Космический метод это кратко

Обновлено: 03.07.2024

Космические методы исследования ландшафтов предназначены для охвата больших и малодоступных территорий. Получение космических снимков высокой разрешающей способности (до 1 м) позволяет с помощью разработанных диагностических признаков выделять морфологические и таксономические единицы ландшафтов и создавать соответствующие картографические продукты.

Преимущество космических методов исследования состоят также и в том, что для исследования малодоступных территорий не требуется организация полевых экспедиций, маршруты которых должны охватывать участки площадью в несколько тысяч и более кв. км. Такие экспедиции повышают материальные затраты и время, что на сегодняшний день представляет большую организационную проблему. После обработки снимков остается провести проверочные маршрутные выходы для уточнения отдельных деталей ландшафтной структуры региона. Как правило, космические методы исследования предназначены для исследования ландшафтов в мелкомасштабном варианте и составления соответствующих карт.

С помощью космических снимков хорошо идентифицируются и дешифруются региональные геологические и тектонические структуры, типы растительности, типы и подтипы почв, гидрологическая и эрозионная сеть. Все это позволяет с помощью сопряженного анализа компонентов географической среды выявлять ландшафтную структуру регионов, степень деградации компонентов ландшафтов и в целом ПТК.

В течение десятилетий ученые отправляли всевозможные космические корабли за пределы Земли для сбора информации о нашей Солнечной системе. Но не каждая космическая миссия была одинакова. Рассказываем о главных методах исследования космоса.

Облет

Суть этого метода заключается в том, что космический корабль проходит мимо небесного объекта, но не удерживается на его орбите. Пролетая мимо, корабль с помощью своих инструментов наблюдает за исследуемым объектом и отправляет полученную информацию на Землю. Этот метод используется как быстрая начальная разведка чего-либо, что может быть в дальнейшем исследовано в более дорогих и технически сложных миссиях.

Орбитальный полет

Этот метод изучения космоса предполагает, что космический корабль выходит на орбиту планеты и остается на ней. Во время нахождения на орбите аппарат делает фотографии и видео, измеряет расстояния и температуру, а также собирает другие данные.

Преимущество орбитального полета заключается в том, что можно собрать гораздо больше данных и получить более подробную информацию об исследуемом космическом объекте. Но корабль не может сесть на поверхность планеты, чтобы провести более серьезные научные эксперименты.

Запуск ровера

Более серьезным методом изучения дальнего космоса является запуск ровера. Ровер или марсоход — это космический аппарат, который может приземлиться на поверхность исследуемого объекта, чтобы делать детальные снимки, собирать образцы почвы и выполнять другие задачи в научных целях.

Как и другие методы изучения космоса запуск ровера имеет свои плюсы и минусы. Преимущество передвижных космических кораблей заключается в том, что они могут делать невероятные вещи, в том числе проводить химические эксперименты, которые могут дать нам очень подробное представление о той или иной планете. Недостатком этого метода является его большая стоимость. Например, миссия Mars Exploration Rover, стартовавшая в 2003 году, была оценена в 2,5 миллиарда долларов.

Космические методы — это методы изучения структуры и развития географической сре­ды по материалам космической съемки, полученным с помощью регистрации отраженного сол­нечного и искусственного света и собственного излучения Земли с космических летательных ап­паратов. В основе географических исследований с помощью космических методов лежит теория оптических свойств природной среды, обусловленных взаимодействием солнечного излучения с географической оболочкой. Дешифрирование снимков основано на использовании корреляционных связей между параметрами географических объектов и их оптическими ха­рактеристиками.

В настоящее время географы располагают чрезвычайно разнообразными видами косми­ческой информации, пригодной для исследований как физико-, так и экономико-географических явлений. Это снимки во всех диапазонах спектра электромагнитных волн, ис­пользуемых в современных дистанционных методах — видимом и ближнем инфракрасном, теп­ловом инфракрасном и радиодиапазоне (микроволновом и ультракоротковолновом).

Космические снимки земной поверхности являются моделями местности, отражающими реальную географическую ситуацию на момент съемки. Наиболее ценными их свойствами являются: 1) комплексное изображение ландшафтной структуры, включая основные природ­ные и антропогенные компоненты; 2) широкий спектральный диапазон съемки, о чем сказано выше; 3) высокая обзорность снимков (они могут охватывать площади от 10 тыс. км 2 до полушария Земли в целом); 4) большое разнообразие масштабов съемки (крупнее 1:200000 — 1:100000000); 5) различная периодичность съемки — от десятков минут до десятков лет; 6) многократное покрытие съемкой земного шара.

Космические методы удачно дополняют традиционные наземные и аэрометоды. Их совме­стное использование обеспечивает географические исследования одновременно на локальном, региональном и глобальном уровнях. Естественно, что они активно используются не только в науках географического цикла, но и в геологии, почвоведении, а также в отдельных отрас­лях хозяйства.

Наиболее широко дистанционная съемка применяется в физической географии. В гео­морфологии эффективно применение космических методов при проведении морфо-структурного и морфоскульптурного анализа и картографирования рельефа, его многолетней динамики, при­родных и антропогенных процессов рельефообразования. В гидрологии по дистанционным изо­бражениям изучают морфологические и морфометрические характеристики водных объектов, прослеживают гидрологический режим водных объектов, проводят моделирование стока, кар­тографирование гидрологической сети.

В почвоведении по космическим снимкам успешно устанавливают пространственную диф­ференциацию почвенного покрова и проводят его картографирование, определяют многие па­раметры почв, такие, как гумусность, механический состав, засоленность, влажность, темпера­тура. Такие исследования особенно важны при оценке плодородия почв на возделываемых землях, разработке комплексных мелиоративных мероприятий, подборе севооборотов и т. д. В биогеографии с помощью разномасштабных снимков выявляют и картографируют пространствен­ную структуру биоценозов, проводят биоценометрические, фенологические, медико-географические исследования.

В ландшафтоведении космические методы широко применяют при изучении и картогра­фировании пространственной структуры, сезонной ритмики и многолетней динамики ландшаф­тов, в палеогеографических исследованиях. По снимкам распознают разнообразные природные ландшафты, их антропогенные модификации и техногенные комплексы. В целях охраны природы по дистанционным изображениям проводят комплексные природоохранные исследования, осу­ществляют контроль негативных процессов обезлесения, саваннизации, опустынивания и мно­гих других. Вместе с тем осуществляют оценку антропогенного воздействия на природную среду, а также контроль загрязнения воздушного и водного бассейнов, снежного покрова, земной поверхности.

Большой интерес представляет применение космических снимков при изучении генезиса и истории развития естественных ландшафтов. Приведем примеры дешифрирования археологиче­ских объектов ландшафтно-генетических рядов, форм реликтового рельефа, гидрографической сети, фрагментов древних почв.




Калмыцкими учеными с помощью материалов космической съемки, аэроснимков и назем­ных исследований составлена обзорная археологическая карта Калмыкии, а также археоло­гические картосхемы Сарпинской низменности и зоны черноземельной оросительно-обводнительной системы на площади 25,8 тыс. км 2 . По космическим снимкам опознаны места древних поселений, курганы, руины строений, древняя дорожная сеть, староорошаемые земли, высохшие русла рек, в том числе древние русла Волги.

Комплексные исследования истории развития ландшафтов с учетом природных и ан­тропогенных факторов формирования по космическим снимкам имеют самостоятельное науч­ное значение, а также позволяют наиболее объективно оценить современные процессы ландшафтообразования и выделить тенденции будущих преобразований.

В экономической географии космические методы применяются менее широко. В геогра­фии сельского хозяйства основное внимание уделяется определению земельных угодий и оцен­ке их нарушенности, вычислению урожайности посевов, продуктивности пастбищ, контролю за функционированием мелиоративных систем, сельскохозяйственному картографированию. В географии населения и транспорта с помощью космических снимков анализируют структуру, функционирование и динамику населенных пунктов, проводят картографирование расселе­ния, уточняют распределение и динамику транспортной сети.

Ряд научных разработок используется в практических целях. В метеорологии разработана и внедрена в производство технология применения материалов космических съемок земной по­верхности при прогнозах погоды, в геологии — при определении районов поиска полезных иско­паемых, в гляциологии — при прогнозах ледовой обстановки в арктических морях в нави­гационный период, в ландшафтоведении — при оценке пригодности конкретных видов ис­пользования земель и прогнозах изменений структуры земельного фонда при определенных формах хозяйственной деятельности и др.

Для географических исследований разработаны общие принципы и методы обработки ма­териалов космической съемки. Сюда относится дешифрирование космических снимков и других видов дистанционной информации, передача в картографической форме результатов исследо­ваний, проведение картометрического анализа с последующей статистической обработкой дан­ных, применение математических методов для описания географических явлений и выявления закономерностей, осуществление автоматизированной обработки материалов космической съемки, а также моделирование исследуемых ситуаций в фотографической, графической, карто­графической и численной форме.

В основе изучения природной среды космическими методами лежит дешифрирование снимков. По существующей методике оно осуществляется на базе знания географической ситуа­ции на исследуемой территории с привлечением текстовых и картографических материалов, а при необходимости и полевых исследований. Общая методика дешифрирования космических сним­ков к настоящему времени разработана достаточно детально на базе методики, принятой ранее в аэросъемке. Вместе с тем комплексное дешифрирование природной среды имеет свою спе­цифику. Комплексное дешифрирование основано на важнейшем свойстве природной среды — тесной взаимосвязи и зависимости всех ландшафтных компонентов. Большая роль в его осу­ществлении принадлежит индикационному дешифрированию, позволяющему наиболее объек­тивно охарактеризовать современные ландшафты, их связь с геологическими и гидрологиче­скими условиями территории и зависимость от экономических и социальных факторов.

Конечным результатом дешифрирования снимков обычно является составление схем де­шифрирования или географических карт. В настоящее время использование космических сним­ков стало нормой картографического производства. Результаты комплексного географического картографирования показывают высокую достоверность, точность, хорошую сопоставимость отраслевых карт и их уникальное значение для прикладных географических исследований.

Многоплановое применение материалов космической съемки наиболее эффективно в сис­теме мониторинга природной среды. Сформировавшиеся к настоящему времени службы мо­ниторинга рассматриваются как геоинформационные системы слежения, изучения, контроля и прогноза изменений природной среды. Основными источниками информации в таких системах служат периодическая разномасштабная аэрокосмическая съемка Земли в сочетании со ста­ционарными наземными наблюдениями.

Службы мониторинга создаются на международном, национальном и ведомственном уровнях. В зависимости от масштаба исследуемых явлений они подразделяются на глобаль­ные, региональные и локальные. По своей специализации выделяют комплексные и отраслевые системы, включающие соответственно исследования различных взаимосвязанных природных компонентов или узкоспециализированное изучение отдельных географических объектов и яв­лений.

Несмотря на короткую историю развития, накоплен обширный опыт применения монито­ринга в различных областях исследования Земли. На основе рекомендаций, выдвинутых на Стокгольмской конференции, в рамках ЮНЕП (программа ООН по окружающей среде) в 1975 г. была создана глобальная система мониторинга окружающей среды, представляющая собой мировую информационную систему непрерывного слежения за состоянием среды в целях ра­ционального использования природных ресурсов.

В рамках Всемирной метеорологической организации разворачивается глобальная система комплексного климатического мониторинга. Имеется опыт спутникового наблюдения климата на базе метеорологических и ресурсных ИСЗ в США и нашей стране. Проектируются спутни­ковые системы глобального мониторинга океана и океанических побережий.

Космические методы — это методы изучения структуры и развития географической сре­ды по материалам космической съемки, полученным с помощью регистрации отраженного сол­нечного и искусственного света и собственного излучения Земли с космических летательных ап­паратов. В основе географических исследований с помощью космических методов лежит теория оптических свойств природной среды, обусловленных взаимодействием солнечного излучения с географической оболочкой. Дешифрирование снимков основано на использовании корреляционных связей между параметрами географических объектов и их оптическими ха­рактеристиками.

В настоящее время географы располагают чрезвычайно разнообразными видами косми­ческой информации, пригодной для исследований как физико-, так и экономико-географических явлений. Это снимки во всех диапазонах спектра электромагнитных волн, ис­пользуемых в современных дистанционных методах — видимом и ближнем инфракрасном, теп­ловом инфракрасном и радиодиапазоне (микроволновом и ультракоротковолновом).

Космические снимки земной поверхности являются моделями местности, отражающими реальную географическую ситуацию на момент съемки. Наиболее ценными их свойствами являются: 1) комплексное изображение ландшафтной структуры, включая основные природ­ные и антропогенные компоненты; 2) широкий спектральный диапазон съемки, о чем сказано выше; 3) высокая обзорность снимков (они могут охватывать площади от 10 тыс. км 2 до полушария Земли в целом); 4) большое разнообразие масштабов съемки (крупнее 1:200000 — 1:100000000); 5) различная периодичность съемки — от десятков минут до десятков лет; 6) многократное покрытие съемкой земного шара.

Космические методы удачно дополняют традиционные наземные и аэрометоды. Их совме­стное использование обеспечивает географические исследования одновременно на локальном, региональном и глобальном уровнях. Естественно, что они активно используются не только в науках географического цикла, но и в геологии, почвоведении, а также в отдельных отрас­лях хозяйства.

Наиболее широко дистанционная съемка применяется в физической географии. В гео­морфологии эффективно применение космических методов при проведении морфо-структурного и морфоскульптурного анализа и картографирования рельефа, его многолетней динамики, при­родных и антропогенных процессов рельефообразования. В гидрологии по дистанционным изо­бражениям изучают морфологические и морфометрические характеристики водных объектов, прослеживают гидрологический режим водных объектов, проводят моделирование стока, кар­тографирование гидрологической сети.

В почвоведении по космическим снимкам успешно устанавливают пространственную диф­ференциацию почвенного покрова и проводят его картографирование, определяют многие па­раметры почв, такие, как гумусность, механический состав, засоленность, влажность, темпера­тура. Такие исследования особенно важны при оценке плодородия почв на возделываемых землях, разработке комплексных мелиоративных мероприятий, подборе севооборотов и т. д. В биогеографии с помощью разномасштабных снимков выявляют и картографируют пространствен­ную структуру биоценозов, проводят биоценометрические, фенологические, медико-географические исследования.

В ландшафтоведении космические методы широко применяют при изучении и картогра­фировании пространственной структуры, сезонной ритмики и многолетней динамики ландшаф­тов, в палеогеографических исследованиях. По снимкам распознают разнообразные природные ландшафты, их антропогенные модификации и техногенные комплексы. В целях охраны природы по дистанционным изображениям проводят комплексные природоохранные исследования, осу­ществляют контроль негативных процессов обезлесения, саваннизации, опустынивания и мно­гих других. Вместе с тем осуществляют оценку антропогенного воздействия на природную среду, а также контроль загрязнения воздушного и водного бассейнов, снежного покрова, земной поверхности.

Большой интерес представляет применение космических снимков при изучении генезиса и истории развития естественных ландшафтов. Приведем примеры дешифрирования археологиче­ских объектов ландшафтно-генетических рядов, форм реликтового рельефа, гидрографической сети, фрагментов древних почв.

Калмыцкими учеными с помощью материалов космической съемки, аэроснимков и назем­ных исследований составлена обзорная археологическая карта Калмыкии, а также археоло­гические картосхемы Сарпинской низменности и зоны черноземельной оросительно-обводнительной системы на площади 25,8 тыс. км 2 . По космическим снимкам опознаны места древних поселений, курганы, руины строений, древняя дорожная сеть, староорошаемые земли, высохшие русла рек, в том числе древние русла Волги.

Комплексные исследования истории развития ландшафтов с учетом природных и ан­тропогенных факторов формирования по космическим снимкам имеют самостоятельное науч­ное значение, а также позволяют наиболее объективно оценить современные процессы ландшафтообразования и выделить тенденции будущих преобразований.

В экономической географии космические методы применяются менее широко. В геогра­фии сельского хозяйства основное внимание уделяется определению земельных угодий и оцен­ке их нарушенности, вычислению урожайности посевов, продуктивности пастбищ, контролю за функционированием мелиоративных систем, сельскохозяйственному картографированию. В географии населения и транспорта с помощью космических снимков анализируют структуру, функционирование и динамику населенных пунктов, проводят картографирование расселе­ния, уточняют распределение и динамику транспортной сети.

Ряд научных разработок используется в практических целях. В метеорологии разработана и внедрена в производство технология применения материалов космических съемок земной по­верхности при прогнозах погоды, в геологии — при определении районов поиска полезных иско­паемых, в гляциологии — при прогнозах ледовой обстановки в арктических морях в нави­гационный период, в ландшафтоведении — при оценке пригодности конкретных видов ис­пользования земель и прогнозах изменений структуры земельного фонда при определенных формах хозяйственной деятельности и др.

Для географических исследований разработаны общие принципы и методы обработки ма­териалов космической съемки. Сюда относится дешифрирование космических снимков и других видов дистанционной информации, передача в картографической форме результатов исследо­ваний, проведение картометрического анализа с последующей статистической обработкой дан­ных, применение математических методов для описания географических явлений и выявления закономерностей, осуществление автоматизированной обработки материалов космической съемки, а также моделирование исследуемых ситуаций в фотографической, графической, карто­графической и численной форме.

В основе изучения природной среды космическими методами лежит дешифрирование снимков. По существующей методике оно осуществляется на базе знания географической ситуа­ции на исследуемой территории с привлечением текстовых и картографических материалов, а при необходимости и полевых исследований. Общая методика дешифрирования космических сним­ков к настоящему времени разработана достаточно детально на базе методики, принятой ранее в аэросъемке. Вместе с тем комплексное дешифрирование природной среды имеет свою спе­цифику. Комплексное дешифрирование основано на важнейшем свойстве природной среды — тесной взаимосвязи и зависимости всех ландшафтных компонентов. Большая роль в его осу­ществлении принадлежит индикационному дешифрированию, позволяющему наиболее объек­тивно охарактеризовать современные ландшафты, их связь с геологическими и гидрологиче­скими условиями территории и зависимость от экономических и социальных факторов.

Конечным результатом дешифрирования снимков обычно является составление схем де­шифрирования или географических карт. В настоящее время использование космических сним­ков стало нормой картографического производства. Результаты комплексного географического картографирования показывают высокую достоверность, точность, хорошую сопоставимость отраслевых карт и их уникальное значение для прикладных географических исследований.

Многоплановое применение материалов космической съемки наиболее эффективно в сис­теме мониторинга природной среды. Сформировавшиеся к настоящему времени службы мо­ниторинга рассматриваются как геоинформационные системы слежения, изучения, контроля и прогноза изменений природной среды. Основными источниками информации в таких системах служат периодическая разномасштабная аэрокосмическая съемка Земли в сочетании со ста­ционарными наземными наблюдениями.

Службы мониторинга создаются на международном, национальном и ведомственном уровнях. В зависимости от масштаба исследуемых явлений они подразделяются на глобаль­ные, региональные и локальные. По своей специализации выделяют комплексные и отраслевые системы, включающие соответственно исследования различных взаимосвязанных природных компонентов или узкоспециализированное изучение отдельных географических объектов и яв­лений.

Несмотря на короткую историю развития, накоплен обширный опыт применения монито­ринга в различных областях исследования Земли. На основе рекомендаций, выдвинутых на Стокгольмской конференции, в рамках ЮНЕП (программа ООН по окружающей среде) в 1975 г. была создана глобальная система мониторинга окружающей среды, представляющая собой мировую информационную систему непрерывного слежения за состоянием среды в целях ра­ционального использования природных ресурсов.

В рамках Всемирной метеорологической организации разворачивается глобальная система комплексного климатического мониторинга. Имеется опыт спутникового наблюдения климата на базе метеорологических и ресурсных ИСЗ в США и нашей стране. Проектируются спутни­ковые системы глобального мониторинга океана и океанических побережий.

Свидетельство и скидка на обучение каждому участнику

Зарегистрироваться 15–17 марта 2022 г.

Конспект урока на тему " Современные космические методы изучения Земли на службе

Цель : ознакомление с возможностями космических методов изучения Земли и применением результатов исследования в различных сферах деятельности человека.

изучение способ съемки Земли из космоса

ознакомление с историей и современным состоянием космического метода, достижениями отечественной и зарубежной космонавтики, перспективами развития

ознакомление с космическими снимками и овладеть основами визуального дешифрирования космических изображений

Космические исследования и освоение космического пространства – одно из важнейших проявлений современной научно-технической революции. С покорением космоса человечество открыло много нового и неизвестного. Появилась возможность изучать свой дом – Землю на расстоянии. Так было положено начало космическим методам изучения Земли.

Космические методы относятся к дистанционным, т.к. исследуемый объект изучается на дистанции. Дистанционное зондирование – это получение информации об объекте без вступления с ним в прямой контакт.

Полученные таким образом сведения имеют в науке огромную ценность. Оказалось, что дистанционные космические методы имеют существенные преимущества перед наземными методами. Прежде всего, возможность получения изображения Земли в разных масштабах (от глобального до локального), оперативность, возможность повторить исследование неоднократно. Съемка из космоса позволяет охватить единым взглядом обширные пространства и одновременно рассмотреть многообразные детали строения местности, в том числе те, которые не заметны в поверхности Земли.

В своем развитии дистанционное зондирование (исследование) имеет несколько этапов:

В 18 веке с помощью простейшей камеры-обскуры – светонепроницаемой коробки с небольшим отверстием в центре – получали рисованные снимки. Съемку делали с высоты птичьего полета на воздушном шаре. По таким снимкам составляли топографические карты местности. Это была сложная кропотливая работа.

С открытием фотографии в 1839 г. дело пошло значительно быстрее. Впервые стало возможным постоянно и объективнофиксировать изображение. Первоначально фотоаппараты размещались на простых летательных аппаратах (воздушные шары, воздушный змей) и даже птицах. Это была аэрофотосъемка местности.

Следующий шаг к тому, что мы теперь называем дистанционным зондированием, был связан с развитием самолетостроения. Уже в начале 20 века были получены аэрофотоснимки с самолетов. В годы Первой мировой войны выполняли аэрофотосъемку в разведывательных целях.

В 30-ые годы 20 века аэрофотосъемка заменила наземную съемку и стала основным методом составления карт. Так, к середине 50-х годов с помощью аэрофотоснимков были составлены топографические карты всей территории СССР.

Важнейшим толчком в развитии метода дистанционно зондирования послужило покорение космоса человеком. В 60-ые годы 20 века стало возможным получение снимков, сделанных из космоса. Это событие послужило толчком в разработке новых типов съемочных аппаратов. В США и СССР разрабатываются новые оптико-электронные системы – сканеры, выполняющие многозональнуюсъемка земной поверхности.

В 80-ые годы стало возможным широкое применение комических снимков во всех областях изучения земли.

В настоящее время вокруг Земли движется множество спутников-съемщиков разных стран, которые регулярно делают съемку Земли и поставляют на Землю тысячи разных снимков земной поверхности.

Для получения снимков различной степени детальности, спутники запускают на разные высоты. Выделяют три основных высотных яруса их полета :

Спутники самого верхнего яруса , запускаемые на высоту 36 000 км, летают над экватором. Их называют геостационарными, поскольку, вращаются вместе с земным шаром и делая полны оборот вокруг земли ровно за одни сутки. Такие спутник как бы висят в небе над одной и той же точкой земли. Геостационар может выполнить съемку почти целого полушария Земли.

Спутники среднего яруса , орбита которых проходит над полюсами (поэтому их называют полярными), летают на высоте от 600 до 1500 км. Для съемки всей земной поверхности им требуется от одних суток до 2-3 недель.

Спутники самого нижнего яруса , летающие на высоте 200-300 км, ведут детальную съемку отдельных участков земной поверхности, расположенных вдоль трассы полета.

Космические системы наблюдения Земли подразделяются по своему назначения на метеорологические, ресурсные, океанологические, картографические, навигационные, научно-исследовательские.

Различают следующие группы таких аппаратов:

Фотографические аппараты . Получаемые таким аппаратом снимки называют плановые, т.к. по геометрическим свойствам они приближены к плану местности. С помощью космических фотоаппаратов получают снимки только в видимом диапазоне.

Спутниковые сканеры . В отличие от фотоаппаратов работают во многих диапазонах электромагнитного спектра (получают снимки не только в видимом, но и инфракрасном диапазоне)

В результате выполнения космических съемок накоплен многомиллионный фонд снимков. Для того, чтобы эффективно использовать эти изображения, они систематизированы, сгруппированы по возможностям их применения. При всем многообразии снимков у них можно выделить ряд общих характеристик:

Масштаб снимка . Снимки, как и карты, различаются по масштабу. Они бывают:

крупномасштабные – в 1 см – 10 м и даже крупнее.

мелкомасштабные (в 1 см – 100 км)

Масштаб снимка зависит от высоты выполнения съемки, фокусного расстояния аппарата, кривизны земной поверхности. От масштаба зависит обзорность снимка: на крупномасштабных снимках изображены лишь отдельные дома, на мелкомасштабных можно увидеть целые континенты.

Обзорность снимков – это охват территории одним снимком.

По обзорности снимки разделяют: глобальные (охватываю всю планету), крупнорегиональные (охватывают крупные регионы мира: Европа, Азия и т.д.), региональные (регион и его часть: Бельгия, Московская область); локальные (изображают небольшой участок местности: небольшой город, микрорайон)

Разрешение . С масштабом снимков связана их способность воспроизводить мелкие объекты и отдельные детали. Крупномасштабные снимки имеют разрешение в десятки сантиметров, т.е. на них могут быть видны даже ветки деревьев. Мелкомасштабные снимки имеют разрешение в несколько км, в результате наблюдатель видит очень большие участки леса или всю лесную зону.

Ретроспективность. Снимок объективно фиксирует состояние местности, отдельных объектов и явлений на момент съемки. Сопоставляя снимки разных лет, можно оценить динамику природных процессов: например, насколько отступил ледник, как растут овраги, изменяются площади лесов.

Стереоскопичность. Два снимка одно и того же участка местности, полученные с разных точек, образуют стереоскопическую (т.е. воссоздающую объемное изображение) пару снимков. Вооружившись стереоскопом, можно наблюдать по этим снимкам не плоское изображение, а объемную и очень выразительную модель местности. Это замечательное свойство снимков важно для изучения рельефа земной поверхности и составления карт.

Спектральный диапазон .Современная съемочная аппаратура способна делать съемку в разных диапазонах электромагнитного излучения.

По этому признаку выделяют три группы снимков:

в видимом диапазоне, который называют световым

в тепловом инфракрасном диапазоне

От выбора диапазона зависит то, какие объекты будут изображены на снимках. На снимках в видимом диапазоне изображается все, что видно человеческим глазом; снимки в инфракрасном тепловом диапазоне позволяют определить температуру поверхности, а радиодиапазоне – ее шероховатость (т.е. неровности поверхности). Очень часто одновременно получают не один, а целую серию снимков в разных спектральных диапазонах. Такие снимки называются многозональными .

Спутниковая информация представляет огромную ценность не только для науки. Она позволяет решить ряд задач во многих отраслях экономики. Например: в сельском хозяйстве. Так, спутниковая информация позволяет обнаружить районы, пораженные засухой, вредителями, техногенными выбросами. Интересный факт: В 70-е и 80-е гг. Советский Союз закупал в больших объемах зерно за рубежом – в США, Канаде и других странах. Нет сомнения, что зарубежные партнеры при определении цены учитывали виды на урожай и использовали спутниковую информацию для оценки состояния сельхозугодий в СССР.

Активно используется космический мониторинг в борьбе с лесными пожарами. По данным, полученным со спутников, можно определить координаты очагов пожаров, площадь и объем сгоревшего леса, величину экономического ущерба. Например: на фото, сделанном в районе Амурской области летом 2014 года, четко выделяются очаги пожаров с дымовыми шлейфами.

По космоснимкам можно осуществлять экологический контроль атмосферного воздуха, отслеживая загрязнение снежного покрова и дымовые выбросы промышленных предприятий. На рисунке представлена карта экологического состояния воздушного бассейна над Москвой. Как видно, наиболее загрязненными районами являются районы железнодорожных вокзалов и территория вокруг завода имени Лихачева.

Данные дистанционного зондирования Земли, благодаря периодичности спутниковой съемки, позволяют оперативно оценить обстановку в районах возникновения стихийных бедствий (наводнений, циклонов, засух, землетрясений, пожаров) и служат основой для своевременного прогноза природных катастроф.

Пример мы видим на слайде: представлены два снимка одно и того же участка побережье Индонезии в декабре 2004 года с интервалом в несколько часов. Хорошо видны последствия цунами, охватившего побережье Индийского океана.

На следующих фотографиях, сделанных с интервалом 10-15 лет, можно наблюдать возникновение проблемы, связанной с пересыханием озера Чад. Подобное явление переживает и Аральское море.

Данные космического мониторинга можно использовать для принятия мер по предупреждению возникновения чрезвычайных ситуаций. Так, регулярный космический мониторинг ледовой обстановки на реках Сибири в весенний период позволяет своевременно выявлять места возникновения ледовых заторов с целью их ликвидации (например, взрывным методом) и тем самым не допустить возникновения сильного наводнения, приводящего к большому социальному и материальному ущербу.

Одной из наиболее важных задач, которую можно решить с помощью данных дистанционного зондирования Земли, является контроль развития инфраструктуры территории для целей регионального планирования. Как правило, при решении задач регионального планирования используются топографические карты. Но, как показывает опыт, данные карты перестают отражать истинное положение дел уже через несколько лет после составления. Появляются новые дороги, населенные пункты и др., не намеченные на карте. Все это в значительной степени затрудняет процесс регионального планирования. В этой связи применение систем дистанционного зондирования Землиоткрывает большие возможности для организации эффективного регионального планирования, особенно в условиях бурного развития страны или отдельных ее территорий.

Рисунок иллюстрирует вышесказанное. Как видно, сопоставление топографической карты района Туапсе, составленной в 1994 г., с космическим снимком того же района 2009 г. наглядно показывает преимущества использования систем дистанционного зондирования Земли. По снимку можно провести уточнение береговой линии, выявить вновь появившиеся объекты, не отмеченные на топографической карте.

Мы убедились, что в настоящее время космические снимки необходимы не только географам, но и метеорологам, геологам, картографам. С помощью космических снимков изучают строение земной коры, ищут полезные ископаемые, обнаруживают лесные пожары, исследуют богатые рыбой районы в океане. Таким образом, космический метод изучения Земли популярен, актуален, представляет неограниченные возможности.

Уже сейчас у каждого из нас есть персональный доступ к результатам космического зондирования Земли для использования в образовательных целях. Еще несколько лет назад это было бы фантастикой. Но ведь запуск первого искусственного спутника Земли и первый полет человека в космос даже за несколько лет до их осуществления тоже казался необыкновенной фантастикой.

Знание обладает великолепной особенностью – постоянно напоминает, что оно лишь трамплин в будущее и слишком много нам еще не известно. Выход человека в космос позволил решить много новых задач и сделать новые открытия. Но процесс познания таков, что, решая одни задачи, мы сталкивается с новыми нерешенными проблемами, ведь сам процесс познания бесконечен.

Читайте также: