перетока

подъема цементного раствора за колоннами после их цементирования.

Геофизические исследования скважин

Геофизические исследования скважин - комплекс физических методов, используемых для изучения горных пород в околоскважинном и межскважинном пространствах, а также для контроля технического состояния скважин. Геофизические исследования скважин делятся на две весьма обширные группы методов - методы каротажа и методы скважинной геофизики. Каротаж, также известный как промысловая или буровая геофизика, предназначен для изучения пород непосредственно примыкающих к стволу скважины (радиус исследования 1-2 м).

Часто термины каротаж и ГИС отождествляются, однако ГИС включает также методы, служащие для изучения межскважинного пространства, которые называют скважинной геофизикой.

Исследования ведутся при помощи геофизического оборудования. При геофизическом исследовании скважин применяются все методы разведочной геофизики.

  1. Методы увеличения продуктивности скважин

И тем не менее баланс остаточных запасов на месторождениях, находящихся в завершающей стадии разработки, остается весьма высоким, составляя в отдельных случаях 50—70%.

Такое состояние с остаточными запасами, которые не могут быть извлечены традиционными методами заводнения, выдвинуло на передний план задачи ускорения разработки и внедрения новых методов повышения нефтеотдачи пластов.

В настоящее время известно и внедряется большое число методов повышения нефтеотдачи пластов.

Они различаются по методу воздействия на продуктивные пласты, характеру взаимодействия между нагнетаемым в пласт рабочим агентом и насыщающей пласт жидкостью, видом вводимой в пласт энергии.

Все методы повышения нефтеотдачи можно разделить на гидродинамические, физико-химические и тепловые.

Успешность применения методов повышения нефтеотдачи в большой мере зависит от уровня геолого-промысловых исследований нефтепродуктивного пласта, состояния его разработки и свойств, насыщающих пласт нефти, газа и воды.

Исследования нефтепродуктивного пласта предполагают изучение особенностей его строения с позиции правильной оценки особенностей геометрии пласта с уточнением трассировки тектонических нарушений, линий выклинивания продуктивной части пласта, детальным расчленением объекта разработки на отдельные пласты и пропластки.

Особое внимание следует уделять литологической характеристике пород, слагающих продуктивный пласт. Особенности литологии определяют структуру пористого пространства, что, в свою очередь, влияет на решение использовать тот или иной метод повышения нефтеотдачи.

Главные особенности прямых и косвенных методов исследования скважин. Определение динамического пластового давления. Индикаторная линия для нефтяной скважины. Обработка результатов исследования скважин на приток. Общий вид уравнения для закона фильтрации.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 08.11.2012
Размер файла 126,9 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Задачи, виды и методы исследования

Графические методы изображения результатов исследования скважин

Обработка результатов исследования скважин на приток

Задачи, виды и методы исследования

Исследования можно подразделить на первичные, текущие и специальные. Первичные исследования проводят на стадии разведки и опытной эксплуатации месторождения. Задача их заключается в получении исходных данных, необходимых для подсчета запасов и проектирования разработки. Текущие исследования осуществляют в процессе разработки. Их задача состоит в получении сведений для уточнения параметров пласта, принятия решений о регулировании процесса разработки, проектирования и оптимизации технологических режимов работы скважин и др. Специальные исследования вызваны специфическими условиями разработки залежи и эксплуатации скважин (внедрение внутрипластового горения и т.д.).

Выделяют прямые и косвенные методы исследования. К первым относят непосредственные измерения давления, температуры, лабораторные методы определения параметров пласта и флюидов по керну и пробам жидкости, взятым из скважины. Большинство параметров залежей и скважин не поддается непосредственному измерению. Эти параметры определяют косвенно путем пересчета по соотношениям, связывающим их с другими, непосредственно измеренными побочными параметрами. Косвенные методы исследования по физическому явлению, которое лежит в их основе, подразделяют на промыслово-геофизические, гидродинамические и др.[1.174ст]

Графические методы изображения результатов исследования скважин

Исследование скважины на приток заключается в измерении дебита нефти, воды, газа, количества выносимого песка и соответствующего забойного давления при различных режимах работы.

Выбор метода изменения режима работы обусловлен способом эксплуатации скважины.

По данным исследования строят графики зависимости дебита от депрессии или перепада между пластовым и забойным давлениями. Эти графики называются индикаторными. По оси абсцисс принято откладывать дебит скважины Q, по оси ординат - соответствующую депрессию

или понижение уровня S. Величину депрессии Др определяют как разность между динамическим пластовым давлением и давлением на забое скважины. Динамическое пластовое давление определяют путем измерения забойного давления в остановленной скважине, когда оно практически перестает изменяться во времени. Динамическое пластовое давление соответствует давлению в пласте между работающими скважинами.

По форме индикаторные линии могут быть прямыми, выпуклыми и вогнутыми относительно оси дебитов. Форма индикаторной кривой определяется режимом дренирования пласта, режимом фильтрации, цриродой движущихся жидкостей (газа), неустановившимися процессами в пласте, величиной сопротивления, возникающего при движении жидкости из пласта в скважину и в стволе ее.

Индикаторная линия для нефтяной скважины будет прямой только при условии, что режим дренирования залежи напорный и в пласте установилось движение однородной жидкости по линейному закону. При этом приток нефти к забою скважины выражается уравнением (48).

При напорных режимах индикаторная линия, вначале прямая, может с увеличением депрессии переходить в кривую, выпуклую относительно оси дебитов. Искривление индикаторной линии происходит вследствие нарушения линейного закона фильтрации в призабойной зоне. Вблизи фильтрационных отверстий скорость фильтрации становится настолько большой, что числа Рейнольса превосходят критические. Если режим дренирования залежи отличен от водонапорного (режим растворенного газа, гравитационный), индикаторная линия всегда будет в той или иной степени кривой, выпуклой по отношению к оси дебитов (см. рис. 77, кривая 2).

Действительно, если в пласте движется, например, газированная жидкость, то уравнение установившегося притока жидкости к совершенной скважине будет иметь вид.

где Qж - дебит скважины, м3/сек; k - проницаемость пласта, м2 h - мощность пласта, м; Нпл и Нзаб - значения некоторой функции акад. С. А. Христиаповича, зависящей от пластового и забойного давлений и фазовой проницаемости для жидкости (при газонасыщенности породы больше 10%), н/м2; м - вязкость жидкости в пластовых условиях, н*сек/ м2 R и rс - соответственно радиусы контура питания и скважины, м.

Величина функции Н находится в нелинейной зависимости от давления, причем с повышением Др величина Н растет медленнее, чем перепад давлений. Следовательно, притоку газированной жидкости соответствует индикаторная линия в координатах Qж - Др, выпуклая по отношению к оси дебитов.

Индикаторная линия, вогнутая по отношению к оси дебитов, может быть получена в результате измерений неустановившихся забойных давлений (или уровней) и дебитов скважины. Доказано, что такие индикаторные кривые являются результатом неустановившихся процессов в пласте. Вогнутые по отношению к оси дебитов индикаторные линии чаще всего являются результатом измерения дебитов и забойных давлений, когда перераспределение их в пласте еще не установилось. Считается, что иногда вогнутые индикаторные линии отражают включение в работу при повышении депрессии дополнительных пропластков, не участвующих в фильтрации нефти при малых перепадах давлений.

Вогнутые, индикаторные линии для нагнетательных скважин часто объясняются открытием старых и возникновением новых трещин при повышении давления нагнетания. При получении вогнутых индикаторных линий исследование на приток необходимо повторить.

Для газовой скважины приток газа к ее забою описывается уравнением (49). В нем дебит скважины пропорционален разности квадратов давлений, если фильтрация газа следует линейному закону Дарси. Поэтому для газовых скважин индикаторные линии строят в координатах Q - Др2. Эти линии по форме аналогичны индикаторным линиям для нефтяных скважин. Однако чаще всего они выпуклы относительно оси дебитов. Индикаторные линий, вогнутые относительно оси дебитов, также свидетельствуют о дефектности испытаний. Они являются, как правило, результатом недостаточности времени, отведенного на установление режима работы скважины, либо следствием неточности измерения или появления воды в забое. Причиной подобного явления, особенно в газовых скважинах, может явиться очистка призабойной зоны.

Обработка результатов исследования скважин на приток

Обработка результатов исследования скважины заключается в построении индикаторной линии Q = ѓ (Др) для нефтяных скважин

или Q = ѓ (Др2) для газовых скважин по данным наблюденных дебитов и соответствующих забойных давлений и в нахождении уравнения этой линии.

Для индикаторных линий, изображенных на рис. 77, может быть найдено одно общее уравнение в виде

где Q - дебит скважины; Рпл - Рзаб соответственно пластовое и забойное давления; К и n - коэффициенты, причем n=1 для прямой линии (см. рис. 77); n?1 для линий 2, 4; n > 1 для линий типа 3.

При соблюдении линейного закона фильтрации уравнение(1) принимает вид

Коэффициент К называют коэффициентом продуктивности скважины. Если дебит измерять в т/сутки, а перепад давлений - в бар, то получим

т.е. коэффициент продуктивности численно равен приросту суточного дебита скважины (в т) на 1 бар перепада давлений.

При соблюдении линейного закона фильтрации коэффициент продуктивности - величина постоянная для всей области, в которой сохраняется закон Дарси. При нелинейном законе фильтрации коэффициент продуктивности - величина переменная, зависящая от депрессии.

Разность давлений Pпл - Рзаб в уравнениях притока иногда заменяют разностью расстояний от устья до соответствующих статического и динамического уровней:

В этом случае коэффициент К', численно равный суточному притоку жидкости (в т) на 1 м понижения уровня в скважине, называют удельным дебитом.

Для удобства сравнения скважин но продуктивности используют также удельный коэффициент продуктивности:

где h - мощность пласта, м.

Этот коэффициент показывает, сколько тонн нефти (жидкости) в сутки дает скважина на каждый метр мощности пласта при снижении давления на забой на 1 бар.

Максимально возможную производительность скважины при Рзаб = о называют потенциальным дебитом:

Так как пластовое давление но мере эксплуатации залежи изменяется, величина Qпот скважин также непрерывно изменяется.

Отбор жидкости из скважин, практически равный потенциальному дебиту, возможен только при условии, что в скважине есть зумпф; противодавление на пласт при этом можно поддерживать равным атмосферному и даже ниже его.

Установлено, что параболические формулы для уравнения притока тина Q = К (Др)n или Q = К (Др2)n не совсем точно характеризуют индикаторные линии в условиях отклонения от закона Дарси. Правильнее пользоваться двучленной формулой для градиента давления:

где Др - падение давления на участке длиной Дх; м - вязкость нефти; k- проницаемость породы; v - скорость фильтрации; b - коэффициент, зависящий от геометрии норового пространства и плотности фильтрующейся среды.

Уравнение(7)имеет следующий смысл. При движении жидкостей и газов перепад давлений на каком-либо участке затрачивается на преодоление сил трения и сил инерции жидкости и газа. Последние возникают вследствие извилистости норовых каналов. Сила инерции пропорциональна квадрату скорости и, следовательно, чем больше скорость фильтрации, тем больше влияние инерции. При малых скоростях фильтрации силы инерции малы, и потери давления практически определяются только силами трения, т. е. в уравнении(7) сновную роль играет первый член - движение происходит при линейном законе сопротивления. Отсюда следует, что нелинейность индикаторной кривой можно объяснить значительным увеличением второго члена уравнения(7), что соответствует большим скоростям фильтрации.

Скорость фильтрации пропорциональна дебиту скважины, и тогда двучленному закону фильтрации(7) соответствуют следующие уравнения индикатоцной линии:

где А, В, А1,и B1 - коэффициенты, постоянные для данной нефтяной или газовой скважины; Q - дебит нефти; Qат- объемный расход газа, отнесенный к атмосферному давлению.

Величины А, А1и В, В1 ж при обработке индикаторной линии по двучленным формулам(8)и(9) могут быть определены по способу проф. Е. М. Минского. Уравнения притока(8)и(9) записывают в виде:

Опытные точки, полученные в результате исследования, наносят на график в координатах Q - Дp/Q или Qат - Др2/Qaт (Рис. 78). При этом, согласно уравнениям(10), должны получиться прямые линии, и отрезки, отсекаемые ими на оси ординат, будут соответствовать величинам A или A1 тангенсы углов наклона этих линий будут равны коэффициентам В или B1.

Опыт исследования скважин, эксплуатирующих залежи, приуроченные к трещиноватым коллекторам, показывает, что и в этом случае между депрессией пластового давления и дебитом скважины наблюдается нелинейная зависимость (индикаторные диаграммы выпуклы но отношению к оси дебитов). В трещиноватых коллекторах в отличие от зернистых кроме инерционных сил важной причиной искривления индикаторных линий является деформация коллектора и жидкости, изменение раскрытости трещин и, как следствие этого, уменьшение проницаемости пласта при увеличении депрессии. В этом случае оказывается, что нелинейный закон фильтрации, записанный в виде (8), не отражает влияния деформации трещин, которая может быть весьма существенной при изменении давления. Поэтому уравнением (7) описываются лишь индикаторные линии для скважин, эксплуатирующих трещиноватый коллектор, который слабо деформируется при изменении пластового давления, что встречается очень редко.

Значительно лучше индикаторные линии для скважин, эксплуатирующих трещиноватый коллектор, описываются уравнением вида

где а - коэффициент, учитывающий деформацию коллектора и жидкости при изменении давления; b и с - коэффициенты, учитывающие фильтрационные свойства пласта и геометрию коллектора и скважины.

При n - 1 уравнение (11) сводится к известному соотношению (7), которое не учитывает деформации коллектора и жидкости (а = 0). При суммировании до n = 2 получается формула Л.Г. Наказной

в которой влияние деформаций коллектора й жидкости приближенно учитывается соотношением a/2 * Др2.

Если при фильтрации инерционные силы малы, то, пренебрегая вторым слагаемым в правой части уравнения (9) и суммируя до n - 2, получим уравнение А. Бана (индикаторная линия для скважин, эксплуатирующих трещиноватый коллектор при линейном законе фильтрации).

Согласно результатам исследований Н.П. Лебединца, Н.М. Донцова и В.Т. Боярчука, физический процесс, происходящий в трещиноватом коллекторе, правильнее всего описывается уравнением для закона фильтрации, имеющим вид

нефтяной скважина пластовой давление

При обработке индикаторных диаграмм с помощью уравнений (11) - (13) коэффициенты а, b и с находят по фактическим индикаторным кривым методом избранных точек. При этом на индикаторной диаграмме выбирают три равномерно расположенные точки. Подставляя известные значения Др и Q, соответствующие выбранным точкам, например, в формулу (11), составляют систему из трех уравнений, решение которых дает значения а, b и с.[2.146-151].

Список литературы

Подобные документы

Виды и методика гидродинамических исследований скважин на неустановившихся режимах фильтрации. Обработка результатов исследования нефтяных скважин со снятием кривой восстановления давления с учетом и без учета притока жидкости к забою после ее остановки.

курсовая работа [680,9 K], добавлен 27.05.2019

Геолого-промысловая характеристика Тарасовского нефтегазоконденсатного месторождения. Сеноманская залежь. Цели и задачи гидродинамических исследований газовых скважин на установившихся режимах. Формула притока газа. Определение его давления и расхода.

курсовая работа [263,5 K], добавлен 17.05.2013

Литолого-стратиграфическая характеристика разреза. Cеноманская и неокомские залежи. Приток газа к несовершенным скважинам при двучленном законе фильтрации. Определение давлений и расхода газа. Определение коэффициентов фильтрационного сопротивления.

курсовая работа [216,7 K], добавлен 12.03.2015

Потенциал точечного стока на плоскости и в пространстве. Исследование задач интерференции скважин. Приток жидкости к группе скважин в пласте с удаленным контуром питания; к бесконечным цепочкам и кольцевым батареям скважин при фильтрации нефти и газа.

курсовая работа [1,3 M], добавлен 21.10.2012

Информация, получаемая с помощью гидродинамических исследований. Исследование скважин и пластов на установившихся режимах работы. Условия применения гидродинамических исследований. Обработка результатов исследования скважин методом установившихся отборов.

курсовая работа [69,5 K], добавлен 12.02.2013

Физико–химические свойства нефти, газа и воды. Стратиграфия, нефтегазоносность месторождения. Анализ добывных возможностей и технологических режимов работы скважины. Определение пластового давления. Кислотная обработка забоев и призабойных зон скважин.

курсовая работа [2,0 M], добавлен 06.04.2016

Исследование методов вскрытия нефтяных залежей. Освоение скважин. Характеристика процесса технологических операций воздействия на призабойную зону пласта. Измерение давления и дебита скважин. Повышение эффективности извлечения углеводородов из недр.

Читайте также: