Каковы функции центрального процессора кратко

Обновлено: 04.07.2024

Дальше рассмотрим подробнее, что такое процессор компьютера и для чего он нужен.

Функции процессора

Чтобы лучше понять назначение процессора, обратимся к его устройству. Обязательные составляющие: ядро процессора, состоящее из арифметико-логического устройства, внутренней памяти (регистров) и быстрой памяти (кэш), а также шины - устройства управления всеми операциями и внешними компонентами. Через шины в ЦПУ попадает информация, которую затем обрабатывает ядро.

Таким образом, в основные функции процессора входит:

  1. обработка информации с помощью арифметических и логических операций;
  2. управление работой всего аппаратного обеспечения компьютера.

Производительность оборудования зависит от характеристик процессора, о которых речь пойдет дальше.

ТТХ процессора

Тактовая частота означает число операций в секунду. Выполнение отдельных операций может занимать от нескольких долей такта до десятков тактов. Измеряется в мегагерцах (миллион тактов в секунду) или гигагерцах (миллиард тактов в секунду). Чем выше тактовая частота, тем быстрее ЦПУ обрабатывает входящую информацию.

Разрядность - количество битов (разрядов двоичного кода), обрабатываемое центральным процессором за единицу времени. Современные процессоры - 32- или 64-разрядные, то есть они обрабатывают 32 или 64 бита информации за один такт. Разрядность процессора также влияет на количество оперативной памяти, которое можно установить в компьютер. Только 64-разрядный процессор поддерживает более 4 ГБ ОЗУ.

Количество ядер - еще одна важная характеристика процессора. Современные ЦПУ могут иметь от одного до нескольких вычислительных ядер на одном кристалле. Одноядерные процессоры выполняют несколько задач не одновременно, а последовательно, при этом выполнение отдельных операций занимает доли секунды. Двухъядерный процессор способен выполнять две задачи одновременно, четырехъядерный - четыре и т.д., что позволяет с полным правом называть современные компьютеры многозадачными. С одной стороны, чем больше ядер у процессора, тем мощнее и производительнее становится компьютер. Но есть и нюансы. Так, если выполняемая на компьютере программа не оптимизирована под многопоточность, то и выполняться она будет только одним ядром, не позволяя в должной мере прочувствовать всю мощь устройства.

Это, конечно, далеко не полный перечень характеристик, но именно эти параметры оказывают наибольшее влияние на производительность вычислительного устройства, то, на что следует обращать пристальное внимание при выборе процессора.

Но кроме технических характеристик важно также учитывать, где будет использоваться ЦПУ. Устанавливать процессор для сервера в обычный персональный компьютер не имеет особого смысла - современные десктопные процессоры достаточно мощные и производительные, а стоят дешевле. А ставить процессор для компьютера в сервер в целях, например, экономии, - не очень хорошая идея. Почему? Рассмотрим дальше.

Серверные процессоры

От сервера требуется надежность и стабильная работа в режиме 24/7, и поэтому серверные процессоры тщательно тестируют на устойчивость к стрессовым условиям: высоким вычислительным и температурным нагрузкам.

Из-за требований надежности у процессора для сервера отсутствует возможность его разгона (повышения тактовой частоты), из-за которого существует риск преждевременного выхода ЦПУ из строя.

Выбор процессора

Современный рынок ЦПУ представлен главным образом двумя крупными производителями - Intel и AMD. Процессоры Intel - дорогие, но имеют высокое качество и производительность. Серверная линейка представлена процессорами Xeon. В процессорах Intel реализована технология гиперпоточности (Hyper Threading, HT). Идея в том, что на каждое ядро направляется два виртуальных вычислительных потока и за счет этого возрастает производительность процессора.

Технологически процессоры AMD отстают от Intel, но стоят значительно дешевле. Часто в ЦПУ от AMD встроено видеоядро. Для серверов предлагается серия процессоров Opteron.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.


Компьютер является неотъемлемой частью жизни современного человека. Интернет-серфинг, удаленная работа, быстрая связь с близкими и друзьями за считанные секунды - все это дает нам компьютер. Еще несколько десятилетий назад люди не могли представить, что посмотреть любимый фильм, заказать еду или купить книгу можно будет не вставая со стула. Теперь же это для нас не просто привычно, это вошло и укоренилось в нашей жизни. Давайте разберемся, из чего же состоит компьютер. А состоит он из множества компонентов и деталей, главные из которых - это оперативная память, центральный процессор и видеокарта. Конечно, в компьютере есть еще ряд вещей, без которых он не может функционировать: блок питания, жесткий диск, материнская плата и элементы гарнитуры. Перейдем к более детальному рассмотрению.

Устройство центрального процессора

Процессор - это своего рода мозги компьютера. На самом деле больше, чем процессор, не выполняет задач ни один элемент в компьютере. Через центральный процессор проходят сотни потоков в секунду. Он перерабатывает информацию и распределяет ее уже между другими компонентами. Не зря его называют сердцем компьютера. Через него проходит вся информация и все процессы. Что такое ЦПУ в компьютере, разобрались, перейдем к его устройству.

Устройство центрального процессора

Верхняя часть процессора представляет собой механическую крышку. Она необходима для рассеивания тепла и в случае удара или падения защитит процессор. Сразу под этой крышкой находится своего рода кристалл, отвечающий за все процессоры в компьютере. За основу кристалла взят кремний. В случае его малейшего повреждения работа центрального процессора будет нарушена. Под кристаллом находится специальная прокладка, к которой с обратной стороны процессора прикреплены своеобразные "ножки" процессора. Именно они контактируют с материнской платой и передают всю информацию. Так же как и в случае с кристаллом, если не будет хотя бы одной ножки, то работа компьютера будет нарушена.

Процессор в разобранном виде

Функции центрального процессора

Как уже было сказано, процессор выполняет очень важную функцию в компьютере. От мощности процессора зависит то, насколько хорошо себя проявят остальные компоненты. Если мощности процессора не хватает для того, чтобы стабильно грузить приложение или игру, то видеокарта также не сможет проявить себя. Разберем, что делает центральный процессор:

  • выборка (чтение) выполняемых команд;
  • ввод (чтение) данных из памяти или устройства ввода/вывода;
  • вывод (запись) данных в память или в устройства ввода/вывода;
  • обработка данных (операндов), в том числе арифметические операции над ними;
  • адресация памяти, то есть задание адреса памяти, с которым будет производиться обмен;
  • обработка прерываний и режима прямого доступа.

Это основные функции ЦП. Все эти функции он выполняет каждую секунду своей работы, обеспечивая стабильную работу компьютера.

Центральный процессор и его характеристика

Каждый процессор имеет свои особенности строения. Характеристика центрального процессора позволяет понять, для каких задач он создан. Разная архитектура, тактовая частота. Все это в каждом процессоре разное:

тип архитектуры или серия (CISC, Intel х86, RISC);

система поддерживаемых команд (х86, IA-32, IA 64);

расширения системы команд (ММХ, SSE, SSE2, 3Dnow!);

конструктивное исполнение (Slot I, Slot 2, Socket 340, Socket 478, Slot A, Socket A);

тактовая частота (МГц, ГГц);

частота системной шины.

Блоки в центральном процессоре

Стоит также уделить внимание понятию блоков центрального процессора. Они нужны для временного хранения управляющей информации. Эти блоки необходимы для того, чтобы в случае необходимости процессор мог моментально достать и использовать необходимую ему информацию. Обычно это чуть более 10 MB, но скорость у такой памяти намного выше, чем у оперативной памяти.

Видеокарта

Обсуждая центральный процессор CPU и другие компоненты компьютера, нельзя не уделить время такой важной части каждого устройства, как видеоадаптер. Видеокарта - это устройство, которое преобразует образ, хранящийся в виде информации, в полноценную и привычную нам картинку. То есть процессор информацию получает, обрабатывает и передает видеокарте, а она в свою очередь ее преобразует в графический образ. От мощности видеоадаптера зависит, какое качество картинки вы получите, разрешение и количество кадров. ЦПУ - это тоже компонент, от которого зависят кадры на экране. Количество кадров в секунду означает количество обновлений, которое происходит на экране за данную единицу времени. Приемлемым считается 25 кадров и выше, но за эталон принято не менее 30 кадров. Что интересно, частота обновления образа более 60 раз в секунду не имеет смысла, так как наш глаз уже не видит столь маленькой разницы. Видеокарты условно делятся на 3 типа:

  • Для 3D-работ.
  • Для игр.
  • Для домашних компьютеров.

Разберем каждый тип видеокарт. К 1 типу относятся видеоадаптеры, заточенные конкретно под моделирование. Такие видеокарты стоят довольно дорого, так как намного сложнее и требовательнее остальных видов. Второй тип самый массовый и распространенный, к нему относят все видеокарты от компании Nvidia c названием GTX и от компании AMD с указателем "x" в конце (например R7 275x). Эти видеокарты заточены именно под игры, но так же отлично проявляют себя для обычной, спокойной работы. Ну а к 3 типу относят видеокарты для интернет-серфинга или для работ в офисе, не требующих высоких показателей производительности.

Видеокарта Nvidia Titan Z

Эффект "узкого горлышка"

Необходимо сказать о том, что связка процессора и видеокарты должна быть грамотно подобрана. Иначе можно столкнуться с таким явлением, как bottleneck. В переводе с английского это означает "узкое горлышко". Разберемся, что это такое и почему возникает. ЦПУ - это важный модуль компьютера, и если он загружен на полную, а видеокарта еще нет, то это называется эффектом узкого горлышка, когда производительность компьютера упирается в мощность процессора, а не в видеокарту. Для того чтобы избежать подобных ситуаций, необходимо выбирать процессор мощнее, чем тот, что подходит к видеокарте.

Пример bottleneck

Троттлинг

Троттлинг - это процесс защиты процессора от механических повреждений в ходе перегрева. Из-за этого существенно падает частота процессора и мощность компьютера в целом. Явление неприятное и возникает нечасто, только при существенном перегреве центрального процессора. ЦПУ - это очень хрупкий и важный компонент компьютера, который в случае угрозы поломки защищает себя. Например, процессор с 4 ядрами и 8 потоками в случае перегрева из-за высокой нагрузки увеличивает нагрузку на первые два ядра, так как они являются основными по умолчанию почти у всех процессоров. Пока остальные ядра охлаждаются, первые два работают на полную, и если нагрузка только увеличивается, то вскоре они перегреваются и включается троттлинг, тем самым фактически выключая эти ядра, перекидывая нагрузку на остальные два ядра, которые вскоре так же перегреваются и частота процессора существенно падает. Для того чтобы не попасть в такую ситуацию, надо следить за охлаждением процессора. Обязательно надо чистить компьютер от пыли, в том числе кулер, который охлаждает ЦП. Также необходимо проводить замену термопасты для более лучшей проводимости тепла. Компьютер должен находиться на расстоянии не менее 50 см от стены, для свободной циркуляции воздуха, иначе перегреву подвергнется не только процессор, но и весь компьютер в целом. Для понижения температуры процессора проводится его скальпирование. Это замена текстолита, который находится под крышкой процессора, передавая тепло от кристалла к его крышке и к кулеру.

процессор это мозг компьютера

Оперативная память

Также одним из важнейших компонентов компьютера является оперативная память, или как ее еще называют ОЗУ (оперативно запоминающее устройство). В отличие от жесткого диска в оперативной памяти содержится временная информация. То есть при запуске игры сама игра находится на жестком диске, а действия, которые происходят в игре на данный момент на экране, хранятся на оперативно запоминающем устройстве. Почему именно так, а не на жестком диске? Так как у ОЗУ скорость пропускная память в десятки раз выше, чем у основного диска компьютера, то именно в ней хранятся промежуточные данные. Во время загрузки локации в игре нужно быстро подгрузить файлы, а для этого нужно их пропустить через оперативную память или жесткий диск. Так как пропуск через жесткий диск будет в разы дольше, используется оперативная память.

Оперативная память

Разгон компонентов ПК

Часто пользователи недовольны мощностью и производительностью своего компьютера. Для этого разработчики видеокарт, процессоров и так далее предусмотрели самостоятельное увеличение мощности компьютера в домашних условиях. Разгон каждого модуля компьютера отличается и требует осторожности.

Пример разгона

Разгон процессора

ЦПУ - это самая важная часть в компьютере. Его разгон больше всего увеличивает мощность ПК. Как уже было сказано, если компьютер упирается мощностью в процессор, то страдает вся производительность. Что же надо сделать для разгона?

  • Сначала определите, если не знаете, какой у вас процессор.
  • Попробуйте найти на форумах в интернете информацию о разгоне именно вашей модели процессора от пользователей. Там будет указано максимально возможная частота, до которой смогли довести процессор другие пользователи.
  • Запустите компьютер вместе с БИОСом.
  • У каждой материнской платы разное устройство БИОСа, поэтому поищите в интернете, как зайти в меню разгона процессора.
  • После того как попали в меню, вы сможете выбрать виды разгона: автоматический или ручной. Также часто бывают уже заготовленные параметры разгона, но выше чем на 10 % они не разгоняют процессор. Поэтому рекомендуется выбирать ручной режим.
  • Попробуйте увеличить показатель множителя вашего процессора на 10-15 % (допустим, он будет 220, а вы поставите 330).
  • Запустите компьютер и понаблюдайте за его работой.
  • Если компьютер не запускается, или во время работы выскакивает синий экран смерти, видимо, вы переусердствовали с разгоном.

Почему же у разных пользователей разные показатели разгона процессора одной и той же модели?

У каждого пользователи разное охлаждение и модель материнской платы. Каждая плата рассчитана под определенные нужды. Одна под офисные работы, другая под активное домашнее пользование компьютером, а третья как раз таки для разгона и игр. У кого-то материнская плата мощнее, поэтому и возможность разгона выше. Также, конечно, влияет и уровень охлаждения процессора. Повышая частоту процессора, мы увеличиваем его теплоотдачу. У каждого кулера есть предел температуры охлаждения, у одного это 90 TDF, у другого 120 TDF и так далее. Соответственно, если теплоотдача процессора выше, чем может охладить кулер, то стабильно система работать уже не будет. То есть два главных компонента в разгоне процессора - это материнская плата и система охлаждения.

разгон процессора

Разгон видеокарты

Видеокарта, так же как и процессор, подлежит разгону. С помощью увеличения мощности можно повысить качество картинки и увеличить количество кадров в играх. Для этого надо проделать пару нехитрых действий:

Разгон видеокарты

Разгон оперативной памяти

Увеличение мощности оперативной памяти осуществляется тем же путем, что и разгон процессора. Вы так же заходите в БИОС, находите пункт разгона и понемногу увеличиваете показатели. Зачем нужен разгон оперативной памяти? Разгоняя ее, вы повышаете скорость передачи данных, тем самым ускоряя работу приложений и игр на вашем компьютере. Также стоит сказать, что разгон оперативной памяти является самым опасным, так как может привести к непоправимым последствиям, вплоть до поломки материнской платы.

Заключение

В статье было полностью рассмотрено устройство центрального процессора и других компонентов. Каждый может самостоятельно дома разогнать и улучшить свой компьютер. Но необходимо обязательно помнить, что в случае поломки никто не починит ваш компьютер бесплатно, так как разгоняя его, вы берете ответственность на себя.

В этой статье вы узнаете, что такое процессор CPU, АЛУ и тактовая частота.

В человеческом теле за всю работу органов отвечает мозг. Он подает электрические импульсы - команды, благодаря которым органы работают правильно. Подобную функцию в компьютере выполняет центральный процессор. Также его называют CPU. Расшифровка CPU ― Central Processing Unit (центральное обрабатывающее устройство).

Как выглядит и где находится CPU

Сам процессор выглядит как небольшая пластинка квадратной формы толщиной в пару миллиметров. Чаще всего он покрыт металлической крышкой. С обратной стороны находится много контактов ― ножек.


Все части компьютера крепятся на материнскую плату. Она связывает всю систему в единое целое. В материнской плате есть разъём для CPU ― сокет. Он работает как переходник между контактами материнской платы и ножками процессора:


Назначение и характеристика процессора

Какие функции выполняет центральный процессор (CPU)

  • выполнение арифметических и логических операций с полученными данными,
  • передача результатов обработки данных на внешние устройства,
  • создание сигналов для работы внутренних элементов и внешних устройств,
  • хранение результатов выполненных операций, переданных сигналов и других данных.

Выполнять основные функции центрального процессора позволяют различные его элементы.

Составляющие CPU


Основной составляющей процессора является ядро. В нем проходят все этапы обработки данных. Само ядро состоит из двух компонентов:

  • Арифметико-логическое устройство (АЛУ). Оно выполняет все арифметические и логические операции.
  • Устройство управления(УУ) координирует взаимодействие различных частей компьютера. Оно формирует и подает во все блоки машины сигналы, в которых описан алгоритм действий.

Процессорная память нужна для хранения кратковременной информации. Она состоит из:

  • Регистров. Они сохраняют промежуточные результаты и текущие команды. АЛУ может делать только одну операцию одновременно. Представим, что устройству надо решить пример: (1+1) x (2-2). Он решается в 3 этапа: сложение, вычитание, умножение. АЛУ не может сделать это вычисление одной операцией. Сначала оно выполнит сложение и сохранит результат в регистре. Далее выполнит вычитание. Для умножения АЛУ попросит результат прошлой операции у регистра и закончит решение примера.
  • Кеш-памяти, которая нужна для ускорения выполнения частых команд. Весь список команд хранится в оперативной памяти, поэтому ядро постоянно обращается к нему за информацией. Частые команды и данные хранит кеш-память, чтобы не ждать отклика от оперативной. Это значительно ускоряет работу процессора.

Интерфейсная система нужна для связи с другими устройствами компьютера. Она включает в себя:

  • порты ввода-вывода, которые позволяют подключать к CPU другие устройства,
  • шины ― это каналы для передачи данных между всеми составляющими CPU.

Важные характеристики CPU


Первый важный фактор производительности центрального процессора ― количество ядер. Одно ядро может выполнять только одну задачу. Если процессор одноядерный, то каждая задача будет выполняться последовательно. Таким образом, двухъядерный может выполнять две задачи параллельно, трехъядерный ― три и т. д. Чем больше ядер, тем выше производительность устройства.

Тактовая частота ― число выполненных операций в секунду. Измеряется в гигагерцах (ГГц — миллиард тактов в секунду). Чем больше тактовая частота, тем быстрее работает машина.

При выборе CPU стоит ориентироваться на цели, для которых будет использоваться компьютер. От мощности центрального процессора зависит продуктивность работы других составляющих ПК. Если вы чаще всего работаете с документами, то вам не нужен мощный четырехъядерный процессор. Он просто не сможет показать весь свой потенциал. А цена за такую машину будет высокая. А если вы собираетесь играть в современные компьютерные игры и планируете устанавливать мощную видеокарту, то процессор стоит брать с высокой тактовой частотой, с четырьмя и более ядрами. Современная видеокарта не сможет показать свои возможности, если ею будет управлять слабый CPU.

Центральный процессор - это центральное устройство компьютера, которое выполняет операции по обработке данных и управляет периферийными устройствами компьютера. У компьютеров четвёртого поколения и старше функции центрального процессора выполняет микропроцессор на основе СБИС, содержащей несколько миллионов элементов, конструктивно созданный на полупроводниковом кристалле путём применения сложной микроэлектронной технологии.

На самом деле то, что мы сегодня называем процессором, правильно называть микропроцессором. Разница есть и определяется видом устройства и его историческим развитием.

Первый процессор (Intel 4004) появился в 1971 году.

Внешне представляет собой кремневую пластинку с миллионами и миллиардами (на сегодняшний день) транзисторов и каналов для прохождения сигналов.

Назначение процессора – это автоматическое выполнение программы. Другими словами, он является основным компонентом любого компьютера.

В состав центрального процессора входят:

  • устройство управления (УУ);
  • арифметико-логическое устройство (АЛУ);
  • запоминающее устройство (ЗУ) на основе регистров процессорной памяти и кэш-памяти процессора;
  • генератор тактовой частоты (ГТЧ).

Устройство управления организует процесс выполнения программ и координирует взаимодействие всех устройств ЭВМ во время её работы.

Арифметико-логическое устройство выполняет арифметические и логические операции над данными: сложение, вычитание, умножение, деление, сравнение и др.

Запоминающее устройство - это внутренняя память процессора. Регистры служит промежуточной быстрой памятью, используя которые, процессор выполняет расчёты и сохраняет промежуточные результаты. Для ускорения работы с оперативной памятью используется кэш-память, в которую с опережением подкачиваются команды и данные из оперативной памяти, необходимые процессору для последующих операций.

Генератор тактовой частоты генерирует электрические импульсы, синхронизирующие работу всех узлов компьютера. В ритме ГТЧ работает центральный процессор.

К основным характеристикам процессора относится Быстродействие (вычислительная мощность) – это среднее число операций процессора в секунду. Измеряется в количестве операций над числами с плавающей точкой в секунду (FLOPS). Быстродействие зависит от следующих параметров:

Тактовая частота в МГц. ТЧ. равна количеству тактов в секунду. Такт - это промежуток времени между началом подачи текущего импульса ГТЧ и началом подачи следующего.

Разрядность процессора - это максимальное количество бит информации, которые могут обрабатываться и передаваться процессором одновременно. Разрядность процессора определяется разрядностью регистров, в которые помещаются обрабатываемые данные.

Система команд процессора представляет собой набор отдельных операций, которые может выполнить процессор данного типа. Разные модели микропроцессоров выполняют одни и те же операции за разное число тактов. Чем выше модель микропроцессора, тем, как правило, меньше тактов требуется для выполнения одних и тех же операций.

Размер кэш-памяти

Подсистема памяти

Оперативная память.

Другим важным функциональным узлом компьютера является запоминающее устройство, или память. Память, в которой хранятся исполняемые программы и данные, называется оперативным запоми­нающим устройством (ОЗУ) или RAM (RandomAccessMemory) — па­мятью со свободным доступом. ОЗУ позволяет записывать и считы­вать информацию из ячейки, обращаясь к ней по ее номеру или адресу. Ячейка памяти имеет стандартное число двоичных разрядов. В настоящее время стандартный размер ячейки ОЗУ равняется од­ному байту Информация в ОЗУ сохраняется все время, пока на схе­мы памяти подается питание, т.е она является энергозависимой.

Существует два вида ОЗУ, отличающиеся техническими харак­теристиками: динамическое ОЗУ, или DRAM (DynamicRAM), и ста­тическое ОЗУ, или SRAM (StaticRAM). Разряд динамического ОЗУ построен на одном транзисторе и конденсаторе, наличие или отсут­ствие заряда на котором определяет значение, записанное в данном бите. При записи или чтении информации из такой ячейки требует­ся время для накопления (стекания) заряда на конденсаторе, Поэто­му быстродействие динамического ОЗУ на порядок ниже, чем у ста­тического ОЗУ, разряд которого представляет собой триггер на четырех или шести транзисторах. Однако из-за большего числа эле­ментов на один разряд в одну СБИС статического ОЗУ помещается гораздо меньше элементов, чем у динамического ОЗУ. Кроме этого статические ОЗУ более энергоемки и значительно до­роже. Обычно, в качестве оперативной или видеопамяти использу­ется динамическое ОЗУ Статическое ОЗУ используется в качестве небольшой буферной сверхбыстродействующей памяти (кэш-памяти). В кэш-память из динамической памяти заносятся команды и данные, кото­рые процессор будет выполнять в данный момент.




Скорость работы ОЗУ ниже, чем быстродействие процессора, поэтому применяются различные методы для повышения ее произ­водительности. Одним из способов увеличения быстродействия ди­намического ОЗУ является размещение в одном корпусе микросхе­мы СБИС нескольких модулей памяти с чередованием адресов. Байт с нулевым адресом находится в первом модуле, байт с первым адре­сом во втором модуле, байт со вторым адресом в первом модуле и т.д. Поскольку обращение к памяти состоит из нескольких этапов: установка адреса, выбор ячейки, чтение, восстановление, то эти этапы можно совместить во времени для разных модулей. Другим способом увеличения быстродействия является чтение из памяти со­держимого ячейки с заданным адресом и нескольких ячеек, распо­ложенных рядом. Они сохраняются в специальных регистрах — за­щелках. Если следующий адрес указывает на одну из уже считанных ячеек, то ее содержимое читается из защелки.

Несмотря на разработку новых типов схем динамических ОЗУ, снижающую время обращения к ним, это время все еще остается значительным и сдерживает дальнейшее увеличение производитель­ности процессора. Для уменьшения влияния времени обращения процессора к ОЗУ и увеличения производительности компьютера дополнительно устанавливается сверхбыстродействующая буферная память, выполненная на микросхемах статической памяти. Эта па­мять называется кэш-памятью (от англ.cache — запас). Время обра­щения к данным в кэш-памяти на порядок ниже, чем у ОЗУ, и срав­нимо со скоростью работы самого процессора.

Запись в кэш-память осуществляется параллельно с запросом процессора к ОЗУ. Данные, выбираемые процессором, одновремен­но копируются и в кэш-память. Если процессор повторно обратит­ся к тем же данным, то они будут считаны уже из кэш-памяти. Та­кая же операция происходит и при записи процессором данных в память. Они записываются в кэш-память, а затем в интервалы, ког­да шина свободна, переписываются в ОЗУ. Современные процессо­ры имеют встроенную кэш-память, которая находится внутри про­цессора, кроме этого есть кэш-память и на системной плате. Чтобы их различать, кэш-память делится на уровни. На кристалле самого процессора находится кэш-память первого уровня, она имеет самый меньший объем и самую высокую скорость обмена данными. В корпусе процессора, но на отдельном кристалле находится кэш-­память второго уровня, объем которой больше, чем у памяти первого уровня. И, наконец, кэш-память третьего уровня (самая большая по объему) расположена на системной плате.

Управление записью и считыванием данных в кэш-память вы­полняется автоматически. Когда кэш-память полностью заполняется, то для записи последующих данных устройство управления кэш­-памяти по специальному алгоритму автоматически удаляет те данные, которые реже всего использовались процессором на текущий момент. Использование процессором кэш-памяти увеличивает производительность процессора, особенно в тех случаях, когда происходит последовательное преобразование относительно небольшого числа данных, которые постоянно во время преобразования хранятся в кэш-памяти.

Центральный процессор - это центральное устройство компьютера, которое выполняет операции по обработке данных и управляет периферийными устройствами компьютера. У компьютеров четвёртого поколения и старше функции центрального процессора выполняет микропроцессор на основе СБИС, содержащей несколько миллионов элементов, конструктивно созданный на полупроводниковом кристалле путём применения сложной микроэлектронной технологии.

На самом деле то, что мы сегодня называем процессором, правильно называть микропроцессором. Разница есть и определяется видом устройства и его историческим развитием.

Первый процессор (Intel 4004) появился в 1971 году.

Внешне представляет собой кремневую пластинку с миллионами и миллиардами (на сегодняшний день) транзисторов и каналов для прохождения сигналов.

Назначение процессора – это автоматическое выполнение программы. Другими словами, он является основным компонентом любого компьютера.

В состав центрального процессора входят:

  • устройство управления (УУ);
  • арифметико-логическое устройство (АЛУ);
  • запоминающее устройство (ЗУ) на основе регистров процессорной памяти и кэш-памяти процессора;
  • генератор тактовой частоты (ГТЧ).

Устройство управления организует процесс выполнения программ и координирует взаимодействие всех устройств ЭВМ во время её работы.

Арифметико-логическое устройство выполняет арифметические и логические операции над данными: сложение, вычитание, умножение, деление, сравнение и др.

Запоминающее устройство - это внутренняя память процессора. Регистры служит промежуточной быстрой памятью, используя которые, процессор выполняет расчёты и сохраняет промежуточные результаты. Для ускорения работы с оперативной памятью используется кэш-память, в которую с опережением подкачиваются команды и данные из оперативной памяти, необходимые процессору для последующих операций.

Генератор тактовой частоты генерирует электрические импульсы, синхронизирующие работу всех узлов компьютера. В ритме ГТЧ работает центральный процессор.

К основным характеристикам процессора относится Быстродействие (вычислительная мощность) – это среднее число операций процессора в секунду. Измеряется в количестве операций над числами с плавающей точкой в секунду (FLOPS). Быстродействие зависит от следующих параметров:

Тактовая частота в МГц. ТЧ. равна количеству тактов в секунду. Такт - это промежуток времени между началом подачи текущего импульса ГТЧ и началом подачи следующего.

Разрядность процессора - это максимальное количество бит информации, которые могут обрабатываться и передаваться процессором одновременно. Разрядность процессора определяется разрядностью регистров, в которые помещаются обрабатываемые данные.

Система команд процессора представляет собой набор отдельных операций, которые может выполнить процессор данного типа. Разные модели микропроцессоров выполняют одни и те же операции за разное число тактов. Чем выше модель микропроцессора, тем, как правило, меньше тактов требуется для выполнения одних и тех же операций.

Размер кэш-памяти

Подсистема памяти

Оперативная память.

Другим важным функциональным узлом компьютера является запоминающее устройство, или память. Память, в которой хранятся исполняемые программы и данные, называется оперативным запоми­нающим устройством (ОЗУ) или RAM (RandomAccessMemory) — па­мятью со свободным доступом. ОЗУ позволяет записывать и считы­вать информацию из ячейки, обращаясь к ней по ее номеру или адресу. Ячейка памяти имеет стандартное число двоичных разрядов. В настоящее время стандартный размер ячейки ОЗУ равняется од­ному байту Информация в ОЗУ сохраняется все время, пока на схе­мы памяти подается питание, т.е она является энергозависимой.

Существует два вида ОЗУ, отличающиеся техническими харак­теристиками: динамическое ОЗУ, или DRAM (DynamicRAM), и ста­тическое ОЗУ, или SRAM (StaticRAM). Разряд динамического ОЗУ построен на одном транзисторе и конденсаторе, наличие или отсут­ствие заряда на котором определяет значение, записанное в данном бите. При записи или чтении информации из такой ячейки требует­ся время для накопления (стекания) заряда на конденсаторе, Поэто­му быстродействие динамического ОЗУ на порядок ниже, чем у ста­тического ОЗУ, разряд которого представляет собой триггер на четырех или шести транзисторах. Однако из-за большего числа эле­ментов на один разряд в одну СБИС статического ОЗУ помещается гораздо меньше элементов, чем у динамического ОЗУ. Кроме этого статические ОЗУ более энергоемки и значительно до­роже. Обычно, в качестве оперативной или видеопамяти использу­ется динамическое ОЗУ Статическое ОЗУ используется в качестве небольшой буферной сверхбыстродействующей памяти (кэш-памяти). В кэш-память из динамической памяти заносятся команды и данные, кото­рые процессор будет выполнять в данный момент.

Скорость работы ОЗУ ниже, чем быстродействие процессора, поэтому применяются различные методы для повышения ее произ­водительности. Одним из способов увеличения быстродействия ди­намического ОЗУ является размещение в одном корпусе микросхе­мы СБИС нескольких модулей памяти с чередованием адресов. Байт с нулевым адресом находится в первом модуле, байт с первым адре­сом во втором модуле, байт со вторым адресом в первом модуле и т.д. Поскольку обращение к памяти состоит из нескольких этапов: установка адреса, выбор ячейки, чтение, восстановление, то эти этапы можно совместить во времени для разных модулей. Другим способом увеличения быстродействия является чтение из памяти со­держимого ячейки с заданным адресом и нескольких ячеек, распо­ложенных рядом. Они сохраняются в специальных регистрах — за­щелках. Если следующий адрес указывает на одну из уже считанных ячеек, то ее содержимое читается из защелки.

Несмотря на разработку новых типов схем динамических ОЗУ, снижающую время обращения к ним, это время все еще остается значительным и сдерживает дальнейшее увеличение производитель­ности процессора. Для уменьшения влияния времени обращения процессора к ОЗУ и увеличения производительности компьютера дополнительно устанавливается сверхбыстродействующая буферная память, выполненная на микросхемах статической памяти. Эта па­мять называется кэш-памятью (от англ.cache — запас). Время обра­щения к данным в кэш-памяти на порядок ниже, чем у ОЗУ, и срав­нимо со скоростью работы самого процессора.

Запись в кэш-память осуществляется параллельно с запросом процессора к ОЗУ. Данные, выбираемые процессором, одновремен­но копируются и в кэш-память. Если процессор повторно обратит­ся к тем же данным, то они будут считаны уже из кэш-памяти. Та­кая же операция происходит и при записи процессором данных в память. Они записываются в кэш-память, а затем в интервалы, ког­да шина свободна, переписываются в ОЗУ. Современные процессо­ры имеют встроенную кэш-память, которая находится внутри про­цессора, кроме этого есть кэш-память и на системной плате. Чтобы их различать, кэш-память делится на уровни. На кристалле самого процессора находится кэш-память первого уровня, она имеет самый меньший объем и самую высокую скорость обмена данными. В корпусе процессора, но на отдельном кристалле находится кэш-­память второго уровня, объем которой больше, чем у памяти первого уровня. И, наконец, кэш-память третьего уровня (самая большая по объему) расположена на системной плате.

Управление записью и считыванием данных в кэш-память вы­полняется автоматически. Когда кэш-память полностью заполняется, то для записи последующих данных устройство управления кэш­-памяти по специальному алгоритму автоматически удаляет те данные, которые реже всего использовались процессором на текущий момент. Использование процессором кэш-памяти увеличивает производительность процессора, особенно в тех случаях, когда происходит последовательное преобразование относительно небольшого числа данных, которые постоянно во время преобразования хранятся в кэш-памяти.

Читайте также: