История развития аппаратного обеспечения кратко

Обновлено: 02.07.2024

В наш век компьютерных технологий практически ни один человек не может обойтись без компьютера. Мы используем их на работе и дома и уже просто не представляем без компьютеров свою жизнь. Но немногие из нас знают как работает компьютер? За счет каких устройств обеспечивается его работа? Поэтому в этой работе раскроем поподробнее из чего же состоит компьютер и как он работает, то есть рассмотрим аппаратное обеспечение компьютера.

Оглавление
Файлы: 1 файл

информатика (аппаратное обеспечение компьютера).docx

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

В Г. ПЕТРОЗАВОДСКЕ

Отделение высшего профессионального образования

Информатика

Аппаратное обеспечение компьютера

Выполнила студентка _ курса (2011 год обучения)

обучающаяся по заочной форме, на базе среднего

Панова Надежда Николаевна

Старший преподаватель экономики и финансов Карельского филиала СЗАГС в г. Петрозаводске

Шарыгина Татьяна Михайловна

Дата сдачи ______________________________ ___

Подпись руководителя__________________ _____

ГЛАВА1 ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ-----------------4

ГЛАВА 2 АППАРАТНОЕ ОБЕСПЕЧЕНИЕ КОМПЬЮТЕРА

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ---------------29

В наш век компьютерных технологий практически ни один человек не может обойтись без компьютера. Мы используем их на работе и дома и уже просто не представляем без компьютеров свою жизнь. Но немногие из нас знают как работает компьютер? За счет каких устройств обеспечивается его работа? Поэтому в этой работе раскроем поподробнее из чего же состоит компьютер и как он работает, то есть рассмотрим аппаратное обеспечение компьютера.

К аппаратному обеспечению относятся устройства, образующую конфигурацию компьютера. Различают внутренние и внешние устройства. Согласование между отдельными узлами и блоками выполняется с помощью аппаратно-логических устройств, называемых аппаратными интерфейсами. Стандарты на аппаратные интерфейсы называют протоколами. Протокол - это совокупность технических условий, которые должны быть обеспечены разработчиками устройств. Персональный компьютер - универсальная техническая система, конфигурацию которой можно изменять по мере необходимости. Тем ни менее существует понятие базовой конфигурации. В настоящее время базовая конфигурация состоит из 4 составляющих:

  1. системный блок
  2. монитор
  3. клавиатура
  4. мышь. 1

Целью работы является рассмотрение аппаратного обеспечения компьютера. Для достижения нашей цели, поставим перед собой несколько задач:

1.Рассмотрим основные (внутренние) устройства компьютера.

2. Рассмотрим периферийные (внешние) устройства.

ГЛАВА 1 ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Начальный этап развития вычислительной техники

От замечательного курьеза, каким восприняли современники машину Паскаля, до создания практически полезного и широко используемого агрегата - арифмометра (механического вычислительного устройства, способного выполнять 4 арифметических действия) - прошло почти 250 лет. Уже в начале XIX века уровень развития ряда наук и областей практической деятельности (математики, механики, астрономии, инженерных наук, навигации и др.) был столь высок, что они настоятельнейшим образом требовали выполнения огромного объема вычислений, выходящих за пределы возможностей человека, не вооруженного соответствующей техникой. Над ее созданием и совершенствованием работали как выдающиеся ученые с мировой известностью, так и сотни людей, имена многих из которых до нас не дошли, посвятивших свою жизнь конструированию механических вычислительных устройств.

1. Автоматическое выполнение операций.

Для автоматического выполнения операций программа должна вводиться в исполнительное устройство со скоростью, соизмеримой со скоростью выполнения операций. Бэббидж предложил использовать для предварительной записи программ и ввода их в машину перфокарты, которые к тому времени применялись для управления ткацкими станками.

Эти революционные идеи натолкнулись на невозможность их реализации на основе механической техники, ведь до появления первого электромотора оставалось почти полвека, а первой электронной радиолампы - почти век! Они настолько опередили свое время, что были в значительной мере забыты и переоткрыты в следующем столетии.

Однако, появление релейных машин безнадежно запоздало и они были очень быстро вытеснены электронными, гораздо более производительными и надежными.

Начало современной истории ЭВМ

Подлинная революция в вычислительной технике произошла в связи с применением электронных устройств. Работа над ними началась в конце 30-х годов одновременно в США, Германии, Великобритании и СССР. К этому времени электронные лампы, ставшие технической основой устройств обработки и хранения цифровой информации, уже широчайшим образом применялись в радиотехнических устройствах.

Эти и ряд других первых ЭВМ не имели важнейшего с точки зрения конструкторов последующих компьютеров качества - программа не хранилась в памяти машины, а набиралась достаточно сложным образом с помощью внешних коммутирующих устройств.

Содержание

ВВЕДЕНИЕ 3
1. РАЗВИТИЕ АППАРАТНОГО ОБЕСПЕЧЕНИЯ 5
2. СОВРЕМЕННЫЕ ИНФРАСТРУКТУРНЫЕ РЕШЕНИЯ 10
2.1 Появление блэйд-систем 10
2.2 Появление систем и сетей хранения данных 13
2.3 Сети хранения данных 15
2.4 Топологии SAN 17
2.5 Консолидация ИТ инфраструктуры 19
ЗАКЛЮЧЕНИЕ 24
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ: 26

Прикрепленные файлы: 1 файл

Развитие аппаратного обеспечения.docx

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

Выполнил студент группы 31-ОБ

1. РАЗВИТИЕ АППАРАТНОГО ОБЕСПЕЧЕНИЯ 5

2. СОВРЕМЕННЫЕ ИНФРАСТРУКТУРНЫЕ РЕШЕНИЯ 10

2.1 Появление блэйд-систем 10

2.2 Появление систем и сетей хранения данных 13

2.3 Сети хранения данных 15

2.4 Топологии SAN 17

2.5 Консолидация ИТ инфраструктуры 19

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ: 26

ВВЕДЕНИЕ

Персональный компьютер, как известно, является универсальным устройством для обработки информации. Персональные компьютеры могут выполнять любые действия по обработке информации. Для этого необходимо составить для компьютера на понятном ему языке точную и подробную последовательность инструкций – программу, как надо обрабатывать информацию.

Меняя программы для компьютера, можно превратить его в рабочее место бухгалтера или конструктора, дизайнера или ученого, писателя или агронома. Кроме того, тенденция понижения стоимости компьютерной техники при одновременном росте ее производительности привела к тому, что компьютеры становятся предметом домашнего обихода, как, например, телевизор или холодильник, что расширяет сферу применения ПК еще больше. Соответственно, требуется все более разнообразное программное обеспечение для решения задач в новых областях применения ПК. Непрерывное повышение мощности персональных компьютеров, периферийных устройств, а также развитие средств связи дает разработчикам программного обеспечения все больше возможностей для максимально полного удовлетворения запросов конечных потребителей. Это и ставший стандартом графический интерфейс для любого ПО, и внедренные возможности для отправки документов и данных с помощью Интернет непосредственно из прикладной программы (Microsoft Word 2000, Excel 2000, Access 2000 и др.), и возможность использования компьютера как хранилища информации благодаря появлению новых видов накопителей большой емкости и малым временем доступа к данным, а также многие другие возможности и сервисные функции.

В своем реферате я хочу рассказать про развитие прикладного программного обеспечения персонального компьютера, пакетов прикладных программ (ППП), а также про использование прикладных программ в жизни каждого пользователя.

РАЗВИТИЕ АППАРАТНОГО ОБЕСПЕЧЕНИЯ

Для того, чтобы понять, как появились "облачные" вычисления, необходимо представлять основные моменты процесса развития вычислений и вычислительной техники.

В наше время жизнь без компьютеров не представляется возможной. Внедрение вычислительной техники проникло почти во все жизненные аспекты, как личные, так и профессиональные. Развитие компьютеров было достаточно быстрым. Началом эволюционного развития компьютеров стал 1930 год, когда двоичная арифметика была разработана и стала основой компьютерных вычислений и языков программирования. В 1939 году были изобретены электронно-вычислительные машины, выполняющие вычисление в цифровом виде. Появление вычислительных устройств приходится на 1942 год, когда было изобретено устройство, которое могло механически добавлять числа. Вычисления производились с использованием электронных ламп.

Появившаяся в 1941 году модель Z3 Конрада Цузе в немецкой Лаборатории Авиации в Берлине была одним из наиболее значительных событий в развитии компьютеров, потому что эта машина поддерживала вычисления как с плавающей точкой, так и двоичную арифметику. Это устройство рассматривают как самый первый компьютер, который был полностью работоспособным. Язык программирования считают "Turing-complete", если он попадает в тот же самый вычислительный класс, как машина Тьюринга.

Чтобы выполнить его задачу расшифровки, Колосс сравнил два потока данных, прочитанных на высокой скорости с перфоленты. Колосс оценивал поток данных, считая каждое совпадение, которое было обнаружено, основываясь на программируемой Булевой функции. Для сравнения с другими данными был создан отдельный поток.

Другой компьютер общего назначения этой эры был ENIAC (Электронный Числовой Интегратор и Компьютер), который был построен в 1946. Он был первым компьютером, способным к перепрограммированию, чтобы решать полный спектр вычислительных проблем. ENIAC содержал 18 000 термоэлектронных ламп, он весил более чем 27 тонн, и потреблял электроэнергии 25 киловатт в час. ENIAC выполнял 100 000 вычислений в секунду. Изобретение транзистора означало, что неэффективные термоэлектронные лампы могли быть заменены более мелкими и надежными компонентами. Это было следующим главным шагом в истории вычислений.

Компьютеры Transistorized отме тили появление второго поколения компьютеров, которые доминировали в конце 1950-ых и в начале 1960-ых. Несмотря на использование транзисторов и печатных схем, эти компьютеры были все еще большими и дорогостоящими. В основном они использовались университетами и правительством. Интегральная схема или чип были развиты Джеком Килби. Благодаря этому достижению он получил Нобелевскую премию по физике в 2000 году.

Изобретение Килби вызвало взрыв в развитии компьютеров третьего поколения. Даже при том, что первая интегральная схема была произведена в сентябре 1958, чипы не использовались в компьютерах до 1963. Историю мейнфреймов - принято отсчитывать с появления в 1964 году универсальной компьютерной системы IBM System/360, на разработку которой корпорация IBM затратила 5 млрд долларов.

Мейнфрейм - это главный компьютер вычислительного центра с большим объемом внутренней и внешней памяти. Он предназначен для задач, требующих сложных вычислительных операций. Сам термин "мейнфрейм" происходит от названия типовых процессорных стоек этой системы. В 1960-х — начале 1980-х годов System/360 была безоговорочным лидером на рынке. Её клоны выпускались во многих странах, в том числе — в СССР (серия ЕС ЭВМ). В то время такие мэйнфреймы, как IBM 360 увеличили способности хранения и обработки, интегральные схемы позволяли разрабатывать миникомпьютеры, что позволило большому количеству маленьких компаний производить вычисления. Интеграция высокого уровня диодных схем привела к развитию очень маленьких вычислительных единиц, что привело к следующему шагу развития вычислений.

В ноябре 1971 Intel выпустили первый в мире коммерческий микропроцессор, Intel 4004. Это был первый полный центральный процессор на одном чипе и стал первым коммерчески доступным микропроцессором. Это было возможно из-за развития новой технологии кремниевого управляющего электрода. Это позволило инженерам объединить на много большее число транзисторов на чипе, который выполнял бы вычисления на небольшой скорости. Эта разработка способствовала появлению компьютерных платформ четвертого поколения.

Компьютеры четвертого поколения, которые развивались в это время, использовали микропроцессор, который помещает способности компьютерной обработки на единственном чипе. Комбинируя памятьпроизвольного доступа (RAM), разработанную Intel, компьютеры четвертого поколения были быстрее, чем когда-либо прежде и занимали на много меньшую площадь. Процессоры Intel 4004 были способны выполнять всего 60 000 инструкций в секунду. Микропроцессоры, которые развились из Intel 4004 разрешенные изготовителями для начала развития персональных компьютеров, маленьких достаточно дешевых, чтобы быть купленными широкой публикой. Первым коммерчески доступным персональным компьютером был MITS Altair 8800, выпущенный в конце 1974. В последствии были выпущены такие персональные компьютеры, как Apple I и II, Commodore PET, VIC-20, Commodore 64, и, в конечном счете, оригинальный IBM-PC в 1981. Эра PC началась всерьез к середине 1980-ых. В течение этого времени IBM-PC, Commodore Amiga и Atari ST были самыми распространенными платформами PC, доступными общественности. Даже при том, что микровычислительная мощность и память увеличились на много порядков, начиная с изобретения из Intel 4004 процессоров, технологии чипов интеграции высокого уровня (LSI) или интеграция сверхвысокого уровня (VLSI) сильно не изменились. Поэтому большинство сегодняшних компьютеров все еще попадает в категорию компьютеров четвертого поколения.

Одновременно с резким ростом производства персональных компьютеров в начале 1990-х начался кризис рынка мейнфреймов, пик которого пришёлся на 1993 год. Многие аналитики заговорили о полном вымирании мейнфреймов, о переходе от централизованной обработки информации к распределённой (с помощью персональных компьютеров, объединённых двухуровневой архитектурой "клиент-сервер"). Многие стали воспринимать мейнфреймы как вчерашний день вычислительной техники, считая Unix- и PC-серверы более современными и перспективными.

C 1994 года вновь начался рост интереса к мейнфреймам. Дело в том, что, как показала практика, централизованная обработка на основе мейнфреймов решает многие задачи построения информационных систем масштаба предприятия проще и дешевле, чем распределённая. Многие из идей, заложенных в концепции облачных вычислений также "возвращают" нас к эпохе мэйнфреймов, разумеется с поправкой на время. Еще шесть лет назад в беседе с Джоном Мэнли, одним из ведущих научных сотрудников центра исследований и разработок HP в Бристоле, обсуждалась тема облачных вычислений, и Джон обратил внимание на то, что основные идеи cloud computing до боли напоминают мэйнфреймы, только на другом техническом уровне: "Все идет от мэйнфреймов. Мэйнфреймы научили нас тому, как в одной среде можно изолировать приложения, – умение, критически важное сегодня".

Аннотация: В данной лекции рассматриваются основные этапы развития аппаратного и программного обеспечения. Проводится небольшой исторический обзор. Рассматриваются основные современные тенденции развития аппаратного обеспечения, основные требования к инфраструктуре. Рассматриваются современные тенденции развития инфраструктурных решений, которые привели к появлению концепции облачных вычислений

Практику к данному курсу Вы можете скачать здесь.

Целью данной лекции является знакомство с основными этапами развития вычислительной техники. Анализ современных тенденций развития аппаратного обеспечения, приведших к появлению технологий облачных вычислений.

Развитие аппаратного обеспечения

Для того, чтобы понять, как появились "облачные" вычисления, необходимо представлять основные моменты процесса развития вычислений и вычислительной техники.

В наше время жизнь без компьютеров не представляется возможной. Внедрение вычислительной техники проникло почти во все жизненные аспекты, как личные, так и профессиональные. Развитие компьютеров было достаточно быстрым. Началом эволюционного развития компьютеров стал 1930 год, когда двоичная арифметика была разработана и стала основой компьютерных вычислений и языков программирования. В 1939 году были изобретены электронно-вычислительные машины, выполняющие вычисление в цифровом виде. Появление вычислительных устройств приходится на 1942 год, когда было изобретено устройство, которое могло механически добавлять числа. Вычисления производились с использованием электронных ламп.

Появившаяся в 1941 году модель Z3 Конрада Цузе в немецкой Лаборатории Авиации в Берлине была одним из наиболее значительных событий в развитии компьютеров, потому что эта машина поддерживала вычисления как с плавающей точкой, так и двоичную арифметику. Это устройство рассматривают как самый первый компьютер , который был полностью работоспособным. Язык программирования считают "Turing-complete", если он попадает в тот же самый вычислительный класс , как машина Тьюринга .

Чтобы выполнить его задачу расшифровки, Колосс сравнил два потока данных, прочитанных на высокой скорости с перфоленты. Колосс оценивал поток данных, считая каждое совпадение, которое было обнаружено, основываясь на программируемой Булевой функции. Для сравнения с другими данными был создан отдельный поток .

Другой компьютер общего назначения этой эры был ENIAC (Электронный Числовой Интегратор и Компьютер ), который был построен в 1946. Он был первым компьютером, способным к перепрограммированию, чтобы решать полный спектр вычислительных проблем. ENIAC содержал 18 000 термоэлектронных ламп, он весил более чем 27 тонн, и потреблял электроэнергии 25 киловатт в час. ENIAC выполнял 100 000 вычислений в секунду. Изобретение транзистора означало, что неэффективные термоэлектронные лампы могли быть заменены более мелкими и надежными компонентами. Это было следующим главным шагом в истории вычислений.

Компьютеры Transistorized отметили появление второго поколения компьютеров, которые доминировали в конце 1950-ых и в начале 1960-ых. Несмотря на использование транзисторов и печатных схем, эти компьютеры были все еще большими и дорогостоящими. В основном они использовались университетами и правительством. Интегральная схема или чип были развиты Джеком Килби. Благодаря этому достижению он получил Нобелевскую премию по физике в 2000 году.

Изобретение Килби вызвало взрыв в развитии компьютеров третьего поколения. Даже при том, что первая интегральная схема была произведена в сентябре 1958, чипы не использовались в компьютерах до 1963. Историю мейнфреймов - принято отсчитывать с появления в 1964 году универсальной компьютерной системы IBM System/360, на разработку которой корпорация IBM затратила 5 млрд долларов.

Мейнфрейм - это главный компьютер вычислительного центра с большим объемом внутренней и внешней памяти. Он предназначен для задач, требующих сложных вычислительных операций. Сам термин " мейнфрейм " происходит от названия типовых процессорных стоек этой системы. В 1960-х — начале 1980-х годов System/360 была безоговорочным лидером на рынке. Её клоны выпускались во многих странах, в том числе — в СССР (серия ЕС ЭВМ). В то время такие мэйнфреймы, как IBM 360 увеличили способности хранения и обработки, интегральные схемы позволяли разрабатывать миникомпьютеры, что позволило большому количеству маленьких компаний производить вычисления. Интеграция высокого уровня диодных схем привела к развитию очень маленьких вычислительных единиц, что привело к следующему шагу развития вычислений.

В ноябре 1971 Intel выпустили первый в мире коммерческий микропроцессор , Intel 4004. Это был первый полный центральный процессор на одном чипе и стал первым коммерчески доступным микропроцессором. Это было возможно из-за развития новой технологии кремниевого управляющего электрода. Это позволило инженерам объединить на много большее число транзисторов на чипе, который выполнял бы вычисления на небольшой скорости. Эта разработка способствовала появлению компьютерных платформ четвертого поколения.

Компьютеры четвертого поколения, которые развивались в это время, использовали микропроцессор , который помещает способности компьютерной обработки на единственном чипе. Комбинируя память произвольного доступа ( RAM ), разработанную Intel, компьютеры четвертого поколения были быстрее, чем когда-либо прежде и занимали на много меньшую площадь . Процессоры Intel 4004 были способны выполнять всего 60 000 инструкций в секунду. Микропроцессоры, которые развились из Intel 4004 разрешенные изготовителями, стали базой для начала развития персональных компьютеров, маленьких достаточно дешевых, чтобы быть купленными широкой публикой. Первым коммерчески доступным персональным компьютером был MITS Altair 8800, выпущенный в конце 1974. В последствии были выпущены такие персональные компьютеры, как Apple I и II, Commodore PET , VIC -20, Commodore 64, и, в конечном счете, оригинальный IBM - PC в 1981. Эра PC началась всерьез к середине 1980-ых. В течение этого времени IBM - PC , Commodore Amiga и Atari ST были самыми распространенными платформами PC , доступными общественности. Даже при том, что микровычислительная мощность и память увеличились на много порядков, начиная с изобретения из Intel 4004 процессоров, технологии чипов интеграции высокого уровня ( LSI ) или интеграция сверхвысокого уровня ( VLSI ) сильно не изменились. Поэтому большинство сегодняшних компьютеров все еще попадает в категорию компьютеров четвертого поколения.

Одновременно с резким ростом производства персональных компьютеров в начале 1990-х начался кризис рынка мейнфреймов, пик которого пришёлся на 1993 год. Многие аналитики заговорили о полном вымирании мейнфреймов, о переходе от централизованной обработки информации к распределённой (с помощью персональных компьютеров, объединённых двухуровневой архитектурой "клиент- сервер "). Многие стали воспринимать мейнфреймы как вчерашний день вычислительной техники, считая Unix- и PC -серверы более современными и перспективными.

C 1994 года вновь начался рост интереса к мейнфреймам. Дело в том, что, как показала практика, централизованная обработка на основе мейнфреймов решает многие задачи построения информационных систем масштаба предприятия проще и дешевле, чем распределённая. Многие из идей, заложенных в концепции облачных вычислений также "возвращают" нас к эпохе мэйнфреймов, разумеется с поправкой на время. Еще шесть лет назад в беседе с Джоном Мэнли, одним из ведущих научных сотрудников центра исследований и разработок HP в Бристоле, обсуждалась тема облачных вычислений, и Джон обратил внимание на то, что основные идеи cloud computing до боли напоминают мэйнфреймы, только на другом техническом уровне: "Все идет от мэйнфреймов. Мэйнфреймы научили нас тому, как в одной среде можно изолировать приложения, – умение, критически важное сегодня".

Современные инфраструктурные решения

С каждым годом требования бизнеса к непрерывности предоставления сервисов возрастают, а на устаревшем оборудовании обеспечить бесперебойное функционирование практически невозможно. В связи с этим крупнейшие ИТ-вендоры производят и внедряют более функциональные и надежные аппаратные и программные решения. Рассмотрим основные тенденции развития инфраструктурных решений, которые, так или иначе, способствовали появлению концепции облачных вычислений.

  • Рост производительности компьютеров. Появление многопроцессорных и многоядерных вычислительных систем, развитие блейд-систем
  • Появление систем и сетей хранения данных
  • Консолидация инфраструктуры

Появление блэйд-систем

В процессе развития средств вычислительной техники всегда существовал большой класс задач, требующих высокой концентрации вычислительных средств. К ним можно отнести, например сложные ресурсоемкие вычисления (научные задачи, математическое моделирование), а так же задачи по обслуживанию большого числа пользователей (распределенные базы данных, Интернет-сервисы, хостинг).

Не так давно (порядка 5ти лет назад) производители процессоров достигли разумного ограничения наращивания мощности процессора, при котором его производительность очень высока при относительно низкой стоимости. При дальнейшем увеличении мощности процессора, необходимо было прибегать к нетрадиционным методам охлаждения процессоров, что достаточно неудобно и дорого. Оказалось, что для увеличения мощности вычислительного центра более эффективно увеличить количество отдельных вычислительных модулей, а не их производительность. Это привело к появлению многопроцессорных, а позднее и многоядерных вычислительных систем. Появляются многопроцессорные системы, которые насчитывают более 4 процессоров. На текущий момент существуют процессоры с количеством ядер 8 и более, каждое из которых эквивалентно по производительности. Увеличивается количество слотов для подключения модулей оперативной памяти, а также их емкость и скорость.

Увеличение числа вычислительных модулей в вычислительном центре требует новых подходов к размещению серверов, а также приводит к росту затрат на помещения для центров обработки данных, их электропитание, охлаждение и обслуживание.

Для решения этих проблем был создан новый тип серверов XXI века — модульные, чаще называемые Blade-серверами, или серверами-лезвиями (blade — лезвие). Преимущества Blade-серверов, первые модели которых были разработаны в 2001 г. изготовители описывают с помощью правила "1234". "По сравнению с обычными серверами при сравнимой производительности Blade-серверы занимают в два раза меньше места, потребляют в три раза меньше энергии и обходятся в четыре раза дешевле".

Типичный Blade-сервер (Sun Blade X6250)

Что представляет собой Blade-сервер? По определению, данному аналитической компании IDC Blade-сервер или лезвие - это модульная одноплатная компьютерная система, включающая процессор и память. Лезвия вставляются в специальное шасси с объединительной панелью ( backplane ), обеспечивающей им подключение к сети и подачу электропитания. Это шасси с лезвиями, является Blade-системой. Оно выполнено в конструктиве для установки в стандартную 19-дюймовую стойку и в зависимости от модели и производителя, занимает в ней 3U, 6U или 10U (один U - unit, или монтажная единица, равен 1,75 дюйма). За счет общего использования таких компонентов, как источники питания, сетевые карты и жесткие диски, Blade-серверы обеспечивают более высокую плотность размещения вычислительной мощности в стойке по сравнению с обычными тонкими серверами высотой 1U и 2U.

Типичное 10U шасси для 10 Blade-серверов (Sun Blade 6000) используемое в УрГУ

Технология блэйд-систем заимствует некоторые черты мейнфреймов. В настоящее время лидером в производстве блэйд-систем являются компании Hewlett-Packard, IBM, Dell, Fujitsu Siemens Computers, Sun.

Развитие ЭВМ с момента их появления происходит быстрыми темпами. Модернизируются существующие устройства и разрабатываются новые, появляются более совершенные конструктивные решения для обеспечения взаимосвязи отдельных устройств между собой - т.е.

ра ЭВМ постоянно совершенствуется. На смену большим ЭВМ пришли мини-ЭВМ, а затем и персональные компьютеры (ПК). Сохраняя общие принципы архитектуры, каждая новая модель компьютеров обладает определенными отличительными признаками.

Интеграция устройств. Например, если в первых моделях математический сопроцессор, кэшпамять, таймер и ряд других устройств изготавливались и размещались на материнской плате как отдельные устройства, то в настоящее время они все чаще объединяются в одном кристалле с центральным процессором.

Расширение спектра периферийных устройств. В настоящее время пользователю предлагаются самые различные модели принтеров, дисплеев, клавиатур, несколько десятков видов манипуляторов, сенсорные системы и т.д.

Унификация портов - переход от специализированных портов для разных устройств (например, LPT - Line PrinTer - для подключения принтера и COM - communicate - для модема и т.п.) к универсальным портам - USB - universal serial bus (универсальная последовательная шина). К одному USB- порту можно подключить до 127 устройств разного назначения.

Унификация двоичного кодирования символов - переход от множества однобайтных таблиц кодировок (ASCII, КОИ-8, CP1251 и т.п.) к единой двухбайтной таблице Unicode, содержащей коды 216 = 65536 различных символов.

Читайте также: