Изобарный изохорный изотермический процессы кратко

Обновлено: 07.07.2024

Изопроцессами называются процессы, протекающие при неизменном значении одного из па­раметров: давления (p), объема (V), температуры (T).

Изопроцессами называются процессы, протекающие при неизменном значении одного из па­раметров: давления (p), объема (V), температуры (T).

Изопроцессами в газах являются термодинамические процессы, на протяжении течения которых количество вещества и давление, объём, температура либо энтропия не поддаются изменениям. Таким образом, при изобарном процессе не изменяется давление, при изохорном - объём, при изотермическом - температура, при изоэнтропийном - энтропия (к примеру, обратимый адиабатический процесс). И линии, которые отображают перечисленные процессы на некой термодинамической диаграмме, называют, соответственно, изобара, изохора, изотерма и адиабата. Все эти изопроцессы являются частными случаями политропного процесса.

В идеальном газе эти процессы подчиняются газовым законам.

Газовыми законами называются количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра.

Изобарный процесс.

Изобарный (или изобарический) процесс — это изменение термодинамической системы с условием не изменения давления (P = const). Изобарой называют линию, которая отображает изобарический процесс на графике. Этот процесс описывает закон Гей-Люссака.

Изохорный процесс.

Изохорный (или изохорический) процесс — это изменение термодинамической системы с условием не изменения объема (V = const). Изохорой называют линию, которая отображает изохорический процесс на графике. Этот процесс описывает закон Шарля.

Изотермический процесс.

Изотермический процесс — это изменение термодинамической системы с условием не изменения температуры (T = const). Изотермой называют линию, которая отображает изотермический процесс на графике. Этот процесс описывает закон Бойля-Мариотта.

Изоэнтропийный процесс.

Изоэнтропийный процесс — это изменение термодинамической системы с условием не изменения энтропии (S = const). Изоэнтропийным является, например, обратимый адиабатический процесс: в таком процессе не происходит теплообмена с окружающей средой. Идеальный газ в таком процессе описывается следующим уравнением:

1) Изохорный процесс (рис.1) - это процесс квазистатического нагревания или охлаждения газа при постоянном объеме V и при условии, что количество вещества ν в сосуде остается неизменным.

Как следует из уравнения состояния идеального газа, при этих условиях давление газа p изменяется прямо пропорционально его абсолютной температуре: p ~ T или

Уравнение состояния процесса:

Так как V 2 = V 1, то l = 0 и уравнение 1-го закона т/д имеет вид:


Количество теплоты, подведенное в изохорном процессе, равно изменению внутренней энергии. Для произвольной массы вещества:


.

На плоскости (p, T) изохорные процессы для заданного количества вещества ν при различных значениях объема V изображаются семейством прямых линий, которые называются изохорами. Большим значениям объема соответствуют изохоры с меньшим наклоном по отношению к оси температур (рис. 1.2).


Рисунок 1.2 - Семейство изохор на плоскости (p, T).V3 > V2 > V1

Экспериментально зависимость давления газа от температуры исследовал французский физик Ж. Шарль (1787 г.). Поэтому уравнение изохорного процесса называется законом Шарля.

Уравнение изохорного процесса может быть записано в виде:

где p0 – давление газа при T = T0 = 273,15 К (т. е. при температуре 0 °С). Коэффициент α, равный (1/273,15) К –1 , называют температурным коэффициентом давления.

2) Изобарный процесс (рис. 2) - квазистатический процесс, протекающий при неизменным давлении p.

Уравнение состояния процесса:

Работа этого процесса:

Уравнение 1-го закона т/д имеет вид:


Выражение для определения количества теплоты для 1 кг газа примет вид:


;

для произвольной массы газа:


.

Таким образом, в изобарном процессе теплота расходуется на совершение работы и на изменение внутренней энергии рабоче­го тела.

На плоскости (V, T) изобарные процессы при разных значениях давления p изображаются семейством прямых линий (рис. 2.3), которые называются изобарами.


Рисунок 2.2 -Семейство изобар на плоскости (V, T).p3 > p2 > p1

Зависимость объема газа от температуры при неизменном давлении была экспериментально исследована французским физиком Ж. Гей-Люссаком (1862 г.). Поэтому уравнение изобарного процесса называют законом Гей-Люссака.

3) Изотермический процесс (рис. 3) - квазистатический процесс, протекающий при постоянной температуре T. Из уравнения состояния идеального газа следует, что при постоянной температуре T и неизменном количестве вещества ν в сосуде произведение давления p газа на его объем V должно оставаться постоянным:

Так как Т2 = Т1, то Du = 0 и уравнение 1-го закона т/д будет иметь вид:

где R = Rh/ i – газовая постоянная [Дж/(кг·К)].

Теплота, участвующая в изотермическом процессе, определится соотношением:


Это означает что вся подведенная в изотермическом процес­се теплота расходуется на совершение работы.


На плоскости (p, V) изотермические процессы изображаются при различных значениях температуры T семейством гипербол p ~ 1 / V, которые называются изотермами. Так как коэффициент пропорциональности в этом соотношении увеличивается с ростом температуры, изотермы, соответствующие более высоким значениям температуры, располагаются на графике выше изотерм, соответствующих меньшим значениям температуры (рис. 3.2). Уравнение изотермического процесса было получено из эксперимента английским физиком Р. Бойлем (1662 г.) и независимо французским физиком Э. Мариоттом (1676 г.). Поэтому это уравнение называют законом Бойля–Мариотта.


Рисунок 3.2 -Семейство изотерм на плоскости (p, V).T3 > T2 > T1

4) Адиабатный процесс (рис.4).

В данном процессе не подводится и не отводится тепло, т.е. процесс происходит без теплообмена с окружающей средой q =0.

где k = cp / cv – показатель адиабаты.

Cвязь между параметрами процесса определяется, используя уравнение адиабаты и уравнение состояния газа pv = RT:



1) Изохорный процесс (рис.1) - это процесс квазистатического нагревания или охлаждения газа при постоянном объеме V и при условии, что количество вещества ν в сосуде остается неизменным.




Как следует из уравнения состояния идеального газа, при этих условиях давление газа p изменяется прямо пропорционально его абсолютной температуре: p ~ T или

Уравнение состояния процесса:

Так как V 2 = V 1, то l = 0 и уравнение 1-го закона т/д имеет вид:


Количество теплоты, подведенное в изохорном процессе, равно изменению внутренней энергии. Для произвольной массы вещества:


.

На плоскости (p, T) изохорные процессы для заданного количества вещества ν при различных значениях объема V изображаются семейством прямых линий, которые называются изохорами. Большим значениям объема соответствуют изохоры с меньшим наклоном по отношению к оси температур (рис. 1.2).


Рисунок 1.2 - Семейство изохор на плоскости (p, T).V3 > V2 > V1

Экспериментально зависимость давления газа от температуры исследовал французский физик Ж. Шарль (1787 г.). Поэтому уравнение изохорного процесса называется законом Шарля.

Уравнение изохорного процесса может быть записано в виде:

где p0 – давление газа при T = T0 = 273,15 К (т. е. при температуре 0 °С). Коэффициент α, равный (1/273,15) К –1 , называют температурным коэффициентом давления.

2) Изобарный процесс (рис. 2) - квазистатический процесс, протекающий при неизменным давлении p.

Уравнение состояния процесса:

Работа этого процесса:

Уравнение 1-го закона т/д имеет вид:


Выражение для определения количества теплоты для 1 кг газа примет вид:


;

для произвольной массы газа:


.

Таким образом, в изобарном процессе теплота расходуется на совершение работы и на изменение внутренней энергии рабоче­го тела.

На плоскости (V, T) изобарные процессы при разных значениях давления p изображаются семейством прямых линий (рис. 2.3), которые называются изобарами.


Рисунок 2.2 -Семейство изобар на плоскости (V, T).p3 > p2 > p1

Зависимость объема газа от температуры при неизменном давлении была экспериментально исследована французским физиком Ж. Гей-Люссаком (1862 г.). Поэтому уравнение изобарного процесса называют законом Гей-Люссака.

3) Изотермический процесс (рис. 3) - квазистатический процесс, протекающий при постоянной температуре T. Из уравнения состояния идеального газа следует, что при постоянной температуре T и неизменном количестве вещества ν в сосуде произведение давления p газа на его объем V должно оставаться постоянным:

Так как Т2 = Т1, то Du = 0 и уравнение 1-го закона т/д будет иметь вид:

где R = Rh/ i – газовая постоянная [Дж/(кг·К)].

Теплота, участвующая в изотермическом процессе, определится соотношением:


Это означает что вся подведенная в изотермическом процес­се теплота расходуется на совершение работы.


На плоскости (p, V) изотермические процессы изображаются при различных значениях температуры T семейством гипербол p ~ 1 / V, которые называются изотермами. Так как коэффициент пропорциональности в этом соотношении увеличивается с ростом температуры, изотермы, соответствующие более высоким значениям температуры, располагаются на графике выше изотерм, соответствующих меньшим значениям температуры (рис. 3.2). Уравнение изотермического процесса было получено из эксперимента английским физиком Р. Бойлем (1662 г.) и независимо французским физиком Э. Мариоттом (1676 г.). Поэтому это уравнение называют законом Бойля–Мариотта.


Рисунок 3.2 -Семейство изотерм на плоскости (p, V).T3 > T2 > T1

4) Адиабатный процесс (рис.4).

В данном процессе не подводится и не отводится тепло, т.е. процесс происходит без теплообмена с окружающей средой q =0.

где k = cp / cv – показатель адиабаты.

Cвязь между параметрами процесса определяется, используя уравнение адиабаты и уравнение состояния газа pv = RT:

Изохорный, изобарный, изотермический и адиабатный процессы являются частными случаями политропного процесса.

При исследовании термодинамических процессов определяют:

  • уравнение процесса в pv иTs координатах;
  • связь между параметрами состояния газа;
  • изменение внутренней энергии;
  • величину внешней работы;
  • количество подведенной теплоты на осуществление процесса или количество отведенной теплоты.

Изохорный процесс

Изохорный процесс в p-v координатах
Изохорный процесс в t-s координатах
Изохорный процесс в i-s координатах

При изохорном процессе выполняется условие v = const.

Из уравнения состояния идеального газа (pv = RT) следует:

т. е. давление газа прямо пропорционально его абсолютной температуре:

Работа расширения в изохорном процессе равна нулю (l = 0), так как объем рабочего тела не меняется (Δv = const).

Количество теплоты, подведенной к рабочему телу в процессе 1-2 при cv = const определяется по формуле:

Т. к.l = 0, то на основании первого закона термодинамики Δu = q, а значит изменение внутренней энергии можно определить по формуле:

Изменение энтропии в изохорном процессе определяется по формуле:

Изобарный процесс

Изобарный процесс в p-v координатах
Изобарный процесс в t-s координатах
Изобарный процесс в i-s координатах

Изобарным называется процесс, протекающий при постоянном давлении p = const. Из уравнения состояния идеального газа слуедует:

т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре.

Работа будет равна:

Количество теплоты при cp = const определяется по формуле:

Изменение энтропии будет равно:

Изотермический процесс

Изотермический процесс в p-v координатах
Изотермический процесс в t-s координатах
Изотермический процесс в i-s координатах

При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении – снижается.

Работа процесса будет равна:

Так как температура остается неизменной, то и внутренняя энергия идеального газа в изотермическом процессе остается постоянной (Δu = 0) и вся подводимая к рабочему телу теплота полностью превращается в работу расширения:

При изотермическом сжатии от рабочего тела отводится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии равно:

Адиабатный процесс

Адиабатный процесс в p-v координатах
Адиабатный процесс в t-s координатах
Адиабатный процесс в i-s координатах

Адиабатным называется процесс изменения состояния газа, который происзодит без теплообмена с окружающей средой. Так как dq = 0, то уравнение первого закона термодинамики для адиабатного процесса будет иметь вид:

В адиабатном процессе работа расширения совершается только за счет расходования внутренней энергии газа, а при сжатии, происходящем за счет действия внешних сил, вся совершаемая ими работа идет на увеличение внутренней энергии газа.

Обозначим теплоемкость в адиабатном процессе через cад, и условие dq = 0 выразим следующим образом:

Это условие говорит о том, что теплоемкость в адиабатном процессе равна нулю (cад = 0).

и уравнение кривой адиабатного процесса (адиабаты) в p, v-диаграмме имеет вид:

В этом выражении k носит название показателя адиабаты (так же ее называют коэффициентом Пуассона).

Из предыдущих формул следует:

Техническая работа адиабатного процесса (lтехн) равна разности энтальпий начала и конца процесса (i1 i2).

Адиабатный процесс, происходящий без внутреннего трения в рабочем теле, называется изоэнтропийным. В T, s-диаграмме он изображается вертикальной линией.

Обычно реальные адиабатные процессы протекают при наличии внутреннего трения в рабочем теле, в результате чего всегда выделяется теплота, которая сообщается самому рабочему телу. В таком случае ds > 0, и процесс называется реальным адиабатным процессом.

Политропный процесс

Политропным называется процесс, который описывается уравнением:

Показатель политропы n может принимать любые значения в пределах от -∞ до +∞, но для данного процесса он является постоянной величиной.

Из уравнения политропного процесса и уравнения Клайперона можно получить выражение, устанавливающее связь между p, vи Tв любых двух точках на политропе:

Работа расширения газа в политропном процессе равна:


В случае идеального газа эту формулу можно преобразовать:


Количество подведенной или отведенной в процессе теплоты определяется с помощью первого закона термодинамики:


представляет собой теплоемкость идеального газа в политропном процессе.

При cv, k и n = const cn = const, поэтому политропный процесс иногда определят как процесс с постоянной теплоемкостью.

Политропный процесс имеет обобщающее значение, ибо охватывает всю совокупность основных термодинамических процессов.

Графическое представление политропа в p, v координатах в зависимости от показателя политропа n.

Политропный процесс в p-v координатах

pv 0 = const (n = 0) – изобара;

pv = const (n = 1) – изотерма;

p 0 v = const, p 1/∞ v = const, pv ∞ = const – изохора;

n > 0 – гиперболические кривые,

Читайте также: